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1 Introduction

OpenMC is a Monte Carlo particle transport code focused on reactor physics calculations. It
stochastically simulates neutrons moving through 3D models using constructive solid geometry
and continuous-energy cross sections. Recently, a photon transport capability was added to
OpenMC. In reactor simulations, photon transport is needed, for example, to account for photon
heating: although the majority of the energy deposited at a fission site comes from the kinetic
energy of the fission fragments, a nontrivial portion can be carried away by photons. Therefore,
photons produced in neutron reactions must be simulated in order to accurately model energy
deposition.

OpenMC can now simulate neutron-induced photon production as well as perform pure
photon calculations. The four basic photon interactions with matter — coherent (Rayleigh)
scattering, incoherent (Compton) scattering, the photoelectric effect, and pair production — are
modeled. Secondary processes that can create new photons (i.e., atomic relaxation, electron-
positron annihilation, and bremsstrahlung) are also included. The methods implemented here
were validated against MCNP6 for a variety of materials and energies.

2 Photon Physics

Photons, being neutral particles, behave in much the same manner as neutrons, traveling in
straight lines and experiencing occasional collisions that change their energy and direction.
Since the transport of a photon follows the same logic as does the transport of a neutron, the
focus here is on the implementation of the photon physics. Some assumptions are made in the
methodology: the photons are considered to be unpolarized, and interactions are assumed to
occur with free atoms, meaning the macroscopic cross sections can be approximated as the sum
of the cross sections of the atomic constituents. Because photon interactions depend on material
properties below∼ 1 keV, this is typically the cutoff energy used in photon calculations to ensure
that the free atom model remains valid. The data needed to model photon interactions and
photon production comes primarily from ENDF sublibraries, but additional sources are needed
in some cases.

2.1 Photon Interactions

OpenMC models the four main photon interactions with matter for energies between 1 keV and
10 GeV and for Z = 1 – 98. The methodology used is discussed below.

2.1.1 Coherent (Rayleigh) Scattering

The elastic scattering of a photon off a free charged particle is known as Thomson scattering.
The differential cross section is independent of the energy of the incident photon and is given
by

dσ
dµ
= πr2

e (1+µ
2), (1)
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where µ is the cosine of the scattering angle and re is the classical electron radius. Thomson
scattering can occur when the photon energy is much less than the rest mass energy of the
particle.

In practice, most elastic scattering of photons off electrons happens not with free electrons
but with those bound in atoms. This process is known as Rayleigh scattering. The radiation
scattered off individual bound electrons combines coherently, so Rayleigh scattering is also
referred to as coherent scattering.

The differential cross section for Rayleigh scattering can be formulated by extending the
Thompson cross section using form factors to account for bound electrons:

dσ(E, E′,µ)
dµ

= πr2
e (1+µ

2)
�

�F(x , Z) + F ′ + iF ′′
�

�

2

= πr2
e (1+µ

2)
�

(F(x , Z) + F ′(E))2 + F ′′(E)2
�

,
(2)

where F(x , Z) is a form factor as a function of the momentum transfer x and the atomic number
Z and the term F ′+ iF ′′ accounts for anomalous scattering that can occur near absorption edges
[1]. In a Monte Carlo simulation, when a photon undergoes coherent scattering, its energy
does not change, so only the scattering angle needs to be sampled using the differential cross
section in Eq. (2). In OpenMC, as in most other Monte Carlo codes, anomalous scattering is
ignored and Eq. (2) becomes

dσ(E, E′,µ)
dµ

= πr2
e (1+µ

2)F(x , Z)2. (3)

In order to construct a proper probability density, the differential cross section in Eq. (3) must
be normalized by the integrated coherent scattering cross section, resulting in

p(µ)dµ=
πr2

e

σ(E)
(1+µ2)F(x , Z)2dµ. (4)

Since the form factor is given in terms of the momentum transfer, it is more convenient
to change variables of the probability density to x2. The momentum transfer is traditionally
expressed as

x = ak
p

1−µ, (5)

where k is the ratio of the photon energy to the electron rest mass and the coefficient a is given
by

a =
mec

2

p
2hc
≈ 29.14329 Å, (6)

where me is the mass of the electron, c is the speed of light in a vacuum, and h is Planck’s
constant. Using Eq. (5), one can show that µ = 1− [x/(ak)]2 and dµ/d x2 = −1/(ak)2. The
probability density in x2 is

p(x2)d x2 = p(µ)

�

�

�

�

dµ
d x2

�

�

�

�

d x2 =
2πr2

e A( x̄2, Z)

(ak)2σ(E)

�

1+µ2

2

�

�

F(x , Z)2

A( x̄2, Z)

�

d x2, (7)
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where x̄ is the maximum value of x (at µ= −1),

x̄ = ak
p

2=
mec

2

hc
k, (8)

and A(x2, Z) is the integral of the square of the form factor,

A(x2, Z) =

∫ x2

0

F(x ′, Z)2d x ′2. (9)

Multiplying and dividing the probability density by Eq. (9), one can express the density in
Eq. (7) as the product of the two separate densities in parentheses. In OpenMC, a table of
A(x2, Z) versus x2 is pregenerated and used at runtime to do a table search on the cumulative
distribution function,

∫ x2

0
F(x ′, Z)2d x ′2

∫ x̄2

0
F(x ′, Z)2d x ′2

. (10)

