

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

ANL-19/41

Evaluation of PETSc on a Heterogeneous
Architecture the OLCF Summit System
Part I: Vector Node Performance

Mathematics and Computer Science Division

ANL-19/41

Evaluation of PETSc on a Heterogeneous
Architecture the OLCF Summit System
Part I: Vector Node Performance

Prepared by
Hannah Morgan, Richard Tran Mills, and Barry Smith
Mathematics and Computer Science Division, Argonne National Laboratory

April 2020
This work was supported by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE's SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the National
Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of
Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

Evaluation of PETSc on a Heterogeneous Architecture

the OLCF Summit System

Part I: Vector Node Performance

Hannah Morgan, Richard Tran Mills, Barry Smith
Mathematics and Computer Science Division

Argonne National Laboratory

Abstract

Our goal is to report on the basic performance of PETSc vector operations on a single node of the
Oak Ridge Leadership Computing Facility system Summit. We describe the Summit system and present
data collected from several vector operations. Limited analysis is also presented.

1 Introduction

We report on the performance of the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[2, 3] vector operations on a single node of the IBM/NVIDIA Summit computing system [1] at the Oak
Ridge Leadership Computing Facility (OLCF). PETSc provides NVIDIA GPU support for vector and sparse
matrices based on CUDA and the cuBLAS and cuSPARSE libraries [9]. Using the organization of the
PETSc library, many PETSc solvers and preconditioners are able to run with GPU vector and matrix
implementations. This report summarizes the basic design of a Summit node and the performance of PETSc
vector operations on that node and provides a limited analysis of the results. The planned United States
Department of Energy exascale computing systems [10] have designs similar to that of Summit. Thus, it
is important to have a well-developed understanding of Summit in preparation for these systems. This
document is not intended to provide a strict benchmarking of the Summit system; rather it is to develop an
understanding of systems similar to Summit, in order to guide PETSc development.

2 The Summit System and Experimental Setup

Each node on Summit is equipped with six NVIDIA Volta V100 GPU accelerators and two IBM POWER9
processors, each with 21 cores available to users, for a total of 42 cores (Figure 1, left). A GPU on Summit
can be utilized by more than one MPI rank simultaneously via the NVIDIA Multi-Process Service; we refer
to this as virtualization. For example, a single physical GPU may be treated as four virtual GPUs by four
MPI ranks running on four CPU cores. Virtualization on Summit is enabled by submitting jobs with the
bsub option -alloc flags gpumps.

To obtain high performance on a Summit node for benchmarking (that is, by varying the number of
CPU cores and GPUs used to understand their performance) one must select the optimal physical cores and
associate them with appropriate GPUs. The two POWER9 processors are each connected directly to three of
the GPUs, so cores associated with each process should, for best performance, utilize one of the three GPUs
connected to the same socket. The jsrun job launcher on Summit supports the concept of resource sets
for controlling how the resources on a node are partitioned between tasks in a job. When utilizing a single
resource set consisting of only the CPUs (for example, in order to compare GPU and CPU performance),
the Summit CPU cores are assigned from the first socket until it is full before using cores from the second
socket; benchmarking numbers that utilize these defaults are not appropriate. To utilize the CPUs effectively
one should use two resource sets, each with 21 associated cores, in order to take advantage of the combined
memory bandwidth of both sockets of the Summit node (red and yellow in Figure 1, right). We accomplish
this with the jsrun options --nrs 2 --cpu per rs 21. Furthermore, since adjacent Summit CPU cores

4

Figure 1: Diagram of one node of Summit (left) and CPU allocation of 7 MPI ranks (right) from
https://www.olcf.ornl.gov and https://jsrunvisualizer.olcf.ornl.gov/.

share L2 and L3 cache we use the option --bind packed:2 to bind each MPI rank to two CPU cores so that
each MPI rank has dedicated L2 and L3 cache. We also launch all jobs using the --launch distribution

cyclic option so that MPI ranks are assigned to resource sets in a circular fashion. These choices are shown
with seven MPI ranks in Figure 1, right.

