

ANL/NE-14/7

User Manual for EXODUS II Mesh Converter

Nuclear Engineering Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandra, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

http://www.osti.gov/scitech/)
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/

ANL/NE-14/7

User Manual for EXODUS II Mesh Converter

prepared by

E. R. Shemon and C. W. Attaway

Nuclear Engineering Division, Argonne National Laboratory

August 15, 2014

ABSTRACT

A mesh conversion program has been developed to convert EXODUS II-formatted finite element

meshes to the ascii format used by the PROTEUS-SN neutronics code developed at Argonne National

Laboratory. This manual contains instructions, usage examples, and methodology for the mesh

converter.

The PROTEUS-SN neutronics code requires a finite element mesh input file in one of several

accepted formats (ascii, nemesh, pntmesh, or bgpmesh). None of these file formats are directly

produced by conventional finite element file modeling codes, therefore format conversion is required.

Currently, most finite element meshes are prepared using the Cubit program developed by Sandia

National Laboratory. Cubit can export finite element meshes in a variety of formats including the

portable EXODUS II format. EXODUS II files are binary files with NetCDF data storage structures

designed to handle large object-oriented arrays. While a specialized EXODUS II application

programming interface (API) exists to query EXODUS II data, the general NetCDF API can also be used

for the same purpose.

The described program improves upon a previous tool which had limited flexibility and

performance. Notably, the new converter successfully converts EXODUS II files generated with more

recent versions of Cubit (version 13+) and has no limitation on mesh size (total number of vertices or

elements). The converter queries data from the EXODUS II file using NetCDF API commands, reads the

data in the file, reorganizes it, and writes it to the ascii file format used by PROTEUS-SN.

User Manual for EXODUS II Mesh Converter

August 15, 2014

2

TABLE OF CONTENTS

Abstract ..1

Table of Contents ...2
1. Introduction ..3

1.1 Input File Summary ...3

1.2 Output File Summary ...3
2. Code Installation and Usage ..5

2.1 Quick Start Guide ..3

2.2 NetCDF Library Requirements ..5

2.3 Building the Converter ...7

2.4 Execution Syntax ...7

2.5 Limitations ...8
3. Conversion Methodology...9

3.1 EXODUS II Overview ...9

3.1.1 Dimensions Section ...9

3.1.2 Variables Section ...9

3.1.3 Data Section ..10

3.2 Conversion Process ..11

3.2.1 Command Line Input and Output File Creation ..11

3.2.2 Reading the Dimensions ..12

3.2.3 Reading the Variables ...12

3.2.4 Writing Coordinates and Basic Block Information ...12

3.2.5 Connectivity Remapping ...12

3.2.6 Boundary Information ...13

3.3 Output File Descriptions ..15

3.3.1 ASCII File Format ...15

3.3.2 Report File ...16
4. Benchmark Problems ...18

5. Summary ..20
6. References ..21
APPENDIX A ..22
APPENDIX B ..23

User Manual for EXODUS II Mesh Converter

August 15, 2014

3

1. Introduction
This chapter describes the basic functionality of the EXODUS II mesh converter program, whose

purpose is to convert EXODUS II finite element meshes to the ascii format used by the PROTEUS

transport code developed at Argonne National Laboratory. The program is written in C++ and depends

on a C++-enabled NetCDF [3] library to access and interpret data collected from the input EXODUS II

mesh.

1.1 Input File Summary

The program requires input in the form of one or more EXODUS II finite element meshes with

proper extension type (“.e” or “.exo”). The EXODUS II files must contain data following the EXODUS II

naming conventions and must not be empty.

The Cubit meshing program [4] developed by Sandia National Laboratory is typically used to create

meshes in EXODUS II format and has been routinely used to for PROTEUS-SN neutronics analysis. This

converter program is compatible with EXODUS II meshes exported from Cubit versions 12+. Note that

Cubit 13+ EXODUS II meshes have slightly different keywords for the vertex coordinates, and this

difference is handled inside the converter automatically without user intervention.

1.2 Output File Summary

For each EXODUS II input mesh, two output files are produced: the ascii-formatted mesh for

PROTEUS and an informative report file. Both files are generated in the same directory as the input

EXODUS II mesh and follow a natural naming convention (input file Sample.e yields output files

Sample.ascii and Sample_REPORT.txt). The report file is provided as a user convenience to ensure

accurate conversion and enable debugging – the conversion procedure is echoed in this file during the

conversion process, including any errors encountered.