Once a trial x2 has been selected, µ can be calculated, and rejection sampling can be
performed by using the Thomson scattering differential cross section. The complete algorithm
is as follows:

1. Determine x̄2 using Eq. (8).

2. Determine Amax = A( x̄2, Z) using the pregenerated tabulated data.

3. Sample the cumulative density by calculating A′ = ξ1Amax , where ξ1 is a uniformly
distributed random number.

4. Perform a binary search to determine the value of x2 that satisfies A(x2, Z) = A′.

5. Using Eq. (5) and Eq. (8), calculate µ= 1− 2x2/ x̄2.

6. If ξ2 < (1+µ2)/2, accept µ. Otherwise, repeat the sampling from step 3.

2.1.2 Incoherent (Compton) Scattering

The Thomson cross section describes photons scattering off free electrons using classical electro-
magnetism. It is valid only in the low energy limit and fails to explain differences in wavelength
between the incident and scattered radiation. The differential cross section for photon scattering
off free electrons that is valid for all energies can be found by using quantum electrodynamics
and is known as the Klein-Nishina formula:

dσKN

dµ
= πr2

e

�

k′

k

�2 �k′

k
+

k
k′
+µ2 − 1

�

, (11)

where k and k′ are the ratios of the incoming and exiting photon energies to the electron rest
mass energy equivalent (0.511 MeV), respectively. Although the outgoing energy and angle
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appear to be separate, actually a one-to-one relationship exists between them such that only
one needs to be sampled:

k′ =
k

1+ k(1−µ)
. (12)

Note that when k′/k goes to one, that is, the scattering is elastic, the Klein-Nishina cross section
becomes identical to the Thomson cross section. In general, however, the scattering is inelastic
and is known as Compton scattering.

When a photon interacts with a bound electron in an atom, the Klein-Nishina formula must
be modified to account for the binding effects. As with coherent scattering, this is done by using
a form factor. The differential cross section for incoherent scattering is given by

dσ
dµ
=

dσKN

dµ
S(x , Z) = πr2

e

�

k′

k

�2 �k′

k
+

k
k′
+µ2 − 1

�

S(x , Z), (13)

where S(x , Z) is the form factor. The approach in OpenMC is to first sample the Klein-Nishina
cross section and then perform rejection sampling on the form factor. As in other codes, Kahn’s
rejection method [2] is used for k < 3 and a direct method by Koblinger [3] is used for k ≥ 3.
The complete algorithm is as follows:

1. If k < 3, sample µ from the Klein-Nishina cross section using Kahn’s rejection method.
Otherwise, use Koblinger’s direct method.

2. Calculate x and x̄ using Eq. (5) and Eq. (8), respectively.

3. If ξ < S(x , Z)/S( x̄ , Z), accept µ. Otherwise repeat from step 1.

Bound electrons are not at rest but have a momentum distribution that will cause the energy
of the scattered photon to be Doppler broadened. More tightly bound electrons have a wider
momentum distribution, so the energy spectrum of photons scattering off inner shell electrons
will be broadened the most. In addition, scattering from bound electrons places a limit on the
maximum scattered photon energy:

E′max = E − Eb,i, (14)

where Eb,i is the binding energy of the ith subshell.
Compton profiles Ji(pz) are used to account for the binding effects. The quantity pz = p ·q/q

is the projection of the initial electron momentum on q, where the scattering vector q= p− p′

is the momentum gained by the photon, p is the initial momentum of the electron, and p′ is the
momentum of the scattered electron. Applying the conservation of energy and momentum, one
can write pz in terms of the photon energy and scattering angle:

pz =
E − E′ − EE′(1−µ)/(mec

2)

−α
p

E2 + E′2 − 2EE′µ
, (15)
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where α is the fine structure constant. The maximum momentum transferred, pz,max, can be
calculated from Eq. (15) by using E′ = E′max. The Compton profile of the ith electron subshell is
defined as

Ji(pz) =

∫ ∫

ρi(p)dpx dpy , (16)

where ρi(p) is the initial electron momentum distribution. Ji(pz) can be interpreted as the
probability density function of pz.

The Doppler broadened energy of the Compton-scattered photon can be sampled by selecting
an electron shell, sampling a value of pz using the Compton profile, and calculating the scattered
photon energy. The theory and methodology used are described in detail in [4] and [5]. Compton
profiles have been calculated by Biggs et al. [6] for Z = 1−102 and are available in the Geant4
G4EMLOW data file. The sampling algorithm is summarized below:

1. Sample µ from Eq. (13) using the algorithm described above.

2. Sample the electron subshell i using the number of electrons per shell as the probability
mass function.

3. Sample pz using Ji(pz) as the PDF.

4. Calculate E′ by solving Eq. (15) for E′ using the sampled value of pz.

5. If pz < pz,max for shell i, accept E′. Otherwise repeat from step 2.

Because the Compton-scattered photons can transfer a large fraction of their energy to the
kinetic energy of the recoil electron, which may in turn go on to lose its energy as bremsstrahlung
radiation, one must accurately model the angular and energy distributions of Compton electrons.
The energy of the recoil electron ejected from the ith subshell is given by

E− = E − E′ − Eb,i. (17)

The direction of the electron is assumed to be in the direction of the momentum transfer, with
the cosine of the polar angle given by

µ− =
E − E′µ

p

E2 + E′2 − 2EE′µ
(18)

and the azimuthal angle φ− = φ + π, where φ is the azimuthal angle of the photon. The
vacancy left by the ejected electron is filled through atomic relaxation.

