

ANL/ALCF-19/4

Improving the Performance of Medical Imaging

Applications using SYCL

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne

National Laboratory, or UChicago Argonne, LLC.

http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.anl.gov/
http://www.osti.gov/scitech/)

ANL/ALCF-19/4

Improving the Performance of Medical Imaging

Applications using SYCL

prepared by Zheming Jin

Argonne Leadership Computing Facility, Argonne National Laboratory

December 3, 2019

Improving the Performance of Medical Imaging Applications using SYCL

I. INTRODUCTION

In this report, we are interested in applying the SYCL

programming model to medical imaging applications for a
study on performance portability and programming
productivity. The SYCL standard specifies a cross-platform
abstraction layer that enables programming of heterogeneous
computing systems using standard C++. As opposed to the
Open Computing Language (OpenCL) programming model,
in which host and device code are generally written in
different programming languages [1], SYCL can combine
host and device code for an application in a type-safe way to
improve development productivity and performance
portability.

Rodinia is a widely used open-source benchmark suite
for heterogeneous computing. We choose two medical
imaging applications (Heart Wall and Particle Filter) in the
Rodinia benchmark suite [2], migrate the OpenCL
implementations of the applications to the SYCL
implementations, and evaluate their performance and
productivity on Intel® microprocessors that contains a central
processing unit (CPU) and an integrated graphics processing
unit (GPU). Currently, the maturing SYCL compilers, based
on a conformant implementation of the SYCL 1.2.1 Khronos
specification, are optimized for Intel® computing platforms.

The experimental results are promising in terms of the
raw performance and productivity. Although the SYCL
implementation of the Heart Wall application does not
execute successfully on a CPU, it is on average 15% faster
than the OpenCL implementation on an Intel® Iris™ Pro
integrated GPU. For the Particle Filter application, the
performance difference between the SYCL and OpenCL
implementations is less than 1% on the GPUs for most cases,
but the SYCL implementation is on average 4.5X faster on
an Intel® Xeon® four-core CPU. Arguably, we use lines of
code as a way to measure programming productivity in
software. The SYCL programs reduce the lines of code of
the OpenCL programs by 52% and 38% for the Heart Wall
and Particle Filter, respectively. The results indicate that
SYCL is a promising programming model for heterogeneous
computing with the maturing compilers.

We organize the remainder of the report as follows.
Section II introduces the SYCL programming model,
compares the major differences between an OpenCL
program and a SYCL program, and describes the
characteristics of the two applications. Section III describes
the SYCL programming model in more details, and shows
the SYCL implementation of a kernel function in the Particle
Filter as an example. In Section IV, we evaluate and analyze
the performance of the applications on the CPUs and GPUs.
Section V concludes the report.

II. BACKGROUND

A. SYCL

C++ AMP, CUDA, Thrust C++ are representative single-
source C++ programming models for accelerators [3]. Such
languages are easy to use and can be type-checked as
everything sits in a single source file. They facilitate offline
compilation so that the binary can be checked at compile
time. A SYCL program, based on a single-source C++ model
as shown in Figure 1, can be compiled for a host while
kernel(s) are extracted from the source and compiled for a
device. A SYCL device compiler parses a SYCL application
and generates intermediate representations (IR). A standard
host compiler parses the same application to generate native
host code. The SYCL runtime will load IR at runtime,
enabling other compilers to parse it into native device code.
Hence, people can continue to use existing toolchains for a
host platform, and choose preferred device compilers for a
target platform.

The design of SYCL allows for the combination of the
performance and portability features of OpenCL and the
flexibility of using high-level C++ abstractions. Most of the
abstraction features of C++, such as templates, classes, and
operator overloading, are available for a kernel function in
SYCL. Some C++ language features, such as virtual
functions, virtual inheritance, throwing/catching exceptions,
and run-time type-information, are not allowed inside kernels
due to the capabilities of the underlying OpenCL standard.
These features are available outside kernel scope.