1.3 Quick Start Guide

The Makefile included with the distribution must be modified to properly compile the code. First,

modify the NETCDF_DIR variable to point to the local installation of NetCDF (version 4.0 or later, with

C++/C support). The converter requires the NetCDF API to function – refer to Section 2.1 for NetCDF

installation tips. For full verification capability, also modify the CUBIT_12X, CUBIT_13X, and

PROTEUS_X variables to point to the Cubit 12, Cubit 13, and PROTEUS-SN executables on the local

machine. If any of these variables are left blank, the corresponding extended verification tests will not

be performed, but the converter can still be compiled and tested. Figure 1 lists the variables in the

Makefile which should be modified.

NETCDF_DIR=/software/netcdf-4.0.1/O-intel-11.1

CUBIT_12X=/usr/local/cubit-12.2/cubit

CUBIT_13X=/software/cubit-13.1/cubit

PROTEUS_X=/software/PROTEUS/sn2nd.x

User Manual for EXODUS II Mesh Converter

August 15, 2014

4

Figure 1. Makefile variables to be modified for installing and testing converter.

Next, the code can be compiled using “make” to create the executable, and “make check” to test

basic performance. Optional extended testing with Cubit and PROTEUS are available by typing “make

verify” after also providing paths to Cubit and PROTEUS executable locations in CUBIT_12X,

CUBIT_13X, and PROTEUS_X variables as shown in the figure above.

$> make

$> make check

$> make verify (only works if Cubit & PROTEUS are installed)

Figure 2. Commands to compile and test the converter.

To run a job, simply type “ExodusConverter.x MyMesh.e” where MyMesh.e is the name (or path) of

any EXODUS II file you would like to convert. Upon successful conversion, MyMesh.ascii and

MyMesh_REPORT.txt appear in the same directory as MyMesh.e.

$> ExodusConverter.x MyMesh.e

$> ls

MyMesh.ascii MyMesh_REPORT.txt MyMesh.e

Figure 3. Example command line usage of the converter.

The file MyMesh_REPORT.txt should be examined briefly for any errors. The file MyMesh.ascii can

be directly used with PROTEUS if no errors were found.

User Manual for EXODUS II Mesh Converter

August 15, 2014

5

2. Code Installation and Usage
This section describes how to install and use the EXODUS II finite element mesh converter.

2.1 NetCDF Library Requirements

The EXODUS II mesh converter has a dependency on the NetCDF library. It uses the NetCDF API to

query data from EXODUS II files which are actually specialized NetCDF data files. As mentioned in the

previous section, the NETCDF_DIR variable in the Makefile must point to a local installation of the

NetCDF library, version 4.0+, with C and C++ capabilities enabled. The NetCDF library must be built

with the same compiler that will be used for the EXODUS II Converter. The user is recommended to

confirm the compiler version and C++ support by running the ‘nc-config’ utility with ‘—all’ option

located in the bin directory of the NetCDF installation. This command will list the NetCDF configuration

information and capabilities as shown in Figure 4.

Figure 4. The NetCDF build specifications can be viewed running “nc-config –all” to display the current build

information and the library flags.

The NetCDF package can be downloaded from the web (we recommend version 4.0.1, available at

www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-4.0.1.tar.gz). Newer versions (4.2+) are

available but require supplemental installations for C++ support. The recommended tarball contains

everything needed by the converter in a single package. To configure, we recommend using the

http://www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-4.0.1.tar.gz

User Manual for EXODUS II Mesh Converter

August 15, 2014

6

options in Figure 5, where the compilers should be consistent with those you plan to use for the

EXODUS II converter. The “--disable-netcdf-4 --disable-dap-remote-tests” options disable extended

NetCDF functionalities that may require additional dependencies that are unnecessary for the

converter.

$> ./configure --prefix=/software/netcdf-4.0.1/O-intel-11.1 CC=icc F77=ifort

FC=ifort F90=ifort CXX=icpc --disable-netcdf-4 --disable-dap-remote-tests

$> make check install

Figure 5. Recommended NetCDF configuration options for NetCDF 4.0 or 4.1 versions.

Table 1 lists the NetCDF function interfaces used by the converter (taken from NetCDF 4.0.1). If

using a version of NetCDF past 4.0.1, check whether the function interfaces have changed as the

converter will not work properly without updating the function interfaces to match the NetCDF API.

Table 1. NetCDF library functions used in the EXODUS II mesh converter (taken from NetCDF 4.0.1).