The Summit CPU operating system uses traditional Unix memory management with memory pages. In
order to obtain high performance in copies between the CPU and the GPU, the CPU memory must be
“pinned” (i.e., page-locked). This is done by allocating the memory with a special routine cudaMallocHost

instead of the system malloc. Our benchmarks are computed with pinned CPU memory.
Collecting useful and appropriate timings on a GPU-based system is not always straightforward. One

can collect timings on the NVIDIA GPUs using cudaEventRecord or on the CPU cores using traditional
Unix timers. Which timers to use depends on the goals of the analysis. In addition, care must be taken in
timing asynchronous calls to the GPU. These can be subtle; for example, small (fewer than 64 kilobytes)
cudaMemcpy() calls to the GPU are asynchronous, so it is easy to get misleading timings from the CPU
on these transfers without care. In this report, since it treats PETSc in the traditional host-device model
where the outer code is MPI parallel and we are interested in the higher-level details of the performance,
we always use the MPI rank timers (using PETSc logging). This approach may result in overtiming some
operations since it includes the time to synchronize back to the CPU, though that in actual optimized runs
that synchronization may not take place.

For these results PETSc 3.12 was built with CUDA version 10.1.168 and PGI compilers version 19.4.
The codes used for the measurements in this report are available in the PETSc repository. They are in
src/vec/vec/examples/tutorials/performance.c. This file also indicates where one can obtain the scripts for
producing the graphs. Peak performance numbers for Summit are from [7]. When comparing GPU to CPU
performance we use all 42 available cores of the CPU. This may not be the optimal value for obtaining
CPU performance since the memory bandwidth is shared between cores. Since our goal is not to benchmark
Summit’s CPU scalability, we have not collected statistics with a range of CPU cores.

3 PETSc Vector Operations

We present and analyze results from runs of PETSc vector operations on one node of Summit. Our benchmark
code creates vectors with random entries, copies them to the appropriate memory, and then performs vector
operations. We report the flop rate in Mflops/s for various vector sizes utilizing either GPUs or CPUs.
We also report memory throughput (in 8 Mbytes/s for easy comparison with the floating pointing results).
These computations are essentially the same as the STREAMS benchmark [8] but measured on the PETSc
vector operations instead of raw C or CUDA code. We use the term “throughput” to mean the amount of
data moved divided by the time to move it. This is a combination of latency and bandwidth, introduced in
Section 5. In all cases the vectors are already in the memory of the device where the performance is being

measured. All asynchronous operations are synchronized with CudaDeviceSynchronize() so the true time
of the operation as realized on the CPU is used. The caches are flushed by performing vector operations on
other vectors to remove any effects of the data being in the cache. For parallel benchmarks, an MPI Barrier()
is used immediately before the operation so that all MPI ranks start together.

The specific vector operations are the following.

• x = ax + y, known as AXPY and implemented with PETSc’s VecAXPY operation (which utilizes
BLAS on the CPU and cuBLAS on the GPUs).

• d = xT y, known as the dot product and implemented with PETSc’s VecDot operation (this also utilizes
BLAS and cuBLAS).

• Memory copy, implemented with VecCopy (which utilizes memcpy on the CPU and cudaMemcpy on
the GPUs). In addition we use cudaMemcpy for copies between the CPU and GPU.

• Setting all entries in a vector to zero, implemented with PETSc’s VecSet function (which utilizes
memset on the CPU and cudaMemset on the GPUs).

A single vector operation is timed for each operation. All vector sizes refer to the global size of the vector,
which may be spread among multiple computational units. There are two floating-point operations per
entry for the VecAXPY and VecDot operations. There are three memory accesses per vector entry for
VecAXPY, two for VecDot, two for VecCopy, and one for VecSet. Thus, computation of flop rates and
memory throughput involves appropriate scaling by these values.