A SYCL application is logically structured in three
scopes: application scope, command-group scope, and kernel
scope. The kernel scope specifies a single-kernel function
that will be executed on a device after compilation. The
command-group scope specifies a unit of work that will
comprise of a kernel function and buffer accessors. The

Figure 1. SYCL is a single-source programming model

application scope specifies all other codes outside of a
command-group scope. A SYCL kernel function may be
defined by the body of a lambda function, by a function
object or by the binary generated from an OpenCL kernel
string. Although an OpenCL kernel is interoperable in the
SYCL programming model, in this report we focus on the
implementation of kernel functions using lambda functions.

Table I lists the steps of creating an OpenCL application
and their corresponding steps in SYCL. The first three steps
in OpenCL are reduced to the instantiation of a device
selector class in SYCL. A selector searches a device of a
user’s provided preference (e.g., GPU) at runtime. The
SYCL queue class is an out-of-order queue that encapsulates
a queue for scheduling kernels on a device. A kernel function
in SYCL can be invoked as a lambda function. The function
is grouped into a command group object, and then it is
submitted to execution via command queue. Hence, steps 6
to 10 in OpenCL are mapped to the definition of a lambda
function and submission of its command group to a SYCL
queue. Data transfer between host and device can be
implicitly realized by SYCL accessors, and the event
handling can be handled by SYCL event class. Releasing the
allocated sources of queue, program, kernel, and memory
objects in SYCL is handled by the runtime which implicitly
calls destructors inside scopes. Compared to the number of
OpenCL programming steps, the SYCL programming model
cuts the number of programming steps by half with higher
abstractions, reducing a developer’s burden of managing
OpenCL devices, program objects, kernels, and memory
objects.

B. Medical Imaging Applications in Rodinia

Rodinia is a widely used open-source benchmark suite
for heterogeneous computing. From the suite we choose two
medical imaging applications. Particle Filter (PF) is a
medical imaging application for tracking leukocytes and
myocardial cells [4]. The algorithm may be used in other
domains such as video surveillance and video compression.
Heart Wall (HW) is another medical imaging application that
tracks the movement of a mouse heart over numerous
ultrasound images [5]. Both applications support OpenCL

and CUDA programming models for a heterogeneous
computing device.

Table II summarizes the characteristics of the two
applications in terms of the OpenCL host and kernel
programs. For the PF application, we focus on the single-
precision floating-point version. We measure LOC of the
OpenCL host and kernel programs using the utility “cloc”
[6], and count the number of kernels and the maximum
number of kernel arguments of a single or multiple kernel(s).
While comments and blank lines are not included, and
multiple lines are joined into one line for the OpenCL built-
in function calls, the LOC of both applications indicate that
developing the host programs is tedious and error-prone. In
the original OpenCL and CUDA applications, the authors
reduced the significant GPU overhead of data transfer and
kernel launch for the kernel of the HW application by
combining multiple kernels into one kernel call. Hence, the
kernel size of the HW application is much larger than the
sizes of the four kernels in the PF application. On the other
hand, both kernels require a great number of kernel
arguments. They reduce programming productivity as it
makes debugging difficult when the order of setting kernel
arguments in a host program does not strictly match that in a
kernel function.

III. IMPLEMENTATIONS

Overall, it is relatively straightforward to port an
OpenCL application to a SYCL application by following the
steps listed in Table I. However, we would like to describe
the experience we learn from our porting efforts.

A. Buffer Construction

A SYCL buffer differs from an OpenCL buffer in that it
can handle both storage and ownership of data. In addition,
a buffer is destroyed when it goes out of scope. Table III
lists the ways a buffer can be constructed and its initial
values after construction. The destruction behavior indicates
if the SYCL runtime will block until all work in queues on
the buffer have completed. In our experiment, we can just
use the first two methods for constructing buffers, which
closely match the OpenCL buffer management in the

TABLE II. CHARACTERISTICS OF THE TWO OPENCL APPLICATIONS

App. LOC

(host)

LOC

(kernel)