2.1.3 Photoelectric Effect

In the photoelectric effect, the incident photon is absorbed by an atomic electron, which is then
emitted from the ith shell with kinetic energy

E− = E − Eb,i. (19)
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Photoelectric emission is possible only when the photon energy exceeds the binding energy of
the shell. These binding energies are often referred to as edge energies because the otherwise
continuously decreasing cross section has discontinuities at these points, creating the character-
istic sawtooth shape. The photoelectric effect dominates at low energies and is more important
for heavier elements.

When simulating the photoelectric effect, the first step is to sample the electron shell. The
shell i where the ionization occurs can be considered a discrete random variable with probability
mass function

pi =
σpe,i

σpe
, (20)

where σpe,i is the cross section of the ith shell and the total photoelectric cross section of the
atom, σpe, is the sum over the shell cross sections. Once the shell has been sampled, the energy
of the photoelectron is calculated by using Eq. (19). Atomic and shell cross sections from the
ENDF/B-VII.1 photo-atomic sublibrary are used to simulate the photoelectric effect in OpenMC.

To determine the direction of the photoelectron, we implement the method described in
[7], which models the angular distribution of the photoelectrons using the K-shell cross section
derived by Sauter (K-shell electrons are the most tightly bound, and they contribute the most to
σpe). The nonrelativistic Sauter distribution for unpolarized photons can be approximated as

dσpe

dµ−
∝

1−µ2
−

(1− β−µ−)4
, (21)

where β− is the ratio of the velocity of the electron to the speed of light,

β− =

p

(E−(E− + 2mec2)
E− +mec2

. (22)

To sample µ− from the Sauter distribution, we first express Eq. (21) in the form

f (µ−) =
3
2
ψ(µ−)g(µ−), (23)

where

ψ(µ−) =
(1− β2

−)(1−µ
2
−)

(1− β−µ−)2
, (24)

g(µ−) =
1− β2

−

2(1− β−µ−)2
. (25)

In the interval [−1,1], g(µ−) is a normalized PDF andψ(µ−) satisfies the condition 0<ψ(µ−)<
1. The following algorithm can now be used to sample µ−:

1. Using the inverse transform method, sample µ− from g(µ−) using the sampling formula

µ− =
2ξ1 + β− − 1

2β−ξ1 − β− + 1
.

2. If ξ2 ≤ψ(µ−), accept µ−. Otherwise, repeat the sampling from step 1.

The azimuthal angle is sampled uniformly on [0,2π). The atom is left in an excited state with
a vacancy in the ith shell and decays to its ground state through a cascade of transitions that
produce fluorescent photons and Auger electrons.
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2.1.4 Pair Production

In electron-positron pair production, a photon is absorbed in the vicinity of an atomic nucleus
or an electron and an electron and positron are created. Pair production is the dominant
interaction with matter at high photon energies and is more important for high-Z elements.
When it takes place in the field of a nucleus, energy is essentially conserved among the incident
photon and the resulting charged particles. Therefore, in order for pair production to occur,
the photon energy must be greater than the sum of the rest mass energies of the electron and
positron; in other words, Ethreshold,pp = 2mec

2 = 1.022 MeV.
The photon can also interact in the field of an atomic electron. This process is referred to

as “triplet production” because the target electron is ejected from the atom and three charged
particles emerge from the interaction. In this case, the recoiling electron also absorbs some
energy, so the energy threshold for triplet production is greater than that of pair production from
atomic nuclei, with Ethreshold,tp = 4mec

2 = 2.044 MeV. The ratio of the triplet production cross
section to the pair production cross section is approximately 1/Z, so triplet production becomes
increasingly unimportant for high-Z elements. Although it can be significant in lighter elements,
the momentum of the recoil electron becomes negligible in the energy regime where pair
production dominates. For our purposes, it is a good approximation to treat triplet production
as pair production and simulate only the electron-positron pair.

Accurately modeling the creation of electron-positron pair is important because the charged
particles can go on to lose much of their energy as bremsstrahlung radiation, and the subsequent
annihilation of the positron with an electron produces two additional photons. We sample the
energy and direction of the charged particles using a semiempirical model described in [8]. The
Bethe-Heitler differential cross section, given by

dσpp

dε
= αr2

e Z2
�

(ε2 + (1− ε)2)(Φ1 − 4 fC) +
2
3
ε(1− ε)(Φ2 − 4 fC)

�

, (26)

is used as a starting point, where α is the fine structure constant, fC is the Coulomb correction
function, Φ1 and Φ2 are screening functions, and ε = (E− +mec

2)/E is the electron reduced
energy (i.e., the fraction of the photon energy given to the electron). ε can take values between
εmin = k−1 (when the kinetic energy of the electron is zero) and εmax = 1−k−1 (when the kinetic
energy of the positron is zero). The Coulomb correction, given by

fC = α
2Z2

�

(1+α2Z2)−1 + 0.202059− 0.03693α2Z2 + 0.00835α4Z4

− 0.00201α6Z6 + 0.00049α8Z8 − 0.00012α10Z10 + 0.00003α12Z12
�

,
(27)

is introduced to correct for the fact that the Bethe-Heitler differential cross section was derived
by using the Born approximation, which treats the Coulomb interaction as a small perturbation.