4 Experimental Results

Figure 2 presents a high-level view of the performance of the Summit nodes. Details are provided below.
Note the use of the log scale and that, toward the right, the GPUs are performing significantly better than
the 42 CPU cores, while towards the left the CPUs are faster. Figure 3 presents an alternative view of the
same data, known as a static scaling or work-time spectrum plot [4, 5]. It has the advantage that both the
asymptotic bandwidth and the latency of the operations can be directly read from the figure.

Figure 2: Effect of vector size on vector performance and memory throughput (one MPI rank per GPU).
Note the log scale.

Figure 3: Effect of execution time on vector performance and memory throughput (one MPI rank per GPU).
Note the log scale.

Figures 4 and 5 compare the performance of the GPUs and CPUs for increasing vector sizes. For shorter
vectors, fewer than around 106 entries, the CPU performance for vector operations, including copies, is far
superior to that of the GPU. For larger sizes, 109 vector entries, on the other hand, the GPU throughput
is much higher. Performance on the CPU is relatively independent of vector size, but on the GPUs is low
except for large vectors. The drop in performance of the CPU at 22 cores occurs because the remaining
cores share L2 and L3 caches with previously utilized cores and share the available memory bandwidth.

Figure 4: VecDot flop rate, with one MPI rank per GPU (left) and CPUs (right).

Figure 5: VecAXPY flop rate, with one MPI rank per GPU (left) and CPUs (right).

Figures 6, 7, and 8 explore the performance effects of GPU virtualization. Performance of the GPUs
is similar even when divided into up to eight virtual GPUs for smaller vectors. For larger vectors the
performance is up to about 20% worse. Note that in Figure 6 the vectors on six GPUs are 1/6 the size they
are on one GPU. This means the throughput each is achieving is lower than may have been expected, since
the six GPUs no longer have long enough vectors for full performance.

Figure 6: Performance of GPU virtualization for VecDot operations (left) and VecAXPY (right) for vectors
of length 108.

MPI ranks latency bandwidth
1 31 99,000
2 33 99,000
3 34 96,000
4 38 96,000
5 40 96,000
6 43 99,000
7 45 105,000
8 46 105,000

Figure 7: VecAXPY virtualization performance for small vectors (105 − 107) on 1 GPU with latency (10−6

seconds) and bandwidth (8 Mbytes/second) as defined in Section 5.

Figure 8: Effect of vector size on CPU to GPU copy throughput with 6 GPUs (multiple MPI ranks per
GPU) and 1 GPU with 1 MPI rank. Pinned memory is always used.

Figure 8 shows the performance of CPU to GPU copies. For large vectors, memory transfers nearly reach
the hardware peak.

Figures 9 and 10 show the performance of the vector operations as a function of vector size for different
number of GPUs and CPU cores. Since the GPUs are independent entities, the performance scales essentially
perfectly for more GPUs. The CPU cores are not independent, since they share a common memory, and
hence performance improvement decreases as more cores are utilized.

Figure 9: Effect of vector size on flop rate for VecDot (left) and VecAXPY (right) on CPU and GPUs with
one MPI rank per GPU.

Figure 10: Effect of vector size on flop rate for VecDot (left) and VecAXPY (right), on CPU and GPUs with
one MPI rank per GPU, scaled by the number of CPU cores or GPUs.

5 Discussion

The performance of the basic vector operations as a function of vector size n is complicated on modern CPU
and GPU systems. The traditional linear model is given by

t = latency +
n

bandwidth
= l +

n

b
.