Number of

kernels

Max number of

kernel arguments

HW 775 1043 1 34

PF 720 149 4 20

TABLE I. MAPPING FROM OPENCL TO SYCL

Step OpenCL Program SYCL Program

1 Platform query

Device selector class 2 Device query of a platform

3 Create context for devices

4 Create command queue for context Queue class

5 Create memory objects Buffer class

6 Create program object

Lambda expressions
7 Build a program

8 Create kernel(s)

9 Set kernel arguments

10
Enqueue a kernel object for execution

Submit a SYCL kernel

to a queue

11 Transfer data from device to host Implicit via accessors

12 Event handling Event class

13 Release resources Implicit via destructor

TABLE III. SUMMARY OF SYCL BUFFER MANAGEMENT

Construction Method Buffer Content after

Construction

Destruction

Behavior

Buffer size Uninitialized Non-blocking

Associated host memory Contents of host memory Blocking

Unique pointer to host data Contents of host data Blocking

Shared pointer to host data Contents of host data Blocking

A pair of iterator values
Data from the range

defined by the iterator pair

Non-blocking

OpenCL memory object OpenCL memory object Blocking

applications. Although it is not necessary to use either a
unique pointer or a shared pointer to host data, we will look
at the two methods, which does not necessarily require data
copy-back from device to host, in our future work. Using a
pair of iterator values for a range of values is flexible, but it
is not needed for the two application under study. The last
method, which allows for the interoperability of OpenCL
and SYCL, is not our focus.

B. Buffer Access Mode

SYCL accessors allow a user to specify the types of data
access, and the SYCL implementation ensures that the data
is accessed appropriately. A device accessor, which is the
default access type, allows a kernel to access data on a
device. In contrast, a host accessor gives access to data on
the host. A device accessor can only be constructed within
command groups whereas a host accessor can be created
outside command groups. Constructing a host accessor is
blocking by waiting for all previous operations on the
underlying buffer to complete.

An accessor must be specified with an access mode
shown in Table IV. Discarding write indicates that previous
contents of a device buffer is not preserved, which implies
that it is not necessary to copy data from host to device
before the buffer is accessed. It is important to specify the
access mode correctly; otherwise, the compiler will report an
error when a kernel function tries to write to a read-only
buffer. On the other hand, a read-only accessor to a buffer
can disable data copy to host memory when the buffer is
destroyed.

C. Data Movement between Host and Device

For OpenCL applications, data transfers between a host
and a device are explicitly made with the OpenCL built-in
functions “clEnqueueReadBuffer()” and
“clEnqueueWriteBuffer()”. In SYCL, we can rely on implicit
data transfers realized by buffer accessors. When a buffer is
constructed with associated host memory as shown in Table
III, the pointer to the host memory allows SYCL runtime to
copy data back from device to host before the buffer is
destroyed. Without explicit data copy specified in a SYCL
program, the SYCL compiler will generate OpenCL built-in
functions “clEnqueueMapBuffer()” and
“clEnqueueUnmapMemObject()” for moving data between
host and device. However, we should not use the pointer on
the host side to access the contents of the buffer before the
buffer is destroyed. Instead, we can use a host accessor to
access the memory managed by a SYCL buffer.

D. Kernel Execution Order

In OpenCL, a command queue is required to transfer data
between a host and a device, and to ensure different kernels
execute in the correct order. In contrast, SYCL provides an
abstraction that only requires users to specify which data are
needed to execute a kernel. By specifying access modes and
types of memory, a directed acyclic dependency graph of
different kernels is constructed at runtime based on the
relative order of command-groups submissions to a queue.

For example, in the PF application there are four kernels
which are executed in each image frame. After they are
submitted to a queue, a dependency graph is built as shown
in Figure 2. While each command group (CG) for a kernel is
submitted to a SYCL queue asynchronously, the runtime will
determine the execution order of these kernels based on the
read and write access modes of device accessors.

E. Kernel Execution Model

Conceptually, the SYCL kernel execution model is
equivalent to the OpenCL kernel execution model. SYCL
supports an N-dimensional (N ≤ 3) index space, and the
space is represented via the “nd_range<N>” class. Each
work-item in the space is identified by the type
“nd_item<N>”. The type encapsulates a global identifier
(ID), a local ID, a work-group ID, synchronization
operations, etc.

SYCL runtime creates a SYCL handler object to define
and invoke a SYCL kernel function in a command group. A
kernel can be invoked as a single task, a basic data-parallel
kernel, an OpenCL-style kernel, or a hierarchical parallel
kernel. In our experiment, we invoke a variant of the
“parallel_for” member function that enables low-level
functionality of work-items and work-groups for a data-
parallel kernel. The variation allows us to specify both global
and local ranges, perform the synchronization of work-items
in in each cooperating work-group, and create local
accessors to local memory, enabling the smooth migration of
an OpenCL kernel to a SYCL kernel.

