
 
 
 
 
 
 
 
 
 

 
 

ANL/ALCF-19/4 

 

 

Improving the Performance of Medical Imaging 

Applications using SYCL 
 
 
 

 

Argonne Leadership Computing Facility 



 
 
 
 
 
 
 
 
 
 

About Argonne National Laboratory 

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne 

and its pioneering science and technology programs, see www.anl.gov. 
 

 
 
 

DOCUMENT AVAILABILITY 
 

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a 

growing number of pre-1991 documents are available free via DOE’s SciTech Connect 

(http://www.osti.gov/scitech/) 

 
Reports not in digital format may be purchased by the public from the 

National Technical Information Service (NTIS): 

U.S. Department of Commerce  

National Technical Information Service 

5301 Shawnee Rd 

Alexandria, VA 22312 

www.ntis.gov 

Phone: (800) 553-NTIS (6847) or (703) 605-6000 

Fax: (703) 605-6900 

Email: orders@ntis.gov 

 
Reports not in digital format are available to DOE and DOE contractors from the 

Office of Scientific and Technical Information (OSTI): 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN 37831-0062 

www.osti.gov 

Phone: (865) 576-8401 

Fax: (865) 576-5728 

Email: reports@osti.gov 
 

 
 
 
 

Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or 

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document 

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne 

National Laboratory, or UChicago Argonne, LLC. 

  

http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.anl.gov/
http://www.osti.gov/scitech/)


 

 
 
 
 
 

 

 
 
 
 
 
 
 

 

ANL/ALCF-19/4 

Improving the Performance of Medical Imaging 

Applications using SYCL 
 
 
 

 

prepared by Zheming Jin 

 

 

 

 

Argonne Leadership Computing Facility, Argonne National Laboratory  

 

December 3, 2019 



Improving the Performance of Medical Imaging Applications using SYCL 

 

 

 

I.  INTRODUCTION 

 
In this report, we are interested in applying the SYCL 

programming model to medical imaging applications for a 
study on performance portability and programming 
productivity. The SYCL standard specifies a cross-platform 
abstraction layer that enables programming of heterogeneous 
computing systems using standard C++. As opposed to the 
Open Computing Language (OpenCL) programming model, 
in which host and device code are generally written in 
different programming languages [1], SYCL can combine 
host and device code for an application in a type-safe way to 
improve development productivity and performance 
portability.  

Rodinia is a widely used open-source benchmark suite 
for heterogeneous computing. We choose two medical 
imaging applications (Heart Wall and Particle Filter) in the 
Rodinia benchmark suite [ 2 ], migrate the OpenCL 
implementations of the applications to the SYCL 
implementations, and evaluate their performance and 
productivity on Intel® microprocessors that contains a central 
processing unit (CPU) and an integrated graphics processing 
unit (GPU). Currently, the maturing SYCL compilers, based 
on a conformant implementation of the SYCL 1.2.1 Khronos 
specification, are optimized for Intel® computing platforms.  

The experimental results are promising in terms of the 
raw performance and productivity. Although the SYCL 
implementation of the Heart Wall application does not 
execute successfully on a CPU, it is on average 15% faster 
than the OpenCL implementation on an Intel® Iris™ Pro 
integrated GPU. For the Particle Filter application, the 
performance difference between the SYCL and OpenCL 
implementations is less than 1% on the GPUs for most cases, 
but the SYCL implementation is on average 4.5X faster on 
an Intel® Xeon® four-core CPU. Arguably, we use lines of 
code as a way to measure programming productivity in 
software. The SYCL programs reduce the lines of code of 
the OpenCL programs by 52% and 38% for the Heart Wall 
and Particle Filter, respectively. The results indicate that 
SYCL is a promising programming model for heterogeneous 
computing with the maturing compilers. 

We organize the remainder of the report as follows. 
Section II introduces the SYCL programming model, 
compares the major differences between an OpenCL 
program and a SYCL program, and describes the 
characteristics of the two applications. Section III describes 
the SYCL programming model in more details, and shows 
the SYCL implementation of a kernel function in the Particle 
Filter as an example. In Section IV, we evaluate and analyze 
the performance of the applications on the CPUs and GPUs. 
Section V concludes the report. 