In Table 1 we show the bandwidth (computed via least squares) and latency (computed via least squares
or obtained directly from the data for small vector sizes) pairs for each operation for 6 GPUs with 1 MPI
rank per GPU. We found that operations on the GPUs follow this linear latency/bandwidth model for large
vectors. The behavior for small vectors is depicted in Figure 11. For small vectors, the performance is
determined completely by latency. Counterintuitively, working with slightly larger vectors takes the same
amount of time as shorter vectors. This odd behavior is because the GPU has thousands of computational
units, and until they are all occupied, no additional time is needed for additional computations that now
occupy some of the previously unoccupied units. This behavior is not captured in the linear model. Table

2 shows the latencies and bandwidths for the CPU. Operations on the CPU do not closely match a linear
model for any range of vector sizes; thus the latencies are not computed via least squares.

Table 3 contains the latency and bandwidth values for copies from the CPU to the GPU. We found that
for non-trivial size vectors the performance is well modeled by the linear model.

Vec size 103-105 105-107 107-108

Operation latency bandwidth latency bandwidth latency bandwidth
VecDot 93 - 87 567,000 89 667,000
VecAXPY 69 - 59 375,000 89 627,000
VecSet 24 - 25 609,000 26 667,000
VecCopy 29 - 31 559,000 32 593,000

Table 1: Latency (10−6 seconds) and bandwidth (8 Mbytes/second) for vector operations on 6 GPUs.

Vec size 103 - 105 105 - 107 107 - 108

Operation latency bandwidth latency bandwidth latency bandwidth
VecDot 17 35,000 - 32,000 - 33,000
VecAXPY 9 48,000 - 40,000 - 28,000
VecSet 3 27,000 - 22,000 - 18,000
VecCopy 4 36,000 - 32,000 - 24,000

Table 2: Latency (10−6 seconds) and bandwidth (8 Mbytes/second) for vector operations on 42 CPU cores.

Figure 11: GPU execution time on small vectors.

Vec size 103-105 105-107 107-108

Operation latency bandwidth latency bandwidth latency bandwidth
Copy to GPU 48 42,000 36 34,000 43 35,000

Table 3: Latency (10−6 seconds) and bandwidth (8 Mbytes/second) for copies from the CPU to 6 GPUs.

Figure 12: GPU execution time on medium sized vectors.

Even though the linear model does not capture the full behavior of the system, it is still useful in
understanding and comparing different systems behavior. Given the linear model above, the throughput can
be written as

T (n) =
n

l + n
b

=
n× b

l × b+ n
.

The characteristic shape of this curve is reflected in the GPU values in Figure 2 as well as Figures 8, 9, and
10.

The throughput, as a function of time, as depicted in Figure 3, can be modeled with1

T (t) =
b(t− l)

t
= b(1− l

t
).

The bandwidth provides the “height” of the curve, and the latency is the “start” of the curve. One can
understand the shape of the curve from a simple asymptotic analysis. For t at the latency

d T

dt
|t=l =

b

l
,

hence the steep initial slope. For extremely large t, the throughput approaches the bandwidth. In the
discussion below we will use the machine characteristics of Summit with the VecAXPY operation to provide
examples for the models; lG = 89× 10−6, bG = 627× 109, lC = 9× 10−6, and bC = 28× 109. Since latencies
for large vector sizes are not available on the CPU, we will use the value for the small vectors.

In the following we assume perfect scalability; that is, adding more nodes does not increase or change the
timings of the portions of the calculations. Of course this is certainly not true, but it can still produce useful
information about the potential of the computations. From the model, one can trivially derive formulas for
the time and vector sizes needed to achieve any fraction, β

β+1 , of the peak performance using

T (tβ) = b(1− l

tβ
) =

β

β + 1
× b.

Thus tβ = (β + 1)l. Similarly nβ = β × l × b. So, for example, to obtain 90% of peak on the GPUs, one
needs a vector length of 9lG× bG; on Summit this is 5.022× 108. To achieve 99% of peak one needs a vector
length of 99lG × bG. The combination of latency and bandwidth provides the following.

• An easy way to determine, for a given size problem, the fraction of peak one will achieve.