Listing 1 presents the SYCL implementation of the
“normalize_weights” kernel in the PF application under the
scope of command group. We manually inline the function
calls in the original OpenCL kernel. For the kernel, we focus
on the semantics of the program rather than how weights are
normalized. The operations, which process data on a device,

TABLE IV. SYCL BUFFER ACCESS MODES

Access Mode Description

Read Read-only access to a buffer

Write Write-only access to a buffer

Read_write Read and write access to a buffer

Discard_write
Write-only access to a buffer. Discard any previous

contents of the data the accessor refers to

Discard_read_write
Read and write access to a buffer. Discard any

previous contents of the data the accessor refers to

Atomic Atomic access to a buffer

Figure 2. Execution order of the four SYCL kernels in PF

are represented using a command group function object. The
function object is given a command group handler (cgh)
object to perform all the necessary work required to process
data on a device using a kernel. The group of commands for
data transferring and processing is enqueued as a command
group on a device. A command group is submitted to a
SYCL command queue for execution. Accesses to the
buffers are controlled via device accessors constructed
through the “get_access” method of the buffers (lines 2-7).
For simplicity, we omit the specifications of the buffer
access modes for all the accessors. We also construct two
local accessors (lines 8-9), which provide accesses to the
allocated shared memories on a device. Each local memory
is shared among all work-items of a work-group. The
memory allocated by a local accessor is not initialized, so it
is reset by the first work-item in a work-group (line 14). In
the kernel function, the identifiers of global and local work-
items are retrieved with the member functions of the
“nd_item” class (lines 11-12). The barrier function is
required to synchronize all work-items in a work-group in
local or global memory space (lines 16, 20, 32, 36). The
floating-point math functions (i.e., fabs, sqrt, and cos) need
to be qualified in the SYCL namespace (lines 27, 29, 30) to
tell a SYCL compiler that these math functions, which are
not confused with the math functions called on a host, will be
executed on a device.

IV. EXPERIMENT

A. Setup

We use the Codeplay SYCL compiler (ComputeCpp™
community edition, version 1.1.6) as we find that the
compiler is more mature than the open-source SYCL
compiler [7] for the two applications. We choose two server
platforms in our experiment. One server has an Intel® Xeon®
E3-1284L v4 CPU running at 2.9 GHz. The CPU has four
cores and each core supports two threads. The integrated
GPU is Broadwell GT3e, Generation 8.0. It contains 48
execution units, and each execution unit corresponds to a
compute unit in the OpenCL programming model. The

maximum dynamic frequency of the GPU is 1.15 GHz. The
other server has an Intel® Xeon® E3-1585 v5 CPU running
at 3.5 GHz. The CPU also has four cores and each core
supports two threads. The integrated GPU is Skylake GT3e,
Generation 9.0. It contains 72 execution units. The maximum
dynamic frequency of the GPU is 1.15 GHz. A few details of
the two GPUs are listed in Table V.

For the GPU compute runtime, the device version is
OpenCL 2.1 NEO and the driver version 19.43.14583. The
maximum work-group size on a GPU is 256. For the CPU
runtime, the device versions is OpenCL 2.1. The maximum
work-group size is 8192. The operating system on the server
with the Broadwell microprocessor is CentOS Linux 7 and
the kernel 5.3.10. The operating system on the server with
the Skylake microprocessor is Red Hat Enterprise Linux 7
and the kernel 5.3.1.