II. BACKGROUND 

A. SYCL 

C++ AMP, CUDA, Thrust C++ are representative single-
source C++ programming models for accelerators [3]. Such 
languages are easy to use and can be type-checked as 
everything sits in a single source file. They facilitate offline 
compilation so that the binary can be checked at compile 
time. A SYCL program, based on a single-source C++ model 
as shown in Figure 1, can be compiled for a host while 
kernel(s) are extracted from the source and compiled for a 
device. A SYCL device compiler parses a SYCL application 
and generates intermediate representations (IR). A standard 
host compiler parses the same application to generate native 
host code. The SYCL runtime will load IR at runtime, 
enabling other compilers to parse it into native device code. 
Hence, people can continue to use existing toolchains for a 
host platform, and choose preferred device compilers for a 
target platform.   

The design of SYCL allows for the combination of the 
performance and portability features of OpenCL and the 
flexibility of using high-level C++ abstractions. Most of the 
abstraction features of C++, such as templates, classes, and 
operator overloading, are available for a kernel function in 
SYCL. Some C++ language features, such as virtual 
functions, virtual inheritance, throwing/catching exceptions, 
and run-time type-information, are not allowed inside kernels 
due to the capabilities of the underlying OpenCL standard. 
These features are available outside kernel scope.  

A SYCL application is logically structured in three 
scopes: application scope, command-group scope, and kernel 
scope. The kernel scope specifies a single-kernel function 
that will be executed on a device after compilation. The 
command-group scope specifies a unit of work that will 
comprise of a kernel function and buffer accessors. The 

 
 

Figure 1. SYCL is a single-source programming model 



application scope specifies all other codes outside of a 
command-group scope. A SYCL kernel function may be 
defined by the body of a lambda function, by a function 
object or by the binary generated from an OpenCL kernel 
string. Although an OpenCL kernel is interoperable in the 
SYCL programming model, in this report we focus on the 
implementation of kernel functions using lambda functions. 

Table I lists the steps of creating an OpenCL application 
and their corresponding steps in SYCL. The first three steps 
in OpenCL are reduced to the instantiation of a device 
selector class in SYCL. A selector searches a device of a 
user’s provided preference (e.g., GPU) at runtime. The 
SYCL queue class is an out-of-order queue that encapsulates 
a queue for scheduling kernels on a device. A kernel function 
in SYCL can be invoked as a lambda function. The function 
is grouped into a command group object, and then it is 
submitted to execution via command queue. Hence, steps 6 
to 10 in OpenCL are mapped to the definition of a lambda 
function and submission of its command group to a SYCL 
queue. Data transfer between host and device can be 
implicitly realized by SYCL accessors, and the event 
handling can be handled by SYCL event class. Releasing the 
allocated sources of queue, program, kernel, and memory 
objects in SYCL is handled by the runtime which implicitly 
calls destructors inside scopes. Compared to the number of 
OpenCL programming steps, the SYCL programming model 
cuts the number of programming steps by half with higher 
abstractions, reducing a developer’s burden of managing 
OpenCL devices, program objects, kernels, and memory 
objects. 

B. Medical Imaging Applications in Rodinia  

Rodinia is a widely used open-source benchmark suite 
for heterogeneous computing. From the suite we choose two 
medical imaging applications. Particle Filter (PF) is a 
medical imaging application for tracking leukocytes and 
myocardial cells [4]. The algorithm may be used in other 
domains such as video surveillance and video compression. 
Heart Wall (HW) is another medical imaging application that 
tracks the movement of a mouse heart over numerous 
ultrasound images [5]. Both applications support OpenCL 

and CUDA programming models for a heterogeneous 
computing device.  

Table II summarizes the characteristics of the two 
applications in terms of the OpenCL host and kernel 
programs. For the PF application, we focus on the single-
precision floating-point version. We measure LOC of the 
OpenCL host and kernel programs using the utility “cloc” 
[6 ], and count the number of kernels and the maximum 
number of kernel arguments of a single or multiple kernel(s). 
While comments and blank lines are not included, and 
multiple lines are joined into one line for the OpenCL built-
in function calls, the LOC of both applications indicate that 
developing the host programs is tedious and error-prone. In 
the original OpenCL and CUDA applications, the authors 
reduced the significant GPU overhead of data transfer and 
kernel launch for the kernel of the HW application by 
combining multiple kernels into one kernel call. Hence, the 
kernel size of the HW application is much larger than the 
sizes of the four kernels in the PF application. On the other 
hand, both kernels require a great number of kernel 
arguments. They reduce programming productivity as it 
makes debugging difficult when the order of setting kernel 
arguments in a host program does not strictly match that in a 
kernel function. 

