
 
 
 
 
 
 
 
 

 

 
 

ANL/ALCF-20/6 

 

 

The Rodinia Benchmark Suite in SYCL 
 
 
 

Leadership Computing Facility 



About Argonne National Laboratory 

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne 

and its pioneering science and technology programs, see www.anl.gov. 
 

 
 
 

DOCUMENT AVAILABILITY 
 

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a 

growing number of pre-1991 documents are available free at OSTI.GOV 

(http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and 

Technical Information. 

 
Reports not in digital format may be purchased by the public from the 

National Technical Information Service (NTIS): 

U.S. Department of Commerce  

National Technical Information Service 

5301 Shawnee Rd 

Alexandria, VA 22312 

www.ntis.gov 

Phone: (800) 553-NTIS (6847) or (703) 605-6000 

Fax: (703) 605-6900 

Email: orders@ntis.gov 

 
Reports not in digital format are available to DOE and DOE contractors from the 

Office of Scientific and Technical Information (OSTI): 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN 37831-0062 

www.osti.gov 

Phone: (865) 576-8401 

Fax: (865) 576-5728 

Email: reports@osti.gov 
 

 
 
 
 

Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or 

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document 

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne 

National Laboratory, or UChicago Argonne, LLC.  

http://www.ntis.gov/
http://www.osti.gov/
http://www.anl.gov/
mailto:orders@ntis.gov
http://www.osti.gov/
mailto:reports@osti.gov


 
 
 
 
 

 

 
 

ANL/ALCF-20/6 

 

The Rodinia Benchmark Suite in SYCL 
 
 
 

 

prepared by 

Zheming Jin 

Leadership Computing Facility, Argonne National Laboratory 

 

 

 

 

 

June 1, 2020 



1 The SYCL implementation of the Rodinia benchmark suite is available at https://github.com/zjin-lcf/Rodinia_SYCL 
 

The Rodinia Benchmark Suite in SYCL 

 

 

 

I.  INTRODUCTION 

 
As opposed to the Open Computing Language (OpenCL) 

programming model in which host and device codes are 
generally written in different programming languages [1], 
SYCL can combine host and device codes for an application 
in a type-safe way to improve development productivity and 
performance portability [2].  

Rodinia is a widely used benchmark suite for 
heterogeneous computing [3,4,5,6,7,8,9,10,11,12]. Hence, 
we port the OpenCL implementations of the benchmark suite 
to SYCL manually. The SYCL benchmark suite is an open-
source project1 for tracking the development of the 
mainstream SYCL compilers [13,14,15], and for developers 
and researchers interested in programming productivity, 
performance analysis, and portability across different 
computing platforms [16,17,18,19,20,21,22,23,24,25,26,27].  

We organize the remainder of the report as follows. 
Section II introduces the SYCL programming model, shows 
the major differences between an OpenCL program and a 
SYCL program, and gives a summary of the benchmark 
suite. In Section III, we describe our SYCL implementations 
in more details. We evaluate the SYCL benchmarks on the 
Intel® central processing units (CPUs) and graphics 
processing units (GPUs) in Section IV. Section V concludes 
the report. 

II. BACKGROUND 

A. SYCL 

C++ AMP, CUDA, HIP, Thrust C++ are representative 
single-source C++ programming models for accelerators 
[28]. Such languages can be type-checked as everything sits 
in a single source file. They facilitate offline compilation so 
that the binary can be checked at compile time. A SYCL 

program, based on a single-source C++ model as shown in 
Figure 1, can be compiled for a host while kernel(s) are 
extracted from the source and compiled for a device. A 
SYCL device compiler parses a SYCL application and 
generates intermediate representations (IR). A standard host 
compiler parses the same application to generate native host 
code. The SYCL runtime will load IR at runtime, enabling 
other compilers to parse it into native device code. Hence, 
people can continue to use existing toolchains for a host 
platform, and choose preferred device compilers for a target 
platform.   