Function Interface Purpose

nc_open(Filename, ReadWriteAccess, &ncid) Opens the EXODUS II file and gives it the

handle ncid

nc_inq_dimid(ncid, const char name, &id) Returns the address (id) of a given

dimension variable (name)

nc_inq_dimname(ncid, id, &characterarray) Returns the name (characterarray) of a

dimension variable, given its address (id)

nc_inq_dimlen(ncid, id, &length) Returns the value of the dimension variable

(length) given its address (id)

nc_inq_varid(ncid, const char name, &id) Returns the address (id) of a variable, given

its name (name)

nc_inq_varname(ncid, id, &characterarray) Returns the name of a variable

(characterarray), given its address (id)

nc_get_att_text(ncid, id, const char

name, char * text[#])

Returns the value (text) of an attribute

(name) associated with a variable, given its

address (id)

nc_get_var_int(ncid, id, int * data [#]) Retrieve entire data array (data) from a

variable data array, given its address (id)

User Manual for EXODUS II Mesh Converter

August 15, 2014

7

nc_get_var1_int(ncid, id, {0,0}, &datapt) Retrieve a single data point (data) from a

variable data array, given its address (id)

2.2 Building the Converter

In order to compile the converter tool, the user must first edit the NETCDF_DIR variable in the

Makefile to point to the local NetCDF installation location as in Figure 1. The other variables are

optional to compile and perform basic tests with the converter, but required for the most rigorous

verification tests.

Once the Makefile has been properly modified to point to the NetCDF installation, executing the

command “make” will invoke compilation and produce the executable “ExodusConverter.x” in the

current directory.

Next, the command “make check” should be issued to ask the converter to perform a series of

benchmark tests. Each of these tests has a unique feature that will test all file variables that may be

present in an EXODUS II mesh from CUBIT. After converting each of the provided EXODUS II files, the

contents and size of the provided reference outputs and the new outputs are compared. Any

differences denote a failed test and will be written to the command line immediately. Once all tests

have been run and compared, the bench directories are cleaned of all files created during the testing.

Finally, the command “make verify” should be issued to generate meshes with different versions of

Cubit, convert the meshes from EXODUS II to ascii, and test the meshes in PROTEUS-SN. This step can

be skipped if no versions of Cubit are installed locally.

The command “make clean” removes the object file, executables, and any old verification test files.

2.3 Execution Syntax

After successfully building and testing, the program can be used to convert any EXODUS II mesh to

the PROTEUS-SN ascii file format. Simply type the name of the program followed by the paths to as

many inputs as needed as in Figure 6.

$> ExodusConverter.x MyMesh.exo ThisMesh.e /path/to/ThatMesh.e

Figure 6. Example usage of converter with multiple input files.

The input files must have the correct EXODUS II file extension (“.e” or “.exo”) for proper conversion.

Note that if paths to the input files are specified such as /path/to/my/Exodusmesh.e, the resulting

ascii file will be produced in the same directory, /path/to/my/Exodusmesh.ascii.

User Manual for EXODUS II Mesh Converter

August 15, 2014

8

2.4 Limitations

The converter supports Cubit element types which are also supported by PROTEUS. Therefore,

some element types available within Cubit are not valid element types for the converter and

PROTEUS. When generating a mesh with Cubit, use only the following element types: BAR, BAR2,

BAR3, TRI, TRI3, TRI6, QUAD, QUAD4, QUAD8, QUAD9, TETRA, TETRA4, TETRA10, HEX, HEX8, HEX10. In

particular, ensure that the EXODUS II mesh does not contain SHELL or TRISHELL element types which

are not supported by PROTEUS-SN or the converter. SHELL or TRISHELL element types are typically

assigned by default if the user fails to specify an element type – thus the user should carefully check

that they have assigned all element blocks properly.

User Manual for EXODUS II Mesh Converter

August 15, 2014

9

3. Conversion Methodology
This chapter contains a description of the code methodology and is intended for an advanced user

who wishes to modify the converter or understand exactly how the conversion is performed. We focus

on describing EXODUS II finite element files created by Cubit 12+. EXODUS II files created by other

software may have slightly different formats.

3.1 EXODUS II Overview

The EXODUS II file type is binary, portable, and cannot be read in a standard text editor. To read

the contents of an EXODUS II file, the NetCDF utility “ncdump” can be used to dump the content to

plain text. Each EXODUS II mesh file contains three important data sections: “dimensions”, “variables”,

and “data”.

3.1.1 Dimensions Section

The “dimensions” section of an EXODUS II file defines values for the following “dimension”

variables. These dimensions are used to declare arrays appearing later in the file.

Table 2. EXODUS II dimensions given in mesh file.

EXODUS II Dimension Definition

len_string Max length of a string

num_dim Number of dimensions in the mesh 1, 2, 3

num_nodes Total number of nodes (vertices) in the mesh

num_elem Total number of elements in the mesh

num_el_blk Total number of element blocks in the mesh

num_side_sets Total number of sidesets in the mesh

num_side_ss1 Number of elements that have a surface belonging to sideset 1 (etc.)

num_el_in_blk1 Number of elements in block 1 (etc.)

num_nod_per_el1 Number of nodes per element in block 1 (etc.)

3.1.2 Variables Section

The “variables” section of an EXODUS II file contains the declaration of data arrays including their

dimensions and their “attributes”. Note the dimensions of each of the variables were defined in the

“dimensions” section. The only data contained in this section is the element type of each block, and it

is given as an attribute of the connectivity array for each block.