The screening functions Φ1 and Φ2 account for the screening of the Coulomb field of the
atomic nucleus by outer electrons. Since they are given by integrals that include the atomic form
factor, they must be computed numerically for a realistic form factor. However, by assuming
exponential screening and using a simplified form factor, analytical approximations of the
screening functions can be derived:

Φ1 = 2− 2 ln(1+ b2)− 4b arctan(b−1) + 4 ln(Rmec/ħh) (28)

Φ2 =
4
3
− 2 ln(1+ b2) + 2b2

�

4− 4b arctan(b−1)− 3 ln(1+ b−2)
�

+ 4 ln(Rmec/ħh), (29)
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where

b =
Rmec

2kε(1− ε)ħh
(30)

and R is the screening radius. A table of values of the so-called reduced screening radius Rmec/ħh
is provided by [8] for Z = 1− 99.

The differential cross section in Eq. (26) with the approximations described above will not
be accurate at low energies: the lower boundary of ε will be shifted above εmin, and the upper
boundary of ε will be shifted below εmax. A correcting factor,

F0(k, Z) = (0.1774+ 12.10αZ − 11.18α2Z2)(2/k)1/2

+ (8.523+ 73.26αZ − 44.41α2Z2)(2/k)

− (13.52+ 121.1αZ − 96.41α2Z2)(2/k)3/2

+ (8.946+ 62.05αZ − 63.41α2Z2)(2/k)2,

(31)

is introduced in order to offset this behavior. In order to aid sampling, the differential cross
section used to sample ε (minus the normalization constant) can now be expressed in the form

dσpp

dε
= u1

φ1(ε)
φ1(1/2)

π1(ε) + u2
φ2(ε)
φ2(1/2)

π2(ε), (32)

where

u1 =
2
3

�

1
2
−

1
k

�2

φ1(1/2), (33)

u2 = φ2(1/2), (34)

φ1(ε) =
1
2
(3Φ1 −Φ2)− 4 fC(Z) + F0(k, Z), (35)

φ2(ε) =
1
4
(3Φ1 +Φ2)− 4 fC(Z) + F0(k, Z), (36)

and

π1(ε) =
3
2

�

1
2
−

1
k

�−3�1
2
− ε
�2

, (37)

π2(ε) =
1
2

�

1
2
−

1
k

�−1

. (38)

The functions in Eq. (35) are non-negative and maximum at ε= 1/2. In the interval (εmin,εmax),
the functions in Eq. (37) are normalized PDFs and φi(ε)/φi(1/2) satisfies the condition 0 <
φi(ε)/φi(1/2)< 1. The following algorithm can now be used to sample the reduced electron
energy ε:

1. Sample i according to the point probabilities p(i = 1) = u1/(u1 + u2) and p(i = 2) =
u2/(u1 + u2).
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2. Using the inverse transform method, sample ε from ‘πi(ε) using the sampling formula

ε=
1
2
+
�

1
2
−

1
k

�

(2ξ1 − 1)1/3 if i = 1

ε=
1
k
+
�

1
2
−

1
k

�

2ξ1 if i = 2.

3. If ξ2 ≤ φi(ε)/φi(1/2), accept ε. Otherwise, repeat the sampling from step 1.

Because charged particles have a much smaller range than the mean free path of photons and
because they immediately undergo multiple scattering events that randomize their direction, a
simplified model is sufficient for sampling the direction of the electron and positron. The cosines
of the polar angles are sampled by using the leading order term of the Sauter–Gluckstern–Hull
distribution,

p(µ±) = C(1− β±µ±)−2, (39)

where C is a normalization constant and β± is the ratio of the velocity of the charged particle
to the speed of light given in Eq. (22). The inverse transform method is used to sample µ− and
µ+ from Eq. (39), by using the sampling formula

µ± =
2ξ− 1+ β±
(2ξ− 1)β± + 1

. (40)

The azimuthal angles for the electron and positron are sampled independently and uniformly
on [0, 2π).

2.2 Secondary Processes

In addition to the four primary interactions with matter, all processes apart from coherent
scattering can lead to the excitation/ionization of atoms. The de-excitation of these atoms may
result in the emission of additional photons and of electrons and positrons that can themselves
go on to produce photons through bremsstrahlung.

A Compton-scattered photon transfers a portion of its energy to the kinetic energy of the
recoil electron, which in turn may lose the energy as bremsstrahlung radiation. The vacancy
left in the shell by the ejected electron is filled through atomic relaxation, creating a shower of
electrons and fluorescence photons. Similarly, the vacancy left by the electron emitted in the
photoelectric effect is filled through atomic relaxation. Pair production generates an electron
and a positron, both of which can emit bremsstrahlung radiation before the positron eventually
collides with an electron, resulting in annihilation of the pair and the creation of two additional
photons. Any secondary particles created during the simulation are stored in a secondary
particle bank and transported immediately after the original particle history has terminated.
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2.2.1 Atomic Relaxation

When an electron is ejected from an atom and a vacancy is left in an inner shell, an electron
from a higher energy level will fill the vacancy. This results in either a radiative transition, in
which a photon with a characteristic energy (fluorescence photon) is emitted, or nonradiative
transition, in which an electron from a shell that is farther out (Auger electron) is emitted. If a
nonradiative transition occurs, the new vacancy is filled in the same manner; as the process
repeats, a shower of photons and electrons can be produced.