The design of SYCL allows for the combination of the 
performance and portability features of OpenCL and the 
flexibility of using high-level C++ abstractions. Most of the 
abstraction features of C++, such as templates, classes, and 
operator overloading, are available for a kernel function in 
SYCL. A SYCL application is logically structured in three 
scopes: kernel scope, application scope, and command-group 
scope. The kernel scope specifies a single-kernel function 
that will be executed on a device after compilation. The 
command-group scope specifies a unit of work that will 
comprise of a kernel function and buffer accessors. The 
application scope specifies all other codes outside of a 
command-group scope. A SYCL kernel function may be 
defined by the body of a lambda function, by a function 
object or by the binary generated from an OpenCL kernel 
string. Although an OpenCL kernel is interoperable in the 
SYCL programming model, we use a lambda function for 
each kernel in a benchmark. 

Table I lists the steps of creating an OpenCL application 
and their corresponding steps in SYCL. The first three steps 
in OpenCL are reduced to the instantiation of a device 
selector class in SYCL. A selector searches a device of a 
user’s provided preference (e.g., GPU) at runtime. The 
SYCL queue class encapsulates a queue for scheduling 
kernels on a device. A kernel function in SYCL, which can 
be invoked as a lambda function, is grouped into a command 
group object, and then it is submitted to execution via 

 
 

Figure 1. SYCL is a single-source programming model 

TABLE I.  MAPPING FROM OPENCL TO SYCL 

Step OpenCL Program SYCL Program 

1 Platform query 

Device selector class 2 Device query of a platform 

3 Create context for devices 

4 Create command queue for context Queue class 

5 Create memory objects Buffer class 

6 Create program object 

Lambda expressions 
7 Build a program 

8 Create kernel(s) 

9 Set kernel arguments 

10 
Enqueue a kernel object for execution 

Submit a SYCL kernel 

to a queue 

11 Transfer data from device to host Implicit via accessors 

12 Event handling Event class 

13 Release resources Implicit via destructors 

 

 

https://github.com/zjin-lcf/Rodinia_SYCL


 

command queue. Hence, steps 6 to 10 in OpenCL are 
mapped to the definition of a lambda function and 
submission of its command group to a SYCL queue. Data 
transfers between a host and a device can be implicitly 
realized by SYCL accessors, and the event handling can be 
handled by SYCL event class. Releasing the allocated 
sources of queue, program, kernel, and memory objects in 
SYCL is handled by the runtime which implicitly calls 
destructors inside scopes. Compared to the number of 
OpenCL programming steps, the SYCL programming model 
cuts the number of programming steps by half with higher 
abstractions, reducing a developer’s burden of managing 
OpenCL device, program, kernel, and memory objects. 

B. Rodinia  

Rodinia is a widely used open-source benchmark suite 
for heterogeneous computing. Table II lists the name in 
alphabetical order of each benchmark, its application 
domain, the number of OpenCL kernels, and the number of 
kernel arguments for each kernel. Among all the 
benchmarks, the maximum number of kernels is 7 for the 
hybridsort benchmark, and the maximum number of kernel 
arguments is 34 for the heartwall benchmark. We carefully 
and manually port all the OpenCL benchmarks which are 
available in Rodinia to SYCL.  

III. IMPLEMENTATIONS  

In consideration of the rapidly evolving SYCL 
programming model [29], we would like to summarize the 
language features utilized in our implementations and other 
features which are left as future work.    

A. Buffer Construction 

In SYCL, a host application uses instances of the SYCL 
buffer class to allocate memory in global, local, and 
constant address spaces. A SYCL buffer can handle both 
storage and ownership of data. In addition, a buffer is 

destroyed when it goes out of scope. Table III lists the ways 
a buffer can be constructed and its initial values after 
construction. The destruction behavior indicates if the 
SYCL runtime will block until all work in queues on the 
buffer have completed. For the benchmark suite, we use the 
first two methods for constructing buffers.  

B. Buffer Access Mode 

SYCL accessors allow a user to specify the types (e.g., 
global memory or constant memory) of data access, and the 
SYCL implementation ensures that the data is accessed 
appropriately. A device accessor, which is the default access 
type, allows a kernel to access data on a device. In contrast, a 
host accessor gives access to data on the host. A device 
accessor can only be constructed within command groups 
whereas a host accessor can be created outside command 
groups. Constructing a host accessor is blocking by waiting 
for all previous operations on the underlying buffer to 
complete. When we need to access the contents of a device 
buffer before the buffer is destroyed in a host program, we 
should use a host accessor to access the memory managed by 
a device buffer.  