User Manual for EXODUS II Mesh Converter

August 15, 2014

10

Table 3. EXODUS II variables declared in file.

EXODUS II Variable Definition

char coor_names(num_dim, len_string) character array holding the names of the dimensions

int ss_prop1(num_side_sets)

ss_prop1:name = "ID"

Integer array holding the “prop1” attribute for all

the sidesets. “prop1” in this case is defined as the

“ID”, so the array ss_prop1 holds the “ID” for each

sideset.

int elem_ss1(num_side_ss1) Integer array defining the elements which have a

surface in sideset 1 (etc.)

int side_ss1(num_side_ss1) Integer array defining the reference surface on each

element belong to sideset 1 (etc.)

int eb_prop1(num_el_blk)

 eb_prop1:name = "ID"

Integer holding the “prop1” attribute for the

element blocks. “prop1” in this case is defined as

“ID”, so the array eb_prop1 holds the “ID” for each

element block.

int connect1(num_el_in_blk1,

num_nod_per_el1)

 connect1:elem_type = "QUAD8"

Integer array holding the connectivity for element

block 1 (etc.). The element block has the attribute

“elem_type” which in this example is “QUAD8”.

[Cubit 12 and earlier convention]

double coord(num_dim, num_nodes)

Real array holding the coordinates of the vertices, in

order of all X, all Y, and all Z.

[Cubit 13+ convention]

double coordx(num_nodes)

double coordy(num_nodes) (2D/3D only)

double coordz(num_nodes) (3D only)

Real arrays holding the X, Y, and Z coordinates of the

vertices, if applicable.

Cubit 13 introduced a new convention to the EXODUS II file which includes different ordering of

variables in the files, different variable names. Files written by Cubit 12 lump the vertex coordinates

together into one large variable named “coord”. Files written by Cubit 13 separate the vertex

coordinates into different coordinate variables depending on the number of dimensions present in the

mesh: “coordx”, “coordy”, and “coordz”. The converter tool internally checks how many coordinate

variables are present in the file so that the coordinates are handled correctly.

3.1.3 Data Section

The “data” section contains the values of the arrays declared in the “variables” section of the file.

The naming convention is identical to that in Table 3.

User Manual for EXODUS II Mesh Converter

August 15, 2014

11

3.2 Conversion Process

The following pseudo-code describes the conversion process. The procedure is further described in

the following sections.

Check input arguments
 -Makes sure the file exist and have proper extension (.e, .exo)
 -Creates the output and report files

Open EXODUS II file as a NetCDF data library
- ‘nc_open’ command opens an existing EXODUS II file
Retrieve general information about the mesh
-‘nc_inq’ with no data section attached returns the length of each section

Retrieve dimensions
-‘nc_inq_dimid’ returns the ID of a dimension listing
-‘nc_inq_dimname’ is used to make sure the proper variable is being queried
-‘nc_inq_dimlen’ returns the value stored at a known ID

Retrieve Variable IDs
-Based on the dimensional values retrieved, the converter loops through variables
-Finds all needed variable ID’s that will be used to retrieve data
-‘nc_inq-varid’ gives the variable ID
-‘nc_inq_varname’ is used to check that the proper variable is being queried

Write Coordinates
-In order to save memory, the coordinate array is written to the output file
-‘nc_get_var1_double’ is used to pull out one data pt. of type ‘double’
-Uses Variable IDs and dimension values to pull out individual data points
-Data is stored in arrays with lengths found in the dimension section
-‘nc_get_var1_int’ is used to pull out one data pt. of type ‘int’

Write Other Info to Output
-Once all data points have been retrieved and tested for boundary conditions the points are accessed once again
in order to write them to the output

Remap Connectivity
-While only necessary for some element types, a remapping function is called. This second function changes the
order that the nodes of each element are written to the output file.

Boundary Information
-Since the individual data pts. already have been checked for boundary conditions the number of bounds is

already known along with all required information.

Figure 7. Description of the conversion process

3.2.1 Command Line Input and Output File Creation

The converter reads the command line argument(s) to check that valid EXODUS II inputs exist and

have the correct file extension (.e or .exo). It also creates the file handles for the final ascii mesh and

the report summary. The name of both of these documents is based on the EXODUS II input file prefix.

Given any input file name, the converter names the output files by reading the character string of the

input name, removing the EXODUS II file extension, and replacing it with “.ascii” or “_REPORT.txt”. The

User Manual for EXODUS II Mesh Converter

August 15, 2014

12

converter can process files outside of the current working directory, but output files are created in the

same directory as the input file, not the current working directory.