We compile the SYCL programs with the options “-O3 -
no-serial-memop -sycl-driver”, and the OpenCL programs
using the options “-O3” and the GNU compiler, version
4.8.5. We evaluate the performance of the two applications
with the test scripts provided by the benchmark suite. We

TABLE V. SUMMARY OF THE TWO INTEGRATED GPUS

Parameter
Iris™ Pro

Graphics P580

Iris™ Pro

Graphics P6300

Generation Gen9 (Skylake) Gen8 (Broadwell)

Technology 14 nm 14 nm

Base Freq. 0.35 GHz 0.3 GHz

Max Dynamic Freq. 1.15 GHz 1.15 GHz

Embedded DRAM 128 MB 128 MB

Slices/Subslices 3/9 2/6

Execution Units 72 48

Max GFLOPS 1325 883

1 q.submit([&] (handle& cgh) {

2 auto weights = d_weights.get_access<read_write>(cgh);

3 auto Nparticles = d_Nparticls.get_access<…>(cgh);

4 auto partial_sums = d_partial_sums.get_access<…>(cgh);

5 auto CDF = d_CDF.get_access<…>(cgh);

6 auto u = d_u.get_access<…>(cgh);

7 auto seed = d_seed.get_access<…>(cgh);

8 accessor<float,1,read_write,access::target::local>

 u1(1,cgh);

9 accessor<float,1,read_write,access::target::local>

 sumWeights(1,cgh);

10 cgh.parallel_for<class normalize_weights>(

 nd_range<1>(range<1>(global_work_size),

 range<1>(local_work_size)),

 [=](nd_item<1> item) {

11 int i = item.get_global_id(0);

12 int lid = item.get_local_id(0);

13 if (lid == 0) {

14 sumWeights[0] = partial_sums[0];

15 }

16 item.barrier(access::fence_space::local_space);

17 if (i < Nparticles[0]) {

18 weights[i] = weights[i]/sumWeights[0];

19 }

20 item.barrier(access::fence_space::global_space);

21 if (i == 0) {

22 CDF[0] = weights[0];

23 for(int x = 1; x < Nparticles[0]; x++){

24 CDF[x] = weights[x] + CDF[x-1];

25 }

26 seed[i] = (A*seed[i] + C) % M;

27 float p = cl::sycl::fabs(seed[i]/((float)M));

28 seed[i] = (A*seed[i] + C) % M;

29 float q = cl::sycl::fabs(seed[i]/((float)M));

30 u[0] = (1/((float)(Nparticles[0]))) *

 (cl::sycl::sqrt(-2*cl::sycl::log(p))*

 cl::sycl::cos(2*PI*q));

31 }

32 item.barrier(access::fence_space::global_space);

33 if (0 == local_id) {

34 u1[0] = u[0];

35 }

36 item.barrier(access::fence_space::local_space);

37 if (i < Nparticles[0]) {

38 u[i] = u1[0] + i/((float)(Nparticles[0]));

39 }

40 });

41 });

Listing 1. Implementation of the “normalize_weights” kernel in
SYCL

choose the elapsed time of executing the entire application as
our performance metric. For both applications, the offloading
time consumes approximately 99% of the entire application
time. When measuring the execution time of the OpenCL
implementations, we disable checking the error status after
invoking each OpenCL built-in function to remove its effect
on the timing.

B. Experimental Results

The execution time in second of running the HW
implemented in SYCL and OpenCL on the P6300 GPU and
P580 GPU is displayed in Figures 3 and 4, respectively.
Increasing the work-group size is effective in improving the
performance of the application. Because the execution time
is even longer for work-group sizes smaller than 32, they are
not shown in the figures. Based on the profiling results of the
SYCL and OpenCL implementations on the GPUs, we
attribute the shorter execution time of the SYCL
implementations to the shorter kernel execution time on the
on the two GPUs. The SYCL compiler also reduces the
overhead of data transfers between the host and device
although the kernel execution consumes 99% of the device
time. On the other hand, the execution time of the SYCL and
OpenCL implementations are almost the same for certain
work-group sizes on the two GPUs. Since the performance
of the application is intimately associated with the work-

group size, the results suggest that the SYCL runtime is more
efficient in scheduling the execution of work-groups on each
GPU for certain work-group sizes. Currently, the binaries
generated from the SYCL programs does not run
successfully on the CPUs. Hence, the comparison of the
SYCL and OpenCL implementations on the CPUs is not
available.

Figures 5 and 6 show the execution time in second of
running the PF in SYCL and OpenCL on the two GPUs,
respectively. There is a sweet spot where the highest
performance on each GPU is achieved using a work-group
size of 64. As the execution time is even longer for work-
group sizes smaller than 16, they are not shown in the
figures. The difference in execution time between the SYCL
and the OpenCL implementations is less than 1% for almost
all cases.