An accessor must be specified with an access mode 
shown in Table IV. Discarding write indicates that previous 
contents of a device buffer is not preserved, which implies 
that it is not necessary to copy data from host to device 
before the buffer is accessed. It is important to specify the 
access mode correctly; otherwise, the compiler will report an 
error when a kernel function tries to write to a read-only 
buffer. On the other hand, a read-only accessor to a buffer 
disables data copy to host memory when the buffer is 
destroyed. The access modes for the benchmark suite are 
Read, Write, Read/Write, and Atomic.  

C. Data Movement between Host and Device 

For the OpenCL implementations of the benchmark suite, 
data transfers between a host and a device are explicitly 
made with the OpenCL functions “clEnqueueReadBuffer()” 

TABLE II.  SUMMARY OF THE BENCHMARKS IN RODINIA 

Benchmark Application 

domain 

OpenCL 

Kernels 

OpenCL kernel  

arguments 

b+tree Search 2 10, 11 

backprop Pattern recognition 2 6, 8 

bfs Graph algorithm 1 2 

cfd Fluid dynamics 5 3, 3, 4, 5, 10 

dwt2d Video compression 3 3, 5, 7 

gaussian Linear algebra 2  5, 5 

heartwall Medical imaging 1 34 

hotspot Physics simulation 1 13 

hotspot3D Physics simulation 1 14 

hybridsort Sorting algorithm 7 3, 3, 5, 5, 5, 5, 6 

kmeans Data mining 2 4, 8 

lavaMD Chemistry 1 6 

leukocyte Medical imaging 3 7, 10, 10 

lud Linear algebra 3 4, 5, 6 

myocyte Biological simulation 1 5 

nn Data mining 1 5 

nw Bioinformatics 2 12, 12 

particlefilter Medical imaging 4 2, 6, 8, 20 

pathfinder Grid traversal 1 12 

srad Image processing 6 2, 2, 3, 4, 14, 14 

streamcluster Data mining 2 3, 10 

 

 

TABLE III.  SUMMARY OF SYCL BUFFER MANAGEMENT 

Construction Method Buffer Content after 

Construction 

Destruction 

Behavior  

Buffer size Uninitialized Non-blocking 

Associated host memory Contents of host memory Blocking 

Unique pointer to host data Contents of host data  Blocking 

Shared pointer to host data Contents of host data Blocking 

A pair of iterator values 
Data from the range 

defined by the iterator pair 

Non-blocking 

OpenCL memory object OpenCL memory object Blocking 

 

 

TABLE IV.  SYCL BUFFER ACCESS MODES 

Access Mode Description 

Read Read-only access to a buffer 

Write Write-only access to a buffer 

Read_write Read and write access to a buffer 

Discard_write 
Write-only access to a buffer. Discard any previous 
contents of the data the accessor refers to 

Discard_read_write 
Read and write access to a buffer. Discard any 

previous contents of the data the accessor refers to 

Atomic Atomic access to a buffer 

 

 



 

and “clEnqueueWriteBuffer()”. In the SYCL 
implementations, we rely on implicit and/or explicit data 
transfers. Unified shared memory (USM), an extension to 
pointer-based programming in SYCL [30], is not used in our 
implementations. The unified address space encompasses the 
host and one or more devices, reducing the barrier to 
integrate SYCL code into existing C++ programs. 

When a buffer is constructed with associated host 
memory as shown in Table III, the SYCL runtime will copy 
data from a host to a device before a kernel is launched, and 
optionally copy data back from device to host before the 
buffer is destroyed. Without explicit data copy specified in a 
SYCL program, a SYCL compiler may generate OpenCL 
built-in functions “clEnqueueMapBuffer()” and 
“clEnqueueUnmapMemObject()” for mapping data between a 
host and a device. On the other hand, copyback from a 
device to a host can be disabled using the SYCL method 
“set_final_data(nullptr)”.  

For explicit (manual) data transfers, we use the copy 
method of the command group handler. The explicit copy 
operations have a source and a destination. When an 
accessor is the source of the operation, the destination can be 
a host pointer or another accessor. When an accessor is the 
destination of the explicit copy operation, the source can be a 
host pointer or another accessor. 