The energy of a fluorescence photon is equal to the energy difference between the transition
states,

E = Eb,v − Eb,i, (41)

where Eb,v is the binding energy of the vacancy shell and Eb,i is the binding energy of the shell
from which the electron transitioned. The energy of an Auger electron is given by

E− = Eb,v − Eb,i − Eb,a, (42)

where Eb,a is the binding energy of the shell from which the Auger electron is emitted. While
Auger electrons are low energy so their range and bremsstrahlung yield is small, fluorescence
photons can travel far before depositing their energy, so the relaxation process should be
modeled in detail.

The data needed to simulate atomic relaxation (transition probabilities, binding energies,
and the number of electrons in each subshell) is taken from the ENDF/B-VII.1 atomic relaxation
sublibrary. Starting with the initial shell vacancy, the following recursive algorithm is used to
fill vacancies and create fluorescence photons and Auger electrons:

1. If there are no transitions for the vacancy shell, create a fluorescence photon assuming it
is from a captured free electron and terminate.

2. Sample a transition using the transition probabilities for the vacancy shell as the probability
mass function.

3. Create either a fluorescence photon or Auger electron, sampling the direction of the
particle isotropically.

4. If a nonradiative transition occurred, repeat from step 1 for the vacancy left by the emitted
Auger electron.

5. Repeat from step 1 for the vacancy left by the transition electron.

2.2.2 Electron-Positron Annihilation

When a positron collides with an electron, both particles are annihilated, and generally two
photons with equal energy are created. If the kinetic energy of the positron is high enough, the
two photons can have different energies, and the higher-energy photon is emitted preferentially
in the direction of flight of the positron. It is also possible to produce a single photon if the
interaction occurs with a bound electron, and in some cases three (or, rarely, even more) photons
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can be emitted. However, the annihilation cross section is largest for low-energy positrons;
and as the positron energy decreases, the angular distribution of the emitted photons becomes
isotropic.

In OpenMC, we assume the most likely case in which a low-energy positron (which has
already lost most of its energy to bremsstrahlung radiation) interacts with an electron that is
free and at rest. Two photons with energy equal to the electron rest mass energy mec

2 = 0.511
MeV are emitted isotropically in opposite directions.

2.2.3 Bremsstrahlung

When a charged particle is decelerated in the field of an atom, some of its kinetic energy is
converted into electromagnetic radiation known as bremsstrahlung, or “braking radiation”. In
each event, an electron or positron with kinetic energy T generates a photon with an energy E
between 0 and T . Bremsstrahlung is described by a cross section that is differential in photon
energy, in the direction of the emitted photon, and in the final direction of the charged particle.
In Monte Carlo simulations, however, one typically integrates over the angular variables to
obtain a single differential cross section with respect to photon energy, which is often expressed
in the form

dσbr

dE
=

Z2

β2

1
E
χ(Z , T,κ), (43)

where κ= E/T is the reduced photon energy and χ(Z , T,κ) is the scaled bremsstrahlung cross
section, which is experimentally measured.

Because electrons are attracted to atomic nuclei whereas positrons are repulsed, the cross
section for positrons is smaller, although it approaches that of electrons in the high-energy limit.
To obtain the positron cross section, we multiply Eq. (43) by the κ-independent factor used in
[8],

Fp(Z , T ) =1− exp(−1.2359× 10−1 t + 6.1274× 10−2 t2 − 3.1516× 10−2 t3 (44)

+ 7.7446× 10−3 t4 − 1.0595× 10−3 t5 + 7.0568× 10−5 t6 (45)

− 1.8080× 10−6 t7), (46)

where

t = ln

�

1+
106

Z2

T
mec2

�

. (47)

Fp(Z , T ) is the ratio of the radiative stopping powers for positrons and electrons. Stopping
power describes the average energy loss per unit path length of a charged particle as it passes
through matter:

−
dT
ds
= n

∫

E
dσ
dE

dE ≡ S(T ), (48)

where n is the number density of the material and dσ/dE is the cross section differential
in energy loss. The total stopping power S(T ) can be separated into two components: the
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radiative stopping power Srad(T ), which refers to the energy loss due to bremsstrahlung, and
the collision stopping power Scol(T ), which refers to the energy loss due to inelastic collisions
with bound electrons in the material that result in ionization and excitation. To obtain the
radiative stopping power for positrons, we multipy the radiative stopping power for electrons
by Eq. (44). Currently, the collision stopping power for electrons is also used for positrons.

While the models for photon interactions with matter described above can safely assume
interactions occur with free atoms, sampling the target atom based on the macroscopic cross
sections, molecular effects cannot necessarily be disregarded for charged particle treatment.
For compounds and mixtures, the bremsstrahlung cross section is calculated by using Bragg’s
additivity rule as

dσbr

dE
=

1
β2E

∑

i

γi Z
2
i χ(Zi, T,κ), (49)

where the sum is over the constituent elements and γi is the atomic fraction of the ith element.
Similarly, the radiative stopping power is calculated by using Bragg’s additivity rule as

Srad(T ) =
∑

i

wiSrad,i(T ), (50)

where wi is the mass fraction of the ith element. The collision stopping power, however, is
a function of certain quantities such as the mean excitation energy I and the density effect
correction δF that depend on molecular properties. These quantities cannot simply be summed
over constituent elements in a compound but should instead be calculated for the material.
Currently, we use Bragg’s additivity rule to calculate the collision stopping power as well, but
this is not a good approximation and should be fixed in the future.