β =
n

l × b
.

1For t > l.

• A way to compare two systems.

– In order to achieve the same β on both systems, the ratio of the time is the ratio of the latencies
while the ratio of the needed problem sizes is the ratio of each system’s l × b. For example, on
Summit, since lG/lC = 10, the GPUs will take 10 times longer to reach the goal. Similarly, since
bG/bC = 22, the problem size must be 220 times larger on the GPU.

– In order to solve the same size problem, n on both systems, the ratio of the times is

tC
tG

=
lC + n

bC

lG + n
bG

.

On Summit, if we select the size that is needed to achieve 90% of peak on the GPUs, the time
required on the CPUs will be 20.2 times as long.

– To achieve the same runtime on both systems by increasing the number of the CPUs used, let
nC be the vector size on a single CPU system. Then

lC +
nC
bC

= lG +
n

bG
,

resulting in

nC = bC(
n

bG
+ lG − lC).

Again, if n = 5.022 × 108, that is, achieving 90% of peak on the GPU, then nC = 2.467 × 107,
and the number of CPU units needed is 21. Note that if we ignore latencies, then the ratio of the
times and the number of nodes needed is the ratio of the bandwidths.

– In order to achieve the runtime dictated by the latency of the CPU system, rather than
the GPU system (assuming 90% utilization of both), the number of CPU nodes needed is

n

nC
=
lG × bG
lC × bC

.

For Summit this would require 222 nodes, but note that the runtime would be 9.9 times faster.

• A way to select the number of nodes to use for a given size problem to come close to
minimizing the runtime. First note that the latency provides an absolute lower bound on the
compute time, regardless of the problem size and the number of nodes available. Assume one is willing
to accept a lower efficiency, βs; in return for a faster compute time with more units, then ts = βs+1

β+1 t.

The new number of processors is given by β
βs

. Thus if one desires to cut the time by 1
k , one must use

βs = β+1
k − 1, and the number of processors needed is k×β

β+1−k . If β is 9 (90% efficiency) and k is 2

(half the runtime) then the number of nodes needed increases by a factor of 2.2. If instead one desires
to run 4 times faster, then the number of processors increases by 6. A speedup of 8 would require 36
times as many nodes. Note that the bandwidth of the system plays no role in the analysis.

Table 4 provides a summary of the Summit system and PETSc’s vector performance on one node. This
is followed by notes and observations on the data.

Vec size CPU interconnect GPU
Sockets 2 2
Cores/GPUs 42 6
Latency

VecDot
small 17 - 93
large - - 89

VecAXPY
small 9 - 69
large - - 89

VecCopy
small 4 48 -
large - 43 32

Bandwidth
VecDot

medium 32 567
large 33 667

VecAXPY
medium 40 375

large 28 627
VecCopy

small 36 42 -
medium 32 - 559

large 24 35 593
Launch time of null kernel 10
CPU-GPU synchronization after launch 11
CPU-GPU synchronization when free 6
Size for 90% of peak VecAXPY 2.268× 106 5.022× 108

Nodes for the time of 10lG 20.2 1
Nodes for the time of 10lC 222 -

Table 4: Summary of PETSc vector performance on Summit. Latency is in 10−6 seconds, bandwidth in
8,000 Mbytes/second.

We note the following.

• When performing scaling studies on a node (that is, increasing CPU processor or GPU counts), correctly
choosing resource sets is crucial; otherwise the results can be misleading.

• GPU virtualization has a small negative impact (up to 20% on vectors of length 108) on the performance
of the GPU vector computations (Figures 6 and 7). For codes that contain a significant portion of CPU
computations, it makes sense to use many or all of the CPU cores as MPI ranks and have them share
the virtualized GPUs. For pure GPU computation, there is no benefit to virtualization and possibly a
performance loss.

• Using pinned memory is crucial to achieve high throughput in copying between the CPU and GPU. We
found a 4.5 times speedup of pinned over nonpinned memory for large vectors and smaller speedups
for small vectors.