D. Kernel Execution Order 

In OpenCL, a command queue is required to transfer data 
between a host and a device, and to ensure different kernels 
execute in the correct order. In contrast, SYCL provides an 
abstraction that only requires users to specify which data are 
needed to execute a kernel. By specifying access modes and 
types of memory, a directed acyclic dependency graph of 
different kernels is constructed at runtime based on the 
relative order of command-groups submissions to a queue. 
Queues in SYCL are out-of-order by default. An in-order 
queue, which is an extension to the default queue property 
[31], is not used in our implementations.  

E. Kernel Execution Model 

Conceptually, the SYCL kernel execution model is 
equivalent to the OpenCL kernel execution model. SYCL 
supports an N-dimensional (N ≤ 3) index space, and the 
space is represented via the “nd_range<N>” class. Each 
work-item in the space is identified by the type 
“nd_item<N>”. The type encapsulates a global identifier 
(ID), a local ID, a work-group ID, synchronization 
operations, etc. 

SYCL runtime creates a SYCL handler object to define 
and invoke a SYCL kernel function in a command group. A 
kernel can be invoked as a single task, a basic data-parallel 
kernel, an OpenCL-style kernel, or a hierarchical parallel 
kernel. In our experiment, we invoke a variant of the 
“parallel_for” member function that enables low-level 
functionality of work-items and work-groups for a data-
parallel kernel. The variation allows us to specify both global 
and local ranges, perform the synchronization of work-items 
in each cooperating work-group, and create accessors to 

local memory, enabling the smooth migration of an OpenCL 
kernel to a SYCL kernel.  

IV. EXPERIMENT 

A. Setup 

We build the applications with the Intel oneAPI Toolkit 
(Beta06) and Codeplay ComputeCpp community edition 
(version 2.0.0). We choose two computing platforms in our 
experiment. The first one has an Intel Xeon E3-1284L v4 
CPU running at 2.9 GHz. The CPU has four cores and each 
core supports two threads. The integrated GPU is Broadwell 
GT3e, Generation 8.0. It contains 48 execution units (EUs) 

TABLE V.  SUMMARY OF THE GPUS USED IN THE EXPERIMENT 

Parameter 

Iris™ Pro 

Graphics 

P6300 

UHD 

Graphics 

630 

Generation Gen8 Gen9.5 

Technology 14 nm 14 nm 

Base/Max Freq 
0.3/1.15 

GHz 

0.35/1.2 

GHz 

Embedded  

DRAM 
128 MB N/A 

Slices/Subslices 2/6 1/3 

EUs (total) 48 24 

Peak single-precision 

GFLOPS 
883 441 

 

TABLE VI.  PROBLEM SIZE FOR EACH BENCHMARK IN RODINIA  

Benchmark Problem size 

b+tree 1 million  keys, 10000 bundled queries,  

a range search of 6000 bundled queries with 

the range of each search 3000 

backprop 65536 input nodes 

bfs 1 million vertices 

cfd 97K elements 

dwt2d 1024×1024 images, forward 5/3 transform 

gaussian 1024×1024 matrix 

heartwall 104 frames 

hotspot 512×512 data points 

hotspot3D 512×512 data points 

hybridsort 100000 elements 

kmeans 494020 points, 34 features 

lavaMD 1000 boxes 

leukocyte 10 frames 

lud 2048×2048 data points 

myocyte 100 time steps 

nn 5 nearest neighbors   

nw 2048×2048 data points 

particlefilter 400000 points 

pathfinder 100000×100 2D grid 

srad 512×512 data points 

streamcluster 65536 points 256 dimensions 

 

 



 

with two slices. The second one has an Intel Xeon E2176G 
CPU running at 3.7 GHz. The CPU has six cores and each 
core supports two threads. The integrated GPU is Coffee 
Lake GT2, Generation 9.5. It contains 24 EUs in a single 
slice. A few specifications of the GPUs are listed in Table V.  

