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ABSTRACT 
The process of grain boundary migration involves moving interfaces and topological changes of grain 

boundary geometry. This can not be effectively modeled by Lagrangian, Eulerian, or arbitrary Lagrangian 
Eulerian finite element formulation when stress effect is considered. A coupled finite element and meshfree 
approach is proposed for modeling of grain boundary migration under stress. In this formulation, the material 
grid carries material kinematic and kinetic variables, whereas the grain boundary grid carries grain boundary 
kinematic variables. The material domain is discretized by a reproducing kernel partition of unity with 
built-in strain discontinuity across the grain boundaries. The grain boundaries, on the other hand, are 
discretized by the standard finite elements. This approach allows an arbitrary evolution of grain boundaries 
without continuous remeshing.   

Keywords: grain boundary migration, meshfree method, reproducing kernel approximation, double-gird 
method 

INTRODUCTION 
Grain growth is the process by which the average grain size in a polycrystalline material 

increases in time. The evolution of the microstructure during the grain growth takes place via the 
migration of the grain boundaries towards their centers of curvature, the driving force being 
provided by the decrease in energy associated with the decrease of the length of the grain 
boundaries. There have been many experimental and theoretical investigations of grain growth 
process starting from 1950s. In recent years, various types of computer simulation models have 
been developed with the aim of simulating the detailed evolution of microstructure during grain 
growth. These simulation models fall mainly into two classes: probabilistic (Anderson et al., 1984) 
and deterministic (Soares et al., 1985, Frost et al., 1988, Kawasaki et al.,1989, Cocks et al., 1996, 
Moldovan et al., 2002). 
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Probabilistic models are generally of Monte-Carlo type and have their basis in the classical spin 

models of statistical physics; the most investigated is Potts model (Anderson et al., 1984). In the 
Potts model approach grains are subdivided into small-area elements and growth dynamics are 
simulated by exchange of area elements between grains. Growth takes place as a consequence of 
the minimization of the internal energy of the system. The exchange step of area elements from one 
grain to the neighboring grain is carried out using a Monte Carlo algorithm. The advantage of this 
method is its simplicity and the ease of its implementation in two and three-dimensional systems. 
However, in this method the origin of the stochastic aspect is not clear, nor is the relation between 
the Monte Carlo time step and the physical time.   

 
In the deterministic models, the motion of grain boundaries is followed by time integration of 

their position assuming the normal velocity of the grain boundary to be proportional to the 
boundary curvature. A purely deterministic approach was proposed first by Fullman (1952) and is 
referred to as “vertex model”. Later, this was improved by Soares et al. (1985) and Kawasaki et al. 
(1989) assuming straight grain boundaries, and by Frost et al. (1988), Cocks and Gill (1996), 
Weygand et al. (1998) by extending it to curved grain boundaries. Using the theoretical approach 
of Needleman and Rice (1980) based on a variational principle for dissipative systems, Cocks and 
Gill (1996) have proposed a new method to simulate curvature-driven grain growth. Their 
modification describes the rate of power dissipation due to the competition between the reduction 
in the grain boundary energy and the viscous drag during grain boundary migration. Moreover, the 
grain boundaries are discretized using finite elements. 

 
In general in a polycrystalline microstructure subject to an externally applied stress an 

additional driving force to that given by the grain boundary curvature has to be considered. This is 
due to the elastic anisotropy of the grains comprising the microstructure, which in general store 
different amounts of elastic energies. Our focus in this study is to investigate the grain growth in 
the presence of both curvature driven and stress induced grain boundary migration. This requires 
the coupling of elastic deformation of grains with grain boundary migration and thus necessitates 
the discretization of grain boundaries and grain domains. Using finite element method, the 
migration of grain boundary leads to a severe mesh distortion in each grain, and the topological 
changes of grain structures further demand a complete remeshing. In this work, a double-grid 
method is proposed. The elastic deformation of grains is modeled by reproducing kernel 
discretization with built-in strain discontinuities along the grain boundaries (Chen et al. 1996, 
2002), whereas the migration kinematics of discretized grain boundaries is modeled using the 
standard finite element formulation. 

 
The numerical examples we provide in this study demonstrate that the evolution of grain 

growth can be effectively simulated without any remeshing. Moreover, the study also shows the 
proper time evolution of the grain structures in an idealized grain network with an imperfection 
using the proposed methods. 

GRAIN GROWTH KINEMATICS 
In general, the grain boundaries migrate at a wide range of velocities, which depend on the 

magnitude of both the driving force and the grain boundary mobility (which dependent on 
temperature, and impurities concentration). Using a simplified model, Burke and Turnbull (1952) 
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proposed a parabolic relationship for the grain growth kinetic. 
 

The driving force cf  due to the surface curvature (the capillarity effect) is  
 

 c
1 2

1 1f ( )( )
R R

γ θ= +  (1) 

 
where ( )γ θ  is the surface tension (the boundary energy per unit area) which in general dependents 
on the grain-boundary misorientationθ , and 1R  and 2R  are the principal radii of the surface 
curvature. 
 

Assuming the only forces acting on a grain boundary are those given by Eq.(1) ( )γ θ  is 
constant for all boundaries, the parabolic equation is deduced as: 
 
 n nR ( t ) R (0 ) kt− =  (2) 
 
where, n takes the value of 2 and is known as the grain growth exponent ( )R t  is the mean grain 
radius at time t and k is a constant. The grain growth exponent is one of the most important 
characteristics of the growth and the experimental value ranges from n=2 to n=4. 
 