Since charged particles lose their energy on a much shorter distance scale than do neutral
particles, not much error should be introduced by neglecting to transport electrons. However,
the bremsstrahlung emitted from high-energy electrons and positrons can travel far from
the interaction site. Thus, even without a full electron transport mode, one must model
bremsstrahlung. We use a thick-target bremsstrahlung (TTB) approximation based on the
models in [8] and [7] for generating bremsstrahlung photons, which assumes that the charged
particle loses all its energy in a single homogeneous material region.

To model bremsstrahlung using the TTB approximation, we need to know the number of
photons emitted by the charged particle and the energy distribution of the photons. These
quantities can be calculated by using the continuous slowing down approximation (CSDA). The
CSDA assumes that charged particles lose energy continuously along their trajectory with a rate
of energy loss equal to the total stopping power, ignoring fluctuations in the energy loss. The
approximation is useful for expressing average quantities that describe how charged particles
slow in matter. For example, the CSDA range approximates the average path length a charged
particle travels as it slows to rest:

R(T ) =

∫ T

0

dT ′

S(T ′)
. (51)
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Actual path lengths will fluctuate around R(T ). The average number of photons emitted per
unit path length is given by the inverse bremsstrahlung mean free path:

λ−1
br (T, Ecut) = n

∫ T

Ecut

dσbr

dE
dE = n

Z2

β2

∫ 1

κcut

1
κ
χ(Z , T,κ)dκ. (52)

The lower limit of the integral in Eq. (52) is nonzero because the bremsstrahlung differential
cross section diverges for small photon energies but is finite for photon energies above some
cutoff energy Ecut. The mean free path λ−1

br (T, Ecut) is used to calculate the photon number yield,
defined as the average number of photons emitted with energy greater than Ecut as the charged
particle slows from energy T to Ecut. The photon number yield is given by

Y (T, Ecut) =

∫ R(T )

R(Ecut)

λ−1
br (T

′, Ecut)ds =

∫ T

Ecut

λ−1
br (T

′, Ecut)

S(T ′)
dT ′. (53)

Y (T, Ecut) can be used to construct the energy spectrum of bremsstrahlung photons: the number
of photons created with energy between E1 and E2 by a charged particle with initial kinetic
energy T as it comes to rest is given by Y (T, E1)− Y (T, E2).

The data needed for the TTB approximation is assembled from various sources. The scaled
bremsstrahlung cross sections are given by Seltzer and Berger [9] for Z = 1− 100 for incident
electron kinetic energies between 1 keV and 10 GeV and for 30 reduced photon energies for each
electron energy. This is generally considered the most reliable data available and is generated
by using a combination of various theoretical results and interpolation. Both the collision and
radiative stopping powers are pulled from the NIST ESTAR database [10], which provides
stopping powers for electrons in various materials (including Z = 1− 98) for energies between
1 keV and 10 GeV.

In order to simulate the emission of bremsstrahlung photons, the total stopping power and
bremsstrahlung differential cross section for positrons and electrons must be calculated for a
given material by using Eq. (49) and Eq. (50). These quantities are used to build the tabulated
bremsstrahlung energy PDF and CDF for that material for each incident energy Tk on the energy
grid. The following algorithm is then applied to sample the photon energies:

1. For an incident charged particle with energy T , sample the number of emitted photons as

N = bY (T, Ecut) + ξ1c.

2. Rather than interpolate the PDF between indices k and k + 1 for which Tk < T < Tk+1,
which is computationally expensive, use the composition method and sample from the
PDF at either k or k+1. Using linear interpolation on a logarithmic scale, the PDF can be
expressed as

pbr(T, E) = πkpbr(Tk, E) +πk+1pbr(Tk+1, E),

where the interpolation weights are

πk =
ln Tk+1 − ln T
ln Tk+1 − ln Tk

, πk+1 =
ln T − ln Tk

ln Tk+1 − ln Tk
.

Sample either the index i = k or i = k + 1 according to the point probabilities πk and
πk+1.
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3. Determine the maximum value of the CDF Pbr,max.

4. Sample the photon energies using the inverse transform method with the tabulated CDF
Pbr(Ti, E), i.e.,

E = E j

�

(1+ a j)
ξ2Pbr,max − Pbr(Ti, E j)

E j pbr(Ti, E j)
+ 1

�
1

1+a j

,

where the interpolation factor a j is given by

a j =
ln pbr(Ti, E j+1)− ln pbr(Ti, E j)

ln E j+1 − ln E j

and Pbr(Ti, E j)≤ ξ2Pbr,max ≤ Pbr(Ti, E j+1).

We ignore the range of the electron or positron; in other words, the bremsstrahlung photons
are produced in the same location that the charged particle was created. The direction of the
photons is assumed to be the same as the direction of the incident charged particle, which is a
reasonable approximation at higher energies when the bremsstrahlung radiation is emitted at
small angles.