For the GPU compute runtime, the device version is 
OpenCL 2.1 NEO and the driver version 20.12.16259. For 
the CPU runtime, the device version is OpenCL 2.1 and the 
driver version 2020.10.4.0.15. The maximum work-group 
size is 256 and 8192 on a GPU and a CPU, respectively. The 
operating system is Ubuntu 18.04. The compiler options are 
“-O3 -no-serial-memop -sycl-driver” for the Codeplay 
ComputeCpp compiler, and “-O3” for the Intel DPC++ 
compiler. Both compilers invoke the default GNU compiler, 
version 7.4.0, installed on the target platforms to compile a 
host program. 

The problem sizes for the benchmark suite are listed in 
Table VI. For each benchmark, we use the same work-group 
size for the CPU and GPU unless different work-group sizes 
are specified in the benchmark. While adjusting the problem 

size and turning the work-group size may further improve 
the performance efficiency and raw performance of each 
benchmark on a target platform, we are more concerned with 
developing SYCL benchmarks to support the development of 
the SYCL compilers in terms of functionality and 
performance. 

B. Experimental Results 

We run each benchmark 10 times. For each benchmark, 
the average execution time includes not only kernel 
execution time but also communication cost and SYCL 
runtime overhead such as buffer construction and 
destruction. We argue that runtime overhead may become 
significant compared to kernel execution time for certain 
problem sizes. Table VII and Table VIII show the execution 
time of the benchmarks on the two computing platforms, 
respectively. The experimental results call for the 
improvement of the SYCL compilers in terms of 
functionality and performance.   

TABLE VII.  Execution time on the Intel Xeon E3-1284L v4 (CPU) and Iris Pro Graphics P6300 (GPU)   

Time (seconds) 
DPC++ 

GPU 

ComputeCpp 

GPU 

DPC++ 

CPU 

ComputeCpp 

CPU 

b+tree-findK 1.82 0.1 N/A 0.27 

b+tree-findRangeK 1.78 0.069 N/A 0.19 

backprop 0.2 0.11 0.46 0.51 

bfs 0.22 0.11 0.41 0.27 

cfd 4.54 4.8 13.9 18.6 

dwt2d 0.6 0.31 1.89 0.97 

gaussian 0.38 0.33 0.55 0.66 

heartwall N/A 8.8 N/A 29 

hotspot 0.23 0.11 0.45 0.52 

hotspot3D 0.36 0.3 0.68 0.82 

hybridsort 0.58 N/A N/A N/A 

kmeans 0.78 0.55 1.24 1.25 

lavaMD 0.27 0.14 1.18 0.76 

leukocyte-GICOV 0.346 0.182 1.12 0.37 

leukocyte-dilation 0.0048 0.0051 0.0036 0.0031 

leukocyte-MGVF 0.019 0.032 0.309 0.145 

lud 1.2 1.13 2.2 1.36 

myocyte 2.85 2.47 2.1 0.9 

nn 0.16 0.1 0.27 0.2 

nw 0.43 0.31 0.81 0.8 

particlefilter N/A N/A 30.8 1.14 

pathfinder 0.23 0.14 2.64 1.15 

srad 0.38 0.21 1.43 0.91 

streamcluster 6.2 5.7 16.1 6.9 

 



 

V. SUMMARY 

We apply the SYCL programming model to the Rodinia 
benchmark suite, describe the transformations from the 
OpenCL implementations to the SYCL implementations, and 
evaluate the benchmarks on microprocessors with a CPU and 
an integrated GPU. The publicly available implementations 
of the benchmark suite will track the development of the 
SYCL compilers, and provide programs for the study of 
heterogeneous systems. 

ACKNOWLEDGMENT 

Results presented were obtained using the Chameleon 

testbed supported by the National Science Foundation, and 

the Intel® DevCloud. This research used resources of the 

Argonne Leadership Computing Facility, which is a DOE 

Office of Science User Facility supported under Contract 

DE-AC02-06CH11357. 

REFERENCES 

[1] Stone, J.E., Gohara, D. and Shi, G., 2010. OpenCL: A parallel 
programming standard for heterogeneous computing systems. 
Computing in science & engineering, 12(3), pp.66-73. 

[2] Doumoulakis, A., Keryell, R. and O'Brien, K., 2017, May. SYCL 
C++ and OpenCL interoperability experimentation with triSYCL. In 
Proceedings of the 5th International Workshop on OpenCL (pp. 1-8). 