As shown in Figures 7 and 8, on the CPUs the highest
performance levels off when the work-group size is less
than 64. The results of device profiling indicate that the
significant slowdown in the performance of the OpenCL
implementation is caused by the OpenCL likelihood kernel.
The OpenCL kernel is 11X slower than the SYCL kernel.

In terms of programming productivity, we argue that the
productivity is often associated with the size of a program in
terms of lines of code (LOC). The LOC of the HW are

Figure 5. Performance comparison of the SYCL and OpenCL

implementations of Particle Filter across the work-group sizes

on the P6300 GPU

Figure 3. Performance comparison of the SYCL and OpenCL

implementations of Heart Wall across the work-group sizes on

the P6300 GPU

Figure 4. Performance comparison of the SYCL and OpenCL

implementations of Heart Wall across the work-group sizes on

the P580 GPU

Figure 6. Performance comparison of the SYCL and OpenCL

implementations of Particle Filter across the work-group sizes

on the P580 GPU

approximately 370 and the LOC of the PF approximately
450. Hence, the SYCL program reduces the LOC of the
OpenCL program listed in Table II by 52% and 38%,
respectively. Given that the SYCL kernels are almost the
same as the OpenCL kernels, there are a few factors that
contribute to the decrease of LOC. Using a device selector in
SYCL greatly simplifies the search for platforms and devices
in OpenCL. In addition, a lambda expression in SYCL
removes the need to explicitly build a kernel program and set
kernel arguments as in OpenCL. For a host program, the
improvement of programming productivity is more evident
for a kernel with a large number of kernel arguments
specified in global memory space. Each kernel argument
may require data transfer between host and device. The
implicit data transfer between host and device in SYCL also
contributes to the decrease in LOC.

V. CONCLUSION

SYCL is a single-source programming model that allows
kernel codes to be embedded in host codes. In this report, we
apply the SYCL programming model to the medical imaging
applications in the open-source Rodinia benchmark suite,
describe our experience of transforming the OpenCL
implementations to the SYCL implementations, and evaluate
their performance on Intel® microprocessors with a CPU and
an integrated GPU. While the transformation from OpenCL
to SYCL is relatively straightforward given that the SYCL
programming model is an extension to OpenCL,

understanding buffer accessors, kernel execution order and
model, and program scopes is important for the smooth
transformation of the applications. The experimental results
are promising in terms of the raw performance and the
programming productivity which can be achieved using the
SYCL programming model. The maturing SYCL compilers
will continue to promote performance, portability, and
productivity.

ACKNOWLEDGMENT

Results presented were obtained using the Chameleon

testbed supported by the National Science Foundation. This

research used resources of the Argonne Leadership

Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] Stone, J.E., Gohara, D. and Shi, G., 2010. OpenCL: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3), p.66.

[2] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H.
and Skadron, K., 2009, October. Rodinia: A benchmark suite for
heterogeneous computing. In 2009 IEEE international symposium on
workload characterization (IISWC) (pp. 44-54). IEEE.

[3] Wong, M., Richards, A., Rovatsou, M. and Reyes, R., 2016.
Khronos’s OpenCL SYCL to support heterogeneous devices for C++.

[4] Goodrum, M.A., Trotter, M.J., Aksel, A., Acton, S.T. and Skadron,
K., 2010, June. Parallelization of particle filter algorithms. In
International Symposium on Computer Architecture (pp. 139-149).
Springer, Berlin, Heidelberg.

[5] Szafaryn, L.G., Skadron, K. and Saucerman, J.J., 2009, June.
Experiences accelerating MATLAB systems biology applications. In
Proceedings of the Workshop on Biomedicine in Computing:
Systems, Architectures, and Circuits (pp. 1-4).

[6] Danial, A., CLOC—Count lines of code, 2009. URL
http://cloc.sourceforge.net.

[7] https://github.com/intel/llvm/blob/sycl/sycl/ReleaseNotes.md

Figure 7. Performance comparison of the SYCL and OpenCL

implementations of Particle Filter across the work-group sizes

on the E3-1284L v4 CPU

Figure 8. Performance comparison of the SYCL and OpenCL

implementations of Particle Filter across work-group sizes on

the E3-1585 v5 CPU

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