3.2.2 Reading the Dimensions

The converter opens the EXODUS II file as a NetCDF data library using the nc_open command. The

converter uses NetCDF commands (see Error! Reference source not found.) to parse through the

dimension section and retrieve the information needed to initialize array and set loop variables later

on for the variable section. The key information queried here is the number of dimensions, number of

element blocks in the mesh, total number of nodes, number of sidesets, number of elements held in

each block, and the number of nodes per element in each block. These values are written to the ascii

file.

3.2.3 Reading the Variables

Using the dimensions retrieved from the dimension section, the converter sets loops to collect the

IDs of each block, sideset, and connectivity variable. An ID is essentially an “address” in the file. In

order to ensure the correct variable is read, a variable name check is implemented in each major

variable retrieval loop.

3.2.4 Writing Coordinates and Basic Block Information

At this point, the location and size of important data has been determined. The converter begins

process the vertex array point by point rather than as a whole. This point-by-point method takes more

time than processing everything at once, but removes any size limitations on the input file. At this

stage the vertex coordinates are all written to the output file.

Next, the basic block information is written to the output file: the number of elements in the block,

number of boundary elements in the block, number of nodes per element in the block and the

equation and interpolation orders of the elements. Each EXODUS II element type is then mapped to a

PROTEUS-SN element type, and the PROTEUS-SN element type is written to file along with the block

Region ID and the connectivity array.

3.2.5 Connectivity Remapping

The connectivity of each element given in the EXODUS II file format is based on EXODUS II element

type ordering [1], shown in Figure 8. However, each EXODUS II element type must be mapped via the

converter to a PROTEUS-SN element type as shown in Table 4. For element types with different vertex

ordering, the connectivity array is changed in order to follow the PROTEUS-SN convention.

Note that CIRCLE, SPHERE and SHELL(3D) EXODUS II element types are not supported as they are

not realistic for neutronics simulations. WEDGE may be added in the future although it is not currently

supported. Appendix B contains figures that define the element types and node ordering supported by

PROTEUS.

User Manual for EXODUS II Mesh Converter

August 15, 2014

13

3.2.6 Boundary Information

During the data retrieval stage, each element was tested to see if it contained a boundary surface.

These elements are then written out to the output file followed by the array of sideset IDs to which

each element belongs. Finally, the converter prints a list sideset IDs corresponding to the boundary

elements, as well as the element number within the block and the reference surface number

containing the boundary surface.

User Manual for EXODUS II Mesh Converter

August 15, 2014

14

Figure 8. EXODUS II element types and node ordering, courtesy Ref [1].

Table 4. Listing of supported Cubit/EXODUS II element types and node remapping to PROTEUS element type.

Cubit
Element

Type

EXODUS II
Element

Type

EXODUS II to Ascii Node
Remapping

(Order of EXODUS II Nodes
listed in Ascii format)

PROTEUS
Element Type

Element
Order

User Manual for EXODUS II Mesh Converter

August 15, 2014

15

Cubit
Element

Type

EXODUS II
Element

Type

EXODUS II to Ascii Node
Remapping

(Order of EXODUS II Nodes
listed in Ascii format)

PROTEUS
Element Type

Element
Order

BAR TRUSS/BEAM No remapping BAR 1

BAR2 TRUSS/BEAM No remapping LAGRANGE BAR 1

BAR3 TRUSS/BEAM [1,3,2] LAGRANGE BAR 2

TRI /
TRI3

TRIANGLE No remapping
LAGRANGE TRI*

(or TRIANGLE)
1

TRI6 TRIANGLE [1,4,2,6,5,3] LAGRANGE TRI 2

QUAD QUAD [1,2,4,3] LAGRANGE QUAD 1

QUAD4 QUAD [1,2,4,3] LAGRANGE QUAD 1

QUAD8 QUAD [1,5,2,6,3,7,4,8] QUADRILATERAL 2

QUAD9 QUAD [1,5,2,8,9,6,4,7,3] LAGRANGE QUAD 2

TETRA /
TETRA4

TETRA No remapping
TETRAHEDRON*

(or LAGRANGE TET) 1

TETRA10 TETRA [1,5,2,6,3,7,8,9,10,4] TETRAHEDRON 2

HEX HEX [1,2,4,3,5,6,8,7]
LAGRANGE BRICK*

(or BRICK)
1

HEX8 HEX No remapping
BRICK*

(or LAGRANGE BRICK)
1

HEX20 HEX
[1,9,2,10,3,11,4,12,13,14,15,

16,5,17,6,18,7,19,8,20]
BRICK 2

*An asterisk indicates that the PROTEUS-SN serendipity and Lagrange linear elements are equivalent

for this case (identical node ordering).