[3] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H. 
and Skadron, K., 2009, October. Rodinia: A benchmark suite for 
heterogeneous computing. In 2009 IEEE international symposium on 
workload characterization (IISWC) (pp. 44-54). IEEE. 

[4] Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L. and 
Skadron, K., 2010, December. A characterization of the Rodinia 
benchmark suite with comparison to contemporary CMP workloads. 
In IEEE International Symposium on Workload Characterization 
(IISWC'10) (pp. 1-11). IEEE. 

[5] Wen, H. and Zhang, W., 2019, September. Improving Parallelism of 
Breadth First Search (BFS) Algorithm for Accelerated Performance 
on GPUs. In 2019 IEEE High Performance Extreme Computing 
Conference (HPEC) (pp. 1-7). IEEE. 

TABLE VIII.  Execution time on the Intel Xeon E2176G (CPU) and UHD Graphics 630 (GPU)   

Time (seconds) 
DPC++ 

GPU 

ComputeCpp 

GPU 

DPC++ 

CPU 

ComputeCpp 

CPU 

b+tree-findK 0.76 0.17 N/A 0.27 

b+tree-findRangeK 0.5 0.06 N/A 0.19 

backprop 0.26 0.18 0.51 0.55 

bfs 0.27 0.2 0.43 0.29 

cfd 4.8 7.5 7.9 12 

dwt2d 0.59 0.34 1.81 0.95 

gaussian 0.43 0.7 0.55 0.6 

heartwall N/A 8.3 N/A 16.2 

hotspot 0.28 0.17 0.5 0.56 

hotspot3D 0.46 0.41 0.59 0.71 

hybridsort 0.62 N/A N/A N/A 

kmeans 0.93 0.76 1.1 1.22 

lavaMD 0.31 0.22 0.92 0.61 

leukocyte-GICOV 0.398 0.24 1.13 0.41 

leukocyte-dilation 0.005 0.009 0.027 0.018 

leukocyte-MGVF 0.037 0.05 0.178 0.1 

lud 1.32 1.3 1.9 1.1 

myocyte 7.8 8.7 2.2 1.1 

nn 0.21 0.16 0.35 0.26 

nw 0.43 0.37 0.81 0.83 

particlefilter 54.7 51 N/A 0.9 

pathfinder 0.33 0.27 2.3 0.94 

srad 0.64 0.58 1.35 0.9 

streamcluster 10.7 11.1 11.5 8.1 

 



 

[6] Memeti, S., Li, L., Pllana, S., Kołodziej, J. and Kessler, C., 2017, 
July. Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: 
programming productivity, performance, and energy consumption. In 
Proceedings of the 2017 Workshop on Adaptive Resource 
Management and Scheduling for Cloud Computing (pp. 1-6). 

[7] Konstantinidis, E. and Cotronis, Y., 2017. A quantitative roofline 
model for GPU kernel performance estimation using micro-
benchmarks and hardware metric profiling. Journal of Parallel and 
Distributed Computing, 107, pp.37-56. 

[8] Che, S. and Skadron, K., 2014. BenchFriend: Correlating the 
performance of GPU benchmarks. The International journal of high 
performance computing applications, 28(2), pp.238-250. 

[9] Zohouri, H.R., Maruyama, N., Smith, A., Matsuda, M. and Matsuoka, 
S., 2016, November. Evaluating and optimizing OpenCL kernels for 
high performance computing with FPGAs. In SC'16: Proceedings of 
the International Conference for High Performance Computing, 
Networking, Storage and Analysis (pp. 409-420). IEEE. 

[10] Landaverde, R., Zhang, T., Coskun, A.K. and Herbordt, M., 2014, 
September. An investigation of unified memory access performance 
in CUDA. In 2014 IEEE High Performance Extreme Computing 
Conference (HPEC) (pp. 1-6). IEEE. 

[11] Shen, J., Fang, J., Sips, H. and Varbanescu, A.L., 2012, September. 
Performance gaps between OpenMP and OpenCL for multi-core 
CPUs. In 2012 41st International Conference on Parallel Processing 
Workshops (pp. 116-125). IEEE. 

[12] Shen, J., Fang, J., Sips, H. and Varbanescu, A.L., 2013. An 
application-centric evaluation of OpenCL on multi-core CPUs. 
Parallel Computing, 39(12), pp.834-850. 