3 Photon Production

In coupled neutron-photon transport, a source neutron is tracked, and photons produced from
neutron reactions are transported after the neutron’s history has terminated. Since these
secondary photons form the photon source for the problem, it is important to correctly describe
their energy and angular distributions as the accuracy of the calculation relies on the accuracy
of this source. Both the photon production cross sections and the secondary angle and energy
distributions for photons produced from neutron reactions are specified as part of the incident
neutron sublibraries. Photon production cross sections may be provided either directly or in the
form of the photon multiplicity (yield). The photon production cross section for a particular
reaction i and incident neutron energy E is defined as

σγ,i(E) = yi(E)σi(E), (54)

where yi(E) is the photon yield corresponding to an incident neutron reaction having cross
section σi(E). If the yield is specified, the photon production cross section can be calculated as
the product of the yield and the cross section for the neutron reaction.

The yield of photons during neutron transport is determined as the sum of the photon yields
from each individual reaction. In OpenMC, production of photons is treated in an average sense.
That is, the total photon production cross section is used at a collision site to determine how
many photons to produce rather than the photon production from the reaction that actually
took place. This is partly done for convenience but also because the use of variance reduction
techniques such as implicit capture make it difficult in practice to directly sample photon
production from individual reactions.
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In OpenMC, secondary photons are created after a nuclide has been sampled in a neutron
collision. The expected number of photons produced is

n= w
σγ(E)

σT (E)
, (55)

where w is the weight of the neutron, σγ is the photon production cross section for the sampled
nuclide, and σT is the total cross section for the nuclide. bnc photons are created with an
additional photon produced with probability n − bnc. Next, a reaction is sampled for each
secondary photon. The probability of sampling the ith reaction is given by σγ,i(E)/

∑

jσγ, j(E),
where

∑

jσγ, j = σγ is the total photon production cross section. The secondary angle and
energy distributions associated with the reaction are used to sample the angle and energy of
the emitted photon.

4 Validation

Both the photon physics and photon production implementations in OpenMC have been com-
pared with MCNP6. Two test cases were studied: a monoenergetic, isotropic photon point
source in an infinite medium, used to identify differences in photon physics, and a monoener-
getic, monodirectional neutron source directed down a thin, infinitely long cylinder, used to
expose any differences in the photon production implementations.

The same data was used with OpenMC and MCNP whenever possible to simplify comparisons.
For photon transport, the eprdata12 library was used for the MCNP calculations, while OpenMC
used a combination of the eprdata12 library, bremsstrahlung differential cross sections from
Seltzer and Berger, and stopping powers from the NIST ESTAR database. The bremsstrahlung
cross section data used in MCNP also comes from Seltzer and Berger; however, MCNP internally
calculates the collision and radiative stopping powers. Both OpenMC and MCNP used neutron
cross section data from the ENDF71x ACE library that is distributed with MCNP6.

4.1 Point Source in an Infinite Geometry

The test case used to study the photon physics models consists of a monoenergetic, isotropic
point source of 107 photons at the center of a large sphere. The sphere is made up of a single
material and has a radius of 109 cm, large enough to assume that no particles are leaked from
the geometry. The photon cutoff energy is set to 1 keV. Calculations were performed for source
energies of 0.1, 1, 10, and 100 MeV for various materials, and the photon spectrum was tallied.

Figs. 1 to 7 show the energy spectra from MCNP6 and OpenMC with the relative error plotted
alongside the uncertainties. For the most part the results show reasonably good agreement,
particularly at low energies that are more important for reactor calculations, but there are some
notable discrepancies.

One of the main differences is related to the collision stopping powers used in the TTB
approximation in OpenMC. The stopping powers from the NIST ESTAR database are calculated
for each element using by default the material density at standard temperature and pressure.
When the density of a material in a problem is different from the density used in the ESTAR
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Figure 1: Photon energy spectrum in an infinite geometry for hydrogen at a density of 8.3748×
10−5 g/cm3. The spectra calculated with OpenMC and MCNP6 are plotted along the left
axis. The relative error between the spectra is plotted in green along the right axis with the
uncertainties in black.
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Figure 2: Photon energy spectrum in an infinite geometry for hydrogen at a density of 1 g/cm3.
The spectra calculated with OpenMC and MCNP6 are plotted along the left axis. The relative
error between the spectra is plotted in green along the right axis with the uncertainties in black..
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database, the NIST data will be a poor approximation. The reason is that the collision stopping
power is a function of certain quantities, such as the mean excitation energy and particularly
the density effect correction, that depend on material properties. The density effect correction
accounts for the polarization of atoms near the path of the charged particle and is a function of
the composition and density of the material. Stopping powers for compounds are calculated
from the elemental data with Bragg’s additivity rule, which introduces additional error. Data
for constituent elements in a compound cannot simply be summed together; instead, these
quantities must be calculated for the material.

Fig. 1 and Fig. 2 highlight the problems with the current treatment. Fig. 1 shows the energy
spectrum for a photon source in hydrogen with a density of 1.3313× 10−3 g/cm3, at which the
NIST data is calculated, while Fig. 2 shows the results for the same model but with a much
higher density of 1 g/cm3. For 0.1 and 1 MeV sources, there is good agreement between the
OpenMC and MCNP results in both cases. When the source energy is increased to 10 MeV, there
is still no discernible difference between the results for the model where hydrogen is at the
density used in the NIST calculations. For the higher density model, however, the low end of
the spectrum that is formed primarily from bremsstrahlung is underestimated by 10− 15%
in OpenMC. This is expected because MCNP accounts for the density effect correction, while
OpenMC does not. Similar results are observed for the 100 MeV source.