3.3 Output File Descriptions

3.3.1 ASCII File Format

The file format for the ascii file is located in Appendix A. The ascii file contains the data found in the

EXODUS II file only reordered and reformatted. This new format consists of three sections –

User Manual for EXODUS II Mesh Converter

August 15, 2014

16

information regarding the mesh as a whole, the entire coordinate table listing, and the individual block

data.

The general mesh information is always located on the first line and states the total number of

vertices in the mesh, the number of dimension, the total number of blocks that are present in the

mesh, and lastly an unused integer set to zero for later use.

The second section is a list of all coordinates in the mesh ordered by dimension with all X

dimension coordinates being listed first, then the Y’s, and lastly the Z’s. Only the coordinates listed in

the EXODUS II file are printed to the ascii file, for example, in 2D, X and Y vertices only are printed.

The final section holds information regarding each element block. The first line for each block holds

the number of elements in the block, the number of boundary conditions, and how many nodes are

attached to each element, an unused integer, the order of interpolation, and the equation order.

Following this line is a listing of the element type of the entire block and the region name. The

connectivity arrays that hold the node ordering are then listed. The connectivity of a given element

type may or may not be reordered from the EXODUS II depending on the element type and

interpolation order found during the conversion process. The final pieces of information for this

section are the sidesets that correspond to the boundary elements found in the side sets, the

boundary elements (numbered by element number within the specific element block), and lastly the

boundary surface associated with each boundary element.

3.3.2 Report File

For each conversion performed, a report file is written to show the success or failure of each step

in the conversion process. While it is easy to read the error immediately from the command line, the

report allows for review later on if needed.

User Manual for EXODUS II Mesh Converter

August 15, 2014

17

Figure 9. Example of a successful report file.

As shown in Figure 9, the report file echoes the key mesh information as well as each successful

step performed in the conversion process. If the conversion process ends early due to an error, the

report file can be referenced to see the step where the conversion failed. If an error results from

trying to convert an unsupported element type, an incomplete listing of variables in the file, or an

error in the node mapping, a clear error message is written in the report file that lists the error

encountered and any other information that can help identify the problem. For example, if there is an

unknown element type listed in the mesh, then the report announces that there was an unknown

element type on a specific block.

User Manual for EXODUS II Mesh Converter

August 15, 2014

18

4. Benchmark Problems
A series of benchmark tests are provided to make sure that the converter is installed correctly and

that the produced ascii meshes are fully compatible with PROTEUS-SN. These tests are separated into

two subdirectories under the “verification” directory.

The first directory, “verification/benchmarks” contains several reference EXODUS II and ascii

meshes to test whether the source code is working as intended. Invoking the command “make check”

runs a script to converts the benchmark meshes and compares the results to reliable reference files. A

shell script checks the outputs against the reference files for size and content and writes any

differences to the standard output. A description of the benchmark test meshes is given in Table 5.

The tests are intended to cover meshes containing various element types, sizes, and also test different

Cubit versions.

Table 5. Benchmark test descriptions “verification/benchmarks” directory.

Bench #
File

Extension

Cubit

Version
of Nodes

of Element

Blocks
Element Type(s)

00 .e 12 1198 4 QUAD8

01 .e 12 1080 3 TRI3 & QUAD4

02 .e 13 231600 38 TRI3 & QUAD4

03 .e 12 535279 70 HEX

04 .e 13 13198 12 TRI3 & QUAD4

05 .e 13 25 1 QUAD9

06 .e 13 81 1 HEX20

07 .e 13 141 1 TRI6

08 .e 13 158 1 TETRA10

09 .exo 12 115494 8 HEX

The second test folder, “verification/PROTEUS_Benchmarks”, is an optional, extended test-suite to

test the compatibility of converter with various versions of Cubit as well as PROTEUS. A series of

scripts are invoked that (1) create various EXODUS II meshes with Cubit, (2) convert each mesh to

ascii, and (3) test the mesh with PROTEUS-SN. These tests are invoked by the command “make verify”.

Remember that to be able to run these tests the variables CUBIT_12X, CUBIT_13X and PROTEUS_X

must be correctly defined in the Makefile prior to typing the command.

User Manual for EXODUS II Mesh Converter

August 15, 2014

19

Table 6. List of Cubit journal files and the elements types to be generated on-the-fly for testing converter compatibility

with Cubit and PROTEUS. Each journal file leads to the creation of multiple files used in testing the converter.

CUBIT Journal File Name Elements tested

generate_TRI.jou

TRI

TRI3

TRI6

generate_TETRA.jou

TETRA

TETRA4

TETRA10

generate_QUAD.jou

QUAD

QUAD4

QUAD8

QUAD9

generate_HEX.jou

HEX

HEX8

HEX20

User Manual for EXODUS II Mesh Converter

August 15, 2014

20

5. Summary
A new EXODUS II finite element mesh converter has been developed to convert EXODUS II meshes

(typically created by Cubit) to PROTEUS-SN ascii mesh format. The conversion program replaces an old

converter which had limitations on mesh size and compatibility issues with Cubit. The new program

works with different versions of Cubit (any version 12+) and has no limitation on EXODUS II file size.