III. IMPLEMENTATIONS  

Overall, it is relatively straightforward to port an 
OpenCL application to a SYCL application by following the 
steps listed in Table I. However, we would like to describe 
the experience we learn from our porting efforts.  

A. Buffer Construction 

A SYCL buffer differs from an OpenCL buffer in that it 
can handle both storage and ownership of data. In addition, 
a buffer is destroyed when it goes out of scope. Table III 
lists the ways a buffer can be constructed and its initial 
values after construction. The destruction behavior indicates 
if the SYCL runtime will block until all work in queues on 
the buffer have completed. In our experiment, we can just 
use the first two methods for constructing buffers, which 
closely match the OpenCL buffer management in the 

TABLE II.  CHARACTERISTICS OF THE TWO OPENCL APPLICATIONS 

App. LOC 

(host) 

LOC 

(kernel) 

Number of 

kernels 

Max number of 

kernel arguments 

HW 775 1043 1 34 

PF 720 149 4 20 

 

 

TABLE I.  MAPPING FROM OPENCL TO SYCL 

Step OpenCL Program SYCL Program 

1 Platform query 

Device selector class 2 Device query of a platform 

3 Create context for devices 

4 Create command queue for context Queue class 

5 Create memory objects Buffer class 

6 Create program object 

Lambda expressions 
7 Build a program 

8 Create kernel(s) 

9 Set kernel arguments 

10 
Enqueue a kernel object for execution 

Submit a SYCL kernel 

to a queue 

11 Transfer data from device to host Implicit via accessors 

12 Event handling Event class 

13 Release resources Implicit via destructor 

 

 

TABLE III.  SUMMARY OF SYCL BUFFER MANAGEMENT 

Construction Method Buffer Content after 

Construction 

Destruction 

Behavior  

Buffer size Uninitialized Non-blocking 

Associated host memory Contents of host memory Blocking 

Unique pointer to host data Contents of host data  Blocking 

Shared pointer to host data Contents of host data Blocking 

A pair of iterator values 
Data from the range 

defined by the iterator pair 

Non-blocking 

OpenCL memory object OpenCL memory object Blocking 

 

 



applications. Although it is not necessary to use either a 
unique pointer or a shared pointer to host data, we will look 
at the two methods, which does not necessarily require data 
copy-back from device to host, in our future work. Using a 
pair of iterator values for a range of values is flexible, but it 
is not needed for the two application under study. The last 
method, which allows for the interoperability of OpenCL 
and SYCL, is not our focus.  

B. Buffer Access Mode 

SYCL accessors allow a user to specify the types of data 
access, and the SYCL implementation ensures that the data 
is accessed appropriately. A device accessor, which is the 
default access type, allows a kernel to access data on a 
device. In contrast, a host accessor gives access to data on 
the host. A device accessor can only be constructed within 
command groups whereas a host accessor can be created 
outside command groups. Constructing a host accessor is 
blocking by waiting for all previous operations on the 
underlying buffer to complete.  

An accessor must be specified with an access mode 
shown in Table IV. Discarding write indicates that previous 
contents of a device buffer is not preserved, which implies 
that it is not necessary to copy data from host to device 
before the buffer is accessed. It is important to specify the 
access mode correctly; otherwise, the compiler will report an 
error when a kernel function tries to write to a read-only 
buffer. On the other hand, a read-only accessor to a buffer 
can disable data copy to host memory when the buffer is 
destroyed.  

C. Data Movement between Host and Device 

For OpenCL applications, data transfers between a host 
and a device are explicitly made with the OpenCL built-in 
functions “clEnqueueReadBuffer()” and 
“clEnqueueWriteBuffer()”. In SYCL, we can rely on implicit 
data transfers realized by buffer accessors. When a buffer is 
constructed with associated host memory as shown in Table 
III, the pointer to the host memory allows SYCL runtime to 
copy data back from device to host before the buffer is 
destroyed. Without explicit data copy specified in a SYCL 
program, the SYCL compiler will generate OpenCL built-in 
functions “clEnqueueMapBuffer()” and 
“clEnqueueUnmapMemObject()” for moving data between 
host and device. However, we should not use the pointer on 
the host side to access the contents of the buffer before the 
buffer is destroyed. Instead, we can use a host accessor to 
access the memory managed by a SYCL buffer.  