• Timing results can be collected on the GPU, on the CPU, or some combination of the two. Under-
standing the goal of the data collection is important in deciding which timings to collect.

• We do not measure the throughput directly between GPUs since PETSc currently has no mechanism
to utilize this hardware.

• The performance of the vector operations on the GPU is affected by a combination of latencies. These
include the following:

– CPU to GPU launch time2. From Table 4 it is 10 × 10−6. This means, for example, that only
around 100,000 kernel launches are possible in one second. The item labeled “CPU Synchro-
nization after launch” is the time the CPU waits for the synchronization from the GPUs after
the launch subroutine has returned; this is the time at which the CPU knows the null kernel is
complete.

– GPU kernel synchronization (wait) time with the CPU3 (Table 4.)

– Main GPU memory access latency.

– Occupancy of all of the thousands of compute units.

– For routines that return values to the CPU, such as VecDot, the additional latency of the data
movement back to the CPU.

The performance of the PETSc VecAXPY operation on a Summit node can be summarized as follows:
much higher bandwidth on the GPUs (22 times higher), and significantly lower latencies on the CPU (10
times lower). Much larger vectors are required on the GPU to achieve high performance (over 220 times
larger, the product of the ratios of the bandwidth and latency).

Acknowledgments

We thank Junchao Zhang for several crucial technical corrections. We thank Jed Brown for introducing us to
the work-time spectrum plot. We thank Todd Munson and Karl Rupp for their useful comments to improve
this report.

This material was based on the work supported by the U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computing Research under Contract DE-AC02-06CH11357.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

References

[1] Summit User Guide Website Authors. Summit User Guide. https://www.olcf.ornl.gov/for-users/system-
user-guides/summit/summit-user-guide/. Accessed: 2019-08.

[2] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro
Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Dave A.
May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F.
Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc users manual: Revision 3.13. Technical
Report ANL-95/11 - Rev 3.13, Argonne National Laboratory, 2020.

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman,
Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp,
Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc Web page.
http://www.mcs.anl.gov/petsc, 2019.

2Determined by a simple program that runs on six MPI ranks and launches six GPU kernels simultaneously. It measures
the time for a no-op kernel; the time for tkernel <<< 2000, 32 >>> (); with global voidtkernel(){} [6]

3Time waiting on the CPU for the result cudaDeviceSynchronize().

[4] J. Chang, K.B. Nakshatrala, M.G. Knepley, and L. Johnsson. A performance spectrum for parallel
computational frameworks that solve PDEs. Concurrency and Computation: Practice and Experience,
30(11):e4401, 2018.

[5] Justin Chang, Maurice S. Fabien, Matthew G. Knepley, and Richard T. Mills. Comparative study of
finite element methods using the time-accuracy-size(tas) spectrum analysis. SIAM Journal on Scientific
Computing, 40(6):C779–C802, 2018.

[6] Robert Crovella. Reduce overhead of launching a new thread block.
https://devtalk.nvidia.com/default/topic/1029890/reduce-overhead-of-launching-a-new-thread-block,
2018.

[7] Judy Hill. Summit at the Oak Ridge Leadership Computing Facility.
https://press3.mcs.anl.gov/atpesc/files/2018/08/ATPESC 2018 Track-1 6 7-30 130pm Hill-
Summit at ORNL.pdf. Accessed: 2019-11.

[8] John D McCalpin et al. Memory bandwidth and machine balance in current high performance com-
puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter,
2(19–25), 1995.

[9] Victor Minden, Barry Smith, and Matthew G Knepley. Preliminary implementation of PETSc using
GPUs. In GPU Solutions to Multi-scale Problems in Science and Engineering, pages 131–140. Springer,
2013.

[10] Exascale Support Team. Exascale web page. https://exascaleproject.org/, 2019.

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