Error checking, error reporting and usage syntax have also been greatly improved. The converter is

limited to element types supported by PROTEUS-SN (a subset of those produced by Cubit).

For questions, assistance, or to obtain the converter, please contact nera-software@anl.gov.

mailto:nera-software@anl.gov

User Manual for EXODUS II Mesh Converter

August 15, 2014

21

6. References

1. Schoof, Larry A. and Yarberry, Victor R., “EXODUS II: A Finite Element Data Model” Sandia National

Laboratories, Computational Mechanics and Visualization Department, November, 1995.

2. Shemon, E. R., M. A. Smith, C.H. Lee, and A. Marin-Lafleche, “PROTEUS-SN User Manual”, ANL/NE-

14/6, Argonne National Laboratory, June 30, 2014.

3. Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartnett, Dennis Heimbigner and Ward

Fisher, “NetCDF Documentation” UCAR & UCP , Unidata, 2008.

4. Ted Blacker, Randy Morris, “Cubit 13.1 User Documentation”, Sandia National Laboratories,

Albuquerque, NM, 2012.

User Manual for EXODUS II Mesh Converter

August 15, 2014

22

APPENDIX A

Figure A1. PROTEUS-SN ascii file format.

==================================

 01 BASIC MESH INFO

 02 VERTEX POSITION DATA

 03 BLOCK DATA

=======================================

SECTION 01: BASIC MESH INFO

=======================================

LINE NUMBER: 1

FORMAT(4I10): <NumVertices> <NumDimensions> <NumBlocks> <unused integer>

DESCRIPTION:

<NumVertices> : (I10)...Number of nodes (vertices) in the mesh

<NumDimensions> : (I10)...Number of dimension (1,2,3)

<NumBlocks> : (I10)...Number of blocks (block=group of elements with common type and

material)

<unused integer> : (I10)...0

=======================================

SECTION TYPE 02: VERTEX POSITION DATA

=======================================

LINE NUMBERS: 2+, number of lines = ceil{NumVertices*NumDimensions/8}

FORMAT(8(1PE15.8)): <X_Vert_Array> <Y_Vert_Array> <Z_Vert_Array>

 -These arrays will break over multiple lines in groups of 8.

DESCRIPTION:

<X_Vert_Array> : Reals.... X value of each vertex in the mesh

<Y_Vert_Array> : Reals.... Y value of each vertex in the mesh

 -(present only for 2D and 3D problems)

<Z_Vert_Array> : Reals.... Z value of each vertez in the mesh

 -(present only for 3D problems)

=======================================

SECTION TYPE 03: BLOCK DATA

=======================================

LINE NUMBERS: immediately following last SECTION type 02 data

DESCRIPTION:

*** The following lines are repeated for each block in NumBlocks:***

SECTION SUBTYPE 3A, FORMAT(6I10): <NumElementsInBlock> <NumBoundarySurfacesInBlock>

<NodesPerElement> <unused integer> <Order_Interp> <Order_Equat>

SECTION SUBTYPE 3B, FORMAT(2A16): <ElementType> <RegionName>

SECTION SUBTYPE 3C, FORMAT(12I10): { <ConnectivityArray> }; repeat for each element in block

SECTION SUBTYPE 3D, FORMAT(7A16): { <SurfaceBCTag> }; repeat for each surface element in block

SECTION_SUBTYPE 3E, FORMAT(12I10): { <ElementNumber> <ReferenceSurface> } repeat for each

boundary surface in block

<NumElementsInBlock> : Integer....Number of elements in this block

<NumBoundarySurfInBlock> : Integer....Number of boundary surfaces in this block

<NodesPerElement> : Integer....Number of nodes on an element

<unused integer> : 0 (reserved for future use)

<Order_Interp> : Integer....Order of the spatial interpolation for elements in this

 block

<Order_Equat> : Integer....Order of the spatial equations

<ElementType> : Character... The element type for all elements in a block

<RegionName> : Character... The assigned region name for the current

 block of elements, ex. REGION_000000001

<ConnectivityArray> : CONNECTIVITY(J),J=1,NodesPerElement lists the global indices of

 nodes on the element.

<SurfaceBCTag> : Character.... (REFLECTIVE or VOID)

<ElementNumber> : Integer.... Element corresponding to this boundary surface

<ReferenceSurface> : Integer.... Reference element surface number corresponding to this

 boundary surface

=======================================

END OF FILE FORMAT DESCRIPTION

APPENDIX B

The following figures depict the various element types supported by PROTEUS-SN, including their node ordering.
Cyan color indicates the reference surface numbering for each element.