D. Kernel Execution Order 

In OpenCL, a command queue is required to transfer data 
between a host and a device, and to ensure different kernels 
execute in the correct order. In contrast, SYCL provides an 
abstraction that only requires users to specify which data are 
needed to execute a kernel. By specifying access modes and 
types of memory, a directed acyclic dependency graph of 
different kernels is constructed at runtime based on the 
relative order of command-groups submissions to a queue.  

For example, in the PF application there are four kernels 
which are executed in each image frame. After they are 
submitted to a queue, a dependency graph is built as shown 
in Figure 2. While each command group (CG) for a kernel is 
submitted to a SYCL queue asynchronously, the runtime will 
determine the execution order of these kernels based on the 
read and write access modes of device accessors. 

E. Kernel Execution Model 

Conceptually, the SYCL kernel execution model is 
equivalent to the OpenCL kernel execution model. SYCL 
supports an N-dimensional (N ≤ 3) index space, and the 
space is represented via the “nd_range<N>” class. Each 
work-item in the space is identified by the type 
“nd_item<N>”. The type encapsulates a global identifier 
(ID), a local ID, a work-group ID, synchronization 
operations, etc. 

SYCL runtime creates a SYCL handler object to define 
and invoke a SYCL kernel function in a command group. A 
kernel can be invoked as a single task, a basic data-parallel 
kernel, an OpenCL-style kernel, or a hierarchical parallel 
kernel. In our experiment, we invoke a variant of the 
“parallel_for” member function that enables low-level 
functionality of work-items and work-groups for a data-
parallel kernel. The variation allows us to specify both global 
and local ranges, perform the synchronization of work-items 
in in each cooperating work-group, and create local 
accessors to local memory, enabling the smooth migration of 
an OpenCL kernel to a SYCL kernel.  

Listing 1 presents the SYCL implementation of the 
“normalize_weights” kernel in the PF application under the 
scope of command group. We manually inline the function 
calls in the original OpenCL kernel. For the kernel, we focus 
on the semantics of the program rather than how weights are 
normalized. The operations, which process data on a device, 

TABLE IV.  SYCL BUFFER ACCESS MODES 

Access Mode Description 

Read Read-only access to a buffer 

Write Write-only access to a buffer 

Read_write Read and write access to a buffer 

Discard_write 
Write-only access to a buffer. Discard any previous 

contents of the data the accessor refers to 

Discard_read_write 
Read and write access to a buffer. Discard any 

previous contents of the data the accessor refers to 

Atomic Atomic access to a buffer 

 

 
 

 
Figure 2. Execution order of the four SYCL kernels in PF 



are represented using a command group function object. The 
function object is given a command group handler (cgh) 
object to perform all the necessary work required to process 
data on a device using a kernel. The group of commands for 
data transferring and processing is enqueued as a command 
group on a device. A command group is submitted to a 
SYCL command queue for execution. Accesses to the 
buffers are controlled via device accessors constructed 
through the “get_access” method of the buffers (lines 2-7). 
For simplicity, we omit the specifications of the buffer 
access modes for all the accessors. We also construct two 
local accessors (lines 8-9), which provide accesses to the 
allocated shared memories on a device. Each local memory 
is shared among all work-items of a work-group. The 
memory allocated by a local accessor is not initialized, so it 
is reset by the first work-item in a work-group (line 14). In 
the kernel function, the identifiers of global and local work-
items are retrieved with the member functions of the 
“nd_item” class (lines 11-12). The barrier function is 
required to synchronize all work-items in a work-group in 
local or global memory space (lines 16, 20, 32, 36). The 
floating-point math functions (i.e., fabs, sqrt, and cos) need 
to be qualified in the SYCL namespace (lines 27, 29, 30) to 
tell a SYCL compiler that these math functions, which are 
not confused with the math functions called on a host, will be 
executed on a device.  

IV. EXPERIMENT 

A. Setup 

We use the Codeplay SYCL compiler (ComputeCpp™ 
community edition, version 1.1.6) as we find that the 
compiler is more mature than the open-source SYCL 
compiler [7] for the two applications. We choose two server 
platforms in our experiment. One server has an Intel® Xeon® 
E3-1284L v4 CPU running at 2.9 GHz. The CPU has four 
cores and each core supports two threads. The integrated 
GPU is Broadwell GT3e, Generation 8.0. It contains 48 
execution units, and each execution unit corresponds to a 
compute unit in the OpenCL programming model. The 

maximum dynamic frequency of the GPU is 1.15 GHz. The 
other server has an Intel® Xeon® E3-1585 v5 CPU running 
at 3.5 GHz. The CPU also has four cores and each core 
supports two threads. The integrated GPU is Skylake GT3e, 
Generation 9.0. It contains 72 execution units. The maximum 
dynamic frequency of the GPU is 1.15 GHz. A few details of 
the two GPUs are listed in Table V.  