Even when the material density used to calculate ESTAR stopping powers is used in the
model, there are discrepancies between the results, particularly for high source energies. These
differences are likely related to either differences in the TTB approximation or the model
used for sampling the energy of the electron and positron created in pair production. Pair
production is the dominant interaction at high energies and is more important for high-Z
elements. For example, it starts to dominate over Compton scattering above ∼ 80 MeV in
hydrogen but above ∼ 4 MeV in uranium. Modeling this interaction accurately is important
because the charged particles go on to lose their energy as bremsstrahlung. Unfortunately, little
documentation is available on how MNCP models either bremsstrahlung or pair production, so
it is difficult to determine whether their methods are more accurate and to verify the cause of
these discrepancies with certainty.

Fig. 3 shows the spectrum for oxygen. For high-energy sources, OpenMC slightly underesti-
mates the low end of the spectrum and underestimates the high end of the spectrum by up to
15%. One possible cause of the bias in the OpenMC results is the different treatment of positrons
in the TTB approximation. While OpenMC has a separate positron treatment, MCNP uses the
same cross sections and stopping powers for both electrons and positrons. The bremsstrahlung
yield of positrons approaches that of electrons for high incident particle energies but is smaller
at lower energies. The difference is also more pronounced for higher-Z elements. This means
the bremsstrahlung spectrum will be lower for a calculation that includes both positrons and
electrons than it would be if the positrons were treated as electrons and that the difference
would be larger for elements with a higher atomic number. This trend is observed in Figs. 4
to 6: for a 10 MeV source the difference at the low end of the spectrum grows to 3–4% in iron
to 7–9% in lead and 8–10% in uranium.

For the 100 MeV source, the difference in the high end of the spectrum is even greater
and increases from 15% in oxygen to 40% in uranium. This may be due to differences in pair
production, TTB, or interpolation methods. However, since it is observed only at very high
energies and the spectrum is very low at this point, it will likely be relatively unimportant.
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Figure 3: Photon energy spectrum in an infinite geometry for oxygen at a density of 1.3315×10−3

g/cm3. The spectra calculated with OpenMC and MCNP6 are plotted along the left axis. The
relative error between the spectra is plotted in green along the right axis with the uncertainties
in black.
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Figure 4: Photon energy spectrum in an infinite geometry for iron at a density of 7.874 g/cm3.
The spectra calculated with OpenMC and MCNP6 are plotted along the left axis. The relative
error between the spectra is plotted in green along the right axis with the uncertainties in black.
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Figure 5: Photon energy spectrum in an infinite geometry for lead at a density of 11.35 g/cm3.
The spectra calculated with OpenMC and MCNP6 are plotted along the left axis. The relative
error between the spectra is plotted in green along the right axis with the uncertainties in black.
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Figure 6: Photon energy spectrum in an infinite geometry for uranium at a density of 18.95
g/cm3. The spectra calculated with OpenMC and MCNP6 are plotted along the left axis. The
relative error between the spectra is plotted in green along the right axis with the uncertainties
in black.

22



Figure 7: Photon energy spectrum in an infinite geometry for uranium at a density of 18.95
g/cm3. Rather than using the TTB approximation to treat charged particles, local energy
deposition is assumed. The spectra calculated with OpenMC and MCNP6 are plotted along the
left axis. The relative error between the spectra is plotted in green along the right axis with the
uncertainties in black.
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The spectrum for uranium is shown in Fig. 6. For comparison, Fig. 7 shows the spectrum
for uranium for a calculation in which the local energy deposition option is used instead of
bremsstrahlung treatment; that is, energy from charged particles is assumed to be deposited
locally, and no photons from bremsstrahlung are created. The results show near-perfect agree-
ment, confirming that any discrepancies come from differences in the models used for charged
particles. The one large discrepancy around 40 keV results from a small difference within the
procedure for Doppler broadening of Compton-scattered photons: in OpenMC, the maximum
value of the cumulative distribution function is interpolated at pz,max , while MCNP uses the
lower bounding value on the grid.

Overall, the results show reasonably good agreement in the energy range that is relevant
for reactor calculations. The cases where the results diverge are primarily for very high energy
photons that are not energetically possible in a reactor.

4.2 Broomstick Problem

To identify any problems in the photon production implementation in OpenMC, a so-called
Broomstick model was used to compare the results to MCNP. The geometry consists of a cylinder
with radius 1×10−6 cm and length 1×109 cm (i.e., thin and infinitely long) made of of a single
material. A monoenergetic, monodirectional neutron source is directed down the length of the
cylinder. Any secondary particles produced escape before they have a chance to interact, so
the energy distribution of secondary photons produced in neutron reactions can be observed
without any contribution from other photon interactions. The photon current is tallied over the
surface of the cylinder. The comparisons were carried out for a few different source energies
and many different nuclides. Some representative plots are shown in Fig. 8, with the relative
error and the uncertainties plotted alongside the spectra. OpenMC results are consistent with
MCNP results for all of the calculations performed so far.
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