Figure B.1. PROTEUS 1-D Finite Element Vertex Layout.

1
2 1 3 2

BAR (1) LAGRANGE BAR (2)

1 4 2 3

LAGRANGE BAR (3)

1 11 2 10

…LAGRANGE BAR (10)

-X X

0

User Manual for EXODUS II Mesh Converter

August 15, 2014

24

Figure B.2. PROTEUS 2-D Triangular Serendipity Finite Element Vertex Layout.

Figure B.3. PROTEUS 2-D Triangular LaGrange Finite Element Vertex Layout.

1 2=N+1

TRIANGLE (1)

Y

X

(0,0)

3

1 3=N+1

TRIANGLE (2)

5

2

6

4

R1

R2
R3

1 2=N+1

LAGRANGE TRI (1)

3

1 3=N+1

LAGRANGE TRI (2)

6

2

4

5

1 4=N+1

LAGRANGE TRI (3)

10

2

5
7

3

6

8 9

1 11=N+1

…LAGRANGE TRI (10)

1+N(N+3)/2

2 …

N+2
2(N+1)

User Manual for EXODUS II Mesh Converter

August 15, 2014

25

Figure B.4. PROTEUS 2-D Quadrilateral Serendipity Finite Element Vertex Layout.

Figure B.5. PROTEUS 2-D Quadrilateral LaGrange Finite Element Vertex Layout.

1 2=N+1

QUADRILATERAL (1)

4 3

1 3=N+1 2

8
4

7 6
5

R1

R2

R3

R4

QUADRILATERAL (2)

1 2=N+1

LAGRANGE

QUAD (1)

3

1 3=N+1 2

4

4

5 6

7 8
9

1 4=N+1 2

5 8

13 14

3

12 9

15 16

1 11=N+1 2 …

(N+1)(N+1)

LAGRANGE

QUAD (2)

LAGRANGE

QUAD (3)

…LAGRANGE

QUAD (10)

User Manual for EXODUS II Mesh Converter

August 15, 2014

26

Figure B.6. PROTEUS 3-D Tetrahedral Serendipity Finite Element Vertex Layout.

Figure B.7. PROTEUS 3-D Tetrahedral LaGrange Finite Element Vertex Layout.

1

TETRAHEDRON (1)

Z

X

Y

2
3

4

1

2

3
4

5

6

7

8 9

10

R1 R3

R4

R2

TETRAHEDRON (2)

LAGRANGE TET (1)

Z

X

Y

1

2

3

4

7 9

10

8

5

18 19

20

1

2
3

4

1

2

3

4

5

6

7

8
9

10

6

13 16

LAGRANGE TET (2) LAGRANGE TET (3)

User Manual for EXODUS II Mesh Converter

August 15, 2014

27

Figure B.8. PROTEUS 3-D Wedge (Prism) Serendipity (Natural) Finite Element Vertex Layout.

Figure B.9. PROTEUS 3-D Wedge (Prism) LaGrange Finite Element Vertex Layout.

1

PRISMATIC (1)

Z

X

Y

2

3

4

5

6

1

2

3

4

6

5

7

8 9

10

11

1

2

13
14

15

R1

R3

R4

R5

R2

PRISMATIC (2)

LAGRANGE
PRISM (1)

N(NN+5)/2+2NN+1

1

2

3

4

5

6

7

8

9
10

40

20

30

14

24

34

1

2 …

11=N+1

1+N(N+3)/2

1

Z

X

Y

2

3

4

5

6

1

2

3

5
6

4

7

8

9 11 12

10

13

14

15 17

18

16

LAGRANGE
PRISM (2)

LAGRANGE
PRISM (3)

…LAGRANGE
PRISM (10)

User Manual for EXODUS II Mesh Converter

August 15, 2014

28

Figure B.10. PROTEUS 3-D Hexahedral Serendipity Finite Element Vertex Layout.

BRICK (1)

1

2

3

4

5

6

7

8

X Y

Z

1

3

5

7

13

1

5

1

7

19

2

4
6

8

9

10

11

12

14

16 18

20

R1

R3

R4

R5

R6

R2

BRICK (2)

User Manual for EXODUS II Mesh Converter

August 15, 2014

29

PROTEUS 3-D Hexahedral LaGrange Finite Element Vertex Layout.

LAGRANGE BRICK (1)

1

2

3

4

5

6

7

8

X Y

Z

1

3

9

7

19

21

27

25

2

6 8

4

10

12

18

16

20

9

24 26

22

1

11=N+1

(N+1)(N+1)(N+1)

2 …

(N+1)(N+1)

5

11

15
17

13

14

23

LAGRANGE BRICK (2) …LAGRANGE BRICK (10)

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 208

Argonne, IL 60439-4842

www.anl.gov