For the GPU compute runtime, the device version is 
OpenCL 2.1 NEO and the driver version 19.43.14583. The 
maximum work-group size on a GPU is 256. For the CPU 
runtime, the device versions is OpenCL 2.1. The maximum 
work-group size is 8192. The operating system on the server 
with the Broadwell microprocessor is CentOS Linux 7 and 
the kernel 5.3.10. The operating system on the server with 
the Skylake microprocessor is Red Hat Enterprise Linux 7 
and the kernel 5.3.1. 

We compile the SYCL programs with the options “-O3 -
no-serial-memop -sycl-driver”, and the OpenCL programs 
using the options “-O3” and the GNU compiler, version 
4.8.5. We evaluate the performance of the two applications 
with the test scripts provided by the benchmark suite. We 

TABLE V.  SUMMARY OF THE TWO INTEGRATED GPUS 

Parameter 
Iris™ Pro 

Graphics P580  

Iris™ Pro 

Graphics P6300 

Generation Gen9 (Skylake) Gen8 (Broadwell) 

Technology 14 nm 14 nm 

Base Freq. 0.35 GHz 0.3 GHz 

Max Dynamic Freq. 1.15 GHz 1.15 GHz 

Embedded DRAM 128 MB 128 MB 

Slices/Subslices 3/9 2/6 

Execution Units  72 48 

Max GFLOPS 1325 883 

 

1 q.submit([&] (handle& cgh) { 

2   auto weights = d_weights.get_access<read_write>(cgh); 

3   auto Nparticles = d_Nparticls.get_access<…>(cgh); 

4   auto partial_sums = d_partial_sums.get_access<…>(cgh); 

5   auto CDF = d_CDF.get_access<…>(cgh); 

6   auto u = d_u.get_access<…>(cgh); 

7   auto seed = d_seed.get_access<…>(cgh); 

8   accessor<float,1,read_write,access::target::local>  

   u1(1,cgh); 

9   accessor<float,1,read_write,access::target::local>  

   sumWeights(1,cgh); 

10  cgh.parallel_for<class normalize_weights>( 

        nd_range<1>(range<1>(global_work_size),  

                    range<1>(local_work_size)), 

                    [=](nd_item<1> item) { 

11    int i = item.get_global_id(0); 

12    int lid = item.get_local_id(0); 

13    if (lid == 0) { 

14      sumWeights[0] = partial_sums[0]; 

15    } 

16    item.barrier(access::fence_space::local_space); 

17    if (i < Nparticles[0]) { 

18      weights[i] = weights[i]/sumWeights[0]; 

19    }           

20    item.barrier(access::fence_space::global_space); 

21    if (i == 0) { 

22      CDF[0] = weights[0]; 

23      for(int x = 1; x < Nparticles[0]; x++){ 

24        CDF[x] = weights[x] + CDF[x-1]; 

25      } 

26      seed[i] = (A*seed[i] + C) % M; 

27      float p = cl::sycl::fabs(seed[i]/((float)M)); 

28      seed[i] = (A*seed[i] + C) % M; 

29      float q = cl::sycl::fabs(seed[i]/((float)M)); 

30      u[0]    = (1/((float)(Nparticles[0]))) * 

              (cl::sycl::sqrt(-2*cl::sycl::log(p))* 

               cl::sycl::cos(2*PI*q)); 

31    }          

32    item.barrier(access::fence_space::global_space); 

33    if (0 == local_id) { 

34      u1[0] = u[0]; 

35    } 

36    item.barrier(access::fence_space::local_space); 

37    if (i < Nparticles[0]) { 

38      u[i] = u1[0] + i/((float)(Nparticles[0])); 

39    } 

40  }); 

41 }); 

 

Listing 1. Implementation of the “normalize_weights” kernel in 
SYCL 

 



choose the elapsed time of executing the entire application as 
our performance metric. For both applications, the offloading 
time consumes approximately 99% of the entire application 
time. When measuring the execution time of the OpenCL 
implementations, we disable checking the error status after 
invoking each OpenCL built-in function to remove its effect 
on the timing. 