[13] https://github.com/intel/llvm 

[14] https://www.oneapi.com/ 

[15] https://www.codeplay.com/products/computesuite/computecpp 

[16] Deakin, T. and McIntosh-Smith, S., 2020, April. Evaluating the 
performance of HPC-style SYCL applications. In Proceedings of the 
International Workshop on OpenCL (pp. 1-11). 

[17] Aktemur, B., Metzger, M., Saiapova, N. and Strasuns, M., 2020, 
April. Debugging SYCL Programs on Heterogeneous Intel® 
Architectures. In Proceedings of the International Workshop on 
OpenCL (pp. 1-10). 

[18] Alpay, A. and Heuveline, V., 2020, April. SYCL beyond OpenCL: 
The architecture, current state and future direction of hipSYCL. In 
Proceedings of the International Workshop on OpenCL (pp. 1-1). 

[19] Jin, Z. and Finkel, H., 2019, December. A Case Study of k-means 
Clustering using SYCL. In 2019 IEEE International Conference on 
Big Data (Big Data) (pp. 4466-4471). IEEE. 

[20] Jin, Z. and Finkel, H., 2019, November. Evaluation of Medical 
Imaging Applications using SYCL. In 2019 IEEE International 
Conference on Bioinformatics and Biomedicine (BIBM) (pp. 2259-
2264). IEEE. 

[21] Jin, Z., 2019. Improving the Performance of Medical Imaging 
Applications using SYCL (No. ANL/ALCF-19/4). Argonne National 
Lab.(ANL), Argonne, IL (United States). 

[22] Joó, B., Kurth, T., Clark, M.A., Kim, J., Trott, C.R., Ibanez, D., 
Sunderland, D. and Deslippe, J., 2019, November. Performance 
Portability of a Wilson Dslash Stencil Operator Mini-App Using 
Kokkos and SYCL. In 2019 IEEE/ACM International Workshop on 
Performance, Portability and Productivity in HPC (P3HPC) (pp. 14-
25). IEEE. 

[23] Deakin, T., McIntosh-Smith, S., Price, J., Poenaru, A., Atkinson, P., 
Popa, C. and Salmon, J., 2019, November. Performance Portability 
across Diverse Computer Architectures. In 2019 IEEE/ACM 
International Workshop on Performance, Portability and Productivity 
in HPC (P3HPC) (pp. 1-13). IEEE. 

[24] Thoman, P., Salzmann, P., Cosenza, B. and Fahringer, T., 2019, 
August. Celerity: High-Level C++ for Accelerator Clusters. In 
European Conference on Parallel Processing (pp. 291-303). Springer, 
Cham. 

[25] Burke, T.P., 2019. Parallelization of a Proxy Transport App Using 
ComputeCPP and SYCL (No. LA-UR-19-25636). Los Alamos 
National Lab.(LANL), Los Alamos, NM (United States). 

[26] Afzal, A., Schmitt, C., Alhaddad, S., Grynko, Y., Teich, J., Forstner, 
J. and Hannig, F., 2018, July. Solving Maxwell's Equations with 
Modern C++ and SYCL: A Case Study. In 2018 IEEE 29th 
International Conference on Application-specific Systems, 
Architectures and Processors (ASAP) (pp. 1-8). IEEE. 

[27] Da Silva, H.C., Pisani, F. and Borin, E., 2016, October. A 
comparative study of SYCL, OpenCL, and OpenMP. In 2016 
International Symposium on Computer Architecture and High 
Performance Computing Workshops (SBAC-PADW) (pp. 61-66). 
IEEE. 

[28] Wong, M., Richards, A., Rovatsou, M. and Reyes, R., 2016. 
Khronos’s OpenCL SYCL to support heterogeneous devices for C++. 

[29] https://www.khronos.org/sycl/ 

[30] https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/USM 

[31] https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/OrderedQu
eue 

https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/USM


 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

Argonne National Laboratory is a U.S. Department of Energy  

laboratory managed by UChicago Argonne, LLC 

Leadership Computing Facility 
Argonne National Laboratory 

9700 South Cass Avenue, Bldg. 240 

Argonne, IL 60439 

 

www.anl.gov 