In general at small grain sizes the most significant driving force for grain boundary migration is 
the surface tension. However at larger grain sizes, and in the presence of strain energy, additional 
driving forces due to difference in elastic strain energies in the volumes of neighboring grains, may 
also play a key role in grain boundary migration. For instance, this driving force ef  can be 
expressed as: 
 

 e

U
f

V
∆

=
∆

 (3) 

 
where U∆  is the difference in strain energy between adjacent grains in volume V∆ , V∆  is the 
volume through which the grain boundary segment has swept during a migration step.  
 

The following creep law is used for the elastic deformation of the grain 
 
 ij ijkl klCσ ε=  (4) 
 

 ji
ij

j i

v1 v( )
2 x x

ε
∂∂

= +
∂ ∂

 (5) 

 
where iv  is material velocity, and ijklC  for each grain is assumed to be orthotropic following the 
crystallographic orientation of grain. 
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Due to the grain boundary migration with velocities components nv  and sv  as shown in Fig. 1, 

the rate of elongation per unit length of grain boundaries can be calculated as 
 

 n s
s

v v
R s

ε ∂
= +

∂
 (6) 

 
where R is grain boundary radius of curvature. 
 
 
 
 
 
 

 

 

Fig. 1. A segment of grain boundary 

GEOMETRY OF POLYCRYSTALLINE MATERIALS 
The geometry of a 2D polycrystalline material is determined by the arrangement of the 

fundamental elements such as vertices, edges and faces as shown in Fig. 2. These elements obey 
the following Euler relation: 
 
 F E V 1− + =  (7) 
 
where F, E, and V are the numbers of faces, edges and vertices respectively.  
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. 2-D grain structure 
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(a) T1 change (b) T2 change (c) T3 change 

Although any number of edges can join in a vertex, the threefold vertices are the one favored 
energetically in 2D polycrystalline materials, and it follows 
 
 3V 2E nF= =  (8) 
 
where n  is the mean number of vertices per face (grain). For a system with a large number of 
grains 1N , this implies 6n = .  
 

In 2D, unless the microstructure consists of a regular array of hexagons, grain growth is 
inevitable. According to Eq. (8), each grain disappearance is accompanied by vanishing of two 
vertices and three edges. In addition to this the von Neumann (1952) relation predicts that any grain 
with more than 6 edges will grow, while those having less 6 edges will shrink. The topology of the 
system evolves continuously during growth. In order to provide solutions for the necessary 
topological transformations during growth typical topological transformations have been proposed. 
These are T1, T2 and T3 topological changes as shown in Fig. 3. 
 
 
 
 
 
 
 
 
 

Fig. 3. Topological change of grain boundaries 

DOUBLE-GRID DISCRETIZATION 
Grain boundary velocity and material velocity are the two primary variables describing the 

physic problem. As shown in Fig. 4, the material domain is discretized by material points carrying 
material velocity v , whereas the grain boundary is discretized by grain boundary points carrying 
grain boundary velocity v . In this approach, the material velocity is approximated by a 
reproducing kernel approximation with strain discontinuity along material interface. The grain 
boundary velocity is approximated by the standard finite element shape function, i.e., 
 

 
NPm

i I iI
I 1

v ( )Ψ υ
=

= ∑ x  (9) 

 

 
NPgb

i I iI
I 1

v N ( s )υ
=

= ∑  (10) 

 
where NPm is the number of material points, NPgb is the number of grain boundary points, IN ( s )  
is the 1-dimensional shape function defined along the grain boundary using grain boundary 
coordinate s, and I ( )Ψ x  is the reproducing kernel shape function defined in the 2-dimensional 
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material domain as follows 
 
 ˆ( ) ( ) ( )Ψ Ψ Ψx x x= +  (11) 
 

In Eq.(11), ˆ ( )Ψ x  is primitive function employed to introduce derivative discontinuity along 
the brain boundary as shown in Fig. 5, and ( )Ψ x  is the enrichment function to impose 
completeness of the approximation. Following the procedures described in the work by Chen et al. 
(2002) and Wang et al. (2002), the enrichment function is expressed as 
 

 
NPm

T 1
I I I a I

I 1

ˆ( ) ( ) ( )[ ( ) ( ) ( )] ( )Ψ Ψ Φx H x x M x H 0 x H x x x x−

=

= − − − −∑  (12) 

 
 T

I I I( ) [1,x x , y y ]H x x− = − −  (13) 
 

 
NPm

T
I I a I

I 1

( ) ( ) ( ) ( )Φ
=

= − − −∑M x H x x H x x x x  (14) 

 
where a I( )Φ −x x  is the kernel function with support size “a”. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Double grid discretization 

 
 
 
 
 
 

 

Fig. 5. Premitive function and its derivatives along the normal direction of the grain 
boundaries 
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NUMERICAL EXAMPLE 
A network of uniform hexagonal grains with a central one whose elastic material property is 

different from the others (as shown in Figs. 6 and 7) is subject to a tensile stress in the vertical 
direction. In the first case, the Young’s modulus of the center grain is larger than that of other grains. 
The time evolution of microstructure is shown in Fig. 6. Several T1 topological changes give rise 
to a grain with number of edges less than 6 which promotes its growth (see central grain in Fig. 6). 
Finally, after some time the central grain occupies most of the domain. In the second case, a central 
grain with lower Young’s modulus is introduced. At the initial stage, this grain shrinks as shown in 
Fig. 7 in order to reduce the total strain energy of the system. After several T1 and T3 topological 
changes, the central grain disappears and leads to an unstable microstructure where several grains 
have less than 6 edges and one with more than 6 edges. The one grain with more than 6 edges 
continues to grow whereas the surrounding grains with less than 6 edges keep on reducing their 
sizes and eventually disappear.  
 
 
 
 
 
 
 
 
 

Fig. 6. Imperfection with stiffer grain 

 
 
 
 
 
 
 

 

 

 

 

Fig. 7. Imperfection with softer grain 
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