B. Experimental Results 

The execution time in second of running the HW 
implemented in SYCL and OpenCL on the P6300 GPU and 
P580 GPU is displayed in Figures 3 and 4, respectively. 
Increasing the work-group size is effective in improving the 
performance of the application. Because the execution time 
is even longer for work-group sizes smaller than 32, they are 
not shown in the figures. Based on the profiling results of the 
SYCL and OpenCL implementations on the GPUs, we 
attribute the shorter execution time of the SYCL 
implementations to the shorter kernel execution time on the 
on the two GPUs. The SYCL compiler also reduces the 
overhead of data transfers between the host and device 
although the kernel execution consumes 99% of the device 
time. On the other hand, the execution time of the SYCL and 
OpenCL implementations are almost the same for certain 
work-group sizes on the two GPUs. Since the performance 
of the application is intimately associated with the work-

group size, the results suggest that the SYCL runtime is more 
efficient in scheduling the execution of work-groups on each 
GPU for certain work-group sizes. Currently, the binaries 
generated from the SYCL programs does not run 
successfully on the CPUs. Hence, the comparison of the 
SYCL and OpenCL implementations on the CPUs is not 
available. 

Figures 5 and 6 show the execution time in second of 
running the PF in SYCL and OpenCL on the two GPUs, 
respectively. There is a sweet spot where the highest 
performance on each GPU is achieved using a work-group 
size of 64. As the execution time is even longer for work-
group sizes smaller than 16, they are not shown in the 
figures. The difference in execution time between the SYCL 
and the OpenCL implementations is less than 1% for almost 
all cases. 

As shown in Figures 7 and 8, on the CPUs the highest 
performance levels off when the work-group size is less 
than 64. The results of device profiling indicate that the 
significant slowdown in the performance of the OpenCL 
implementation is caused by the OpenCL likelihood kernel. 
The OpenCL kernel is 11X slower than the SYCL kernel.  

In terms of programming productivity, we argue that the 
productivity is often associated with the size of a program in 
terms of lines of code (LOC). The LOC of the HW are 

 

Figure 5. Performance comparison of the SYCL and OpenCL 

implementations of Particle Filter across the work-group sizes 

on the P6300 GPU 

 

Figure 3. Performance comparison of the SYCL and OpenCL 

implementations of Heart Wall across the work-group sizes on 

the P6300 GPU 

 

Figure 4. Performance comparison of the SYCL and OpenCL 

implementations of Heart Wall across the work-group sizes on 

the P580 GPU 

 

Figure 6. Performance comparison of the SYCL and OpenCL 

implementations of Particle Filter across the work-group sizes 

on the P580 GPU 



approximately 370 and the LOC of the PF approximately 
450. Hence, the SYCL program reduces the LOC of the 
OpenCL program listed in Table II by 52% and 38%, 
respectively. Given that the SYCL kernels are almost the 
same as the OpenCL kernels, there are a few factors that 
contribute to the decrease of LOC. Using a device selector in 
SYCL greatly simplifies the search for platforms and devices 
in OpenCL. In addition, a lambda expression in SYCL 
removes the need to explicitly build a kernel program and set 
kernel arguments as in OpenCL. For a host program, the 
improvement of programming productivity is more evident 
for a kernel with a large number of kernel arguments 
specified in global memory space. Each kernel argument 
may require data transfer between host and device. The 
implicit data transfer between host and device in SYCL also 
contributes to the decrease in LOC.  

V. CONCLUSION 

SYCL is a single-source programming model that allows 
kernel codes to be embedded in host codes. In this report, we 
apply the SYCL programming model to the medical imaging 
applications in the open-source Rodinia benchmark suite, 
describe our experience of transforming the OpenCL 
implementations to the SYCL implementations, and evaluate 
their performance on Intel® microprocessors with a CPU and 
an integrated GPU. While the transformation from OpenCL 
to SYCL is relatively straightforward given that the SYCL 
programming model is an extension to OpenCL, 

understanding buffer accessors, kernel execution order and 
model, and program scopes is important for the smooth 
transformation of the applications. The experimental results 
are promising in terms of the raw performance and the 
programming productivity which can be achieved using the 
SYCL programming model. The maturing SYCL compilers 
will continue to promote performance, portability, and 
productivity. 
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Figure 7. Performance comparison of the SYCL and OpenCL 

implementations of Particle Filter across the work-group sizes 

on the E3-1284L v4 CPU 

 

Figure 8. Performance comparison of the SYCL and OpenCL 

implementations of Particle Filter across work-group sizes on 

the E3-1585 v5 CPU 
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