Used Plug-in Electric Vehicles as a Means of Transportation Equity in Low-Income Households

A Literature Review

Energy Systems Division
About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS):
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI):
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.
Used Plug-in Electric Vehicles as a Means of Transportation Equity in Low-Income Households

A Literature Review

by
Olumide Winjobi and Jarod C. Kelly
Energy Systems Division, Argonne National Laboratory

September 2020
Table of Contents

Abstract .. 1

1. Introduction.. 1

2. Why Used PEVs? ... 3

3. Barriers to Adoption of PEVs in Low-Income Communities .. 4
 3.1 Running Out of Battery Power .. 5
 3.2 Low Availability of Public Charging Stations ... 5
 3.3 Initial purchase cost ... 6

4. Programs to Assist in Used PEV Adoption ... 8
 4.1 Charging Infrastructure ... 8
 4.2 Monetary Incentives .. 10
 4.3 Increase PEV Exposure .. 14
 4.4 Utility Cost Reduction ... 15

5. Conclusions ... 15

References .. 16
FIGURES

Figure 1. People in households without a vehicle based on income level in the United States in 2016............ 2
Figure 2. U.S. households with PEVs based on household income in 2017 .. 3
Figure 3. Sticker price of selected PEVs and ICEVs .. 4
Figure 4. Barriers to electric vehicle adoption.. 5
Figure 5. Percentage of electric vehicle households that use home and public charging in different housing types in California. .. 6
Figure 6. Pre- and post-drive opinions for PEVs .. 8
Figure 7. The number of public charging stations in the United States from 1989 to 2019 .. 9
Figure 8. State and utility monetary incentive through grants or rebates for used PEVs in the United States. 11
Figure 9. Impact of rebates on PEV purchase in California .. 12
Figure 10. Incentives for PEVs in the form of rebates for electric-vehicle-charging infrastructure or electric vehicle registration .. 13
Figure 11. Comparison of the main barriers to PEV adoption between total drivers and existing PEV owners. .. 14
ACKNOWLEDGMENTS

This work was supported by the Vehicles Technologies Office, Office of Energy Efficiency and Renewable Energy, United States Department of Energy under Contract Number DE-AC02-06CH11357. The authors would like to thank Linda Bluestein, Marcy Rood, and Yan Zhou for the guidance and feedback.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
Abstract
This report examines improving the equity of low-income households through access to reliable means of transportation. Used plug-in electric vehicles (PEVs) can serve as a low-cost and low-maintenance means of transport for low-income households. Zero tail-pipe emissions from PEVs is also a benefit of these drivetrain compared to internal combustion engine vehicles (ICEVs). Barriers to the adoption of the used PEVs, and incentives that may address these barriers were reviewed.

1. Introduction
Vehicle ownership generally increases access to essential local services and amenities, such as employment, grocery shopping, medical service, and so forth. However, a significant number of low-income households do not own any vehicles, thereby limiting the access of such households to these essential services.[1] A 2012 survey of 698 low-income patients’ transportation to public outpatient clinics in a suburb of New York City reported that “patients who took public transit to the doctor’s office were twice as likely to miss appointments as patients who drove vehicles.”[2] Second only to housing, transportation is a significant household expenditure, accounting for about 17% of the average annual spending of all households in the United States, and the cost of vehicle purchase is the highest single contributor to transportation expenditures.[3] Vehicle operating costs, such as maintenance, are also not negligible. Increasing the number of low-income households with access to vehicles would require an approach that provides both low-purchase cost and low-maintenance cost vehicles. Figure 1 shows that in 2016, households with annual incomes below the poverty level in the United States had a higher rate of not having a vehicle than households above the poverty level.[4] For households with income lower than 50% of the poverty level, 18% were zero-vehicle households compared to about 3% for households whose income was more than 200% of the poverty level.[5]
A study by Pendall et al. showed that households with cars “tend to live and remain in higher opportunity neighborhoods—places with lower poverty rates, higher social status, stronger housing markets, and lower health risks.” Pendall et al. also stated that “the importance of low-income households having access to cars becomes evident in metropolitan areas where the public transit systems are usually slow and also sometimes lack metropolitan-wide coverage.” Access to vehicles in the suburbs is also of paramount importance. A 2011 study by the Metropolitan Policy Program at the Brookings Institution stated “a 25.4% transit share for households without vehicles in the suburbs relative to 59.7% of households in the metropolitan areas utilized the public transit system for commuting which implied that three-quarters of households in the suburbs needed an alternative mode of transport to get to work.” Without a reliable form of transportation, households without vehicles, which are mostly low-income households, generally have a shorter radius of travel than high-income households, thereby limiting their access to jobs and services. Through multivariate analysis, Garasky et al. showed that employment and reliable transportation are related. In their 2006 study, Garasky et al. reported that among those they surveyed, households without access to a reliable vehicle were less likely to be employed. Another study that looked at the success of Welfare to Work programs near Minneapolis, Minnesota, found that 70% of the jobs that were available to low-income workers were scattered throughout surrounding suburban areas that were not well served by public transit. The Welfare to Work study highlighted one of the barriers of low-income households to available jobs as their limited mobility. For most low-income households to transition to higher-wage jobs, they need access to reliable transportation, so easing the access to reliable vehicles could play a critical role.
In addition to economic security, some of these low-income communities are located along congested highways, thereby falling into the category of areas with high pollution such as the San Joaquin Valley in California. Padula et al. in their study associated the increased risk of preterm birth with exposure to traffic-related air pollution. Clark et al. reported a high concentration of nitrous oxides (NO\textsubscript{x}) typically emitted from combustion in vehicles and power plants in low-income communities relative to high-income communities. While there is a push toward cleaner communities through car-sharing, vehicle access is still essential for families in low-income communities seeking to improve their economic security. One way of improving the access of these households to vehicles while ensuring a cleaner environment could be through increasing the participation of these communities in the electric vehicle market through inexpensive or subsidized pre-owned plug-in electric vehicles (PEVs).

2. Why Used PEVs?

PEVs, a term encompassing plug-in hybrid vehicles (PHEVs) and battery electric vehicles (BEVs), offer advantages over conventional internal combustion engine vehicles (ICEVs), such as increased powertrain efficiency, decreased maintenance requirements, and zero tailpipe emissions (for BEVs, and PHEVs when they use only their battery power), with the last benefit contributing to air pollution reduction relative to ICEVs. Although there has been a significant increase in the number of PEVs purchased in the United States, rising from about 50,000 in 2012 to about 360,000 in 2018, the share of PEV owners is dominated by high-income households, as shown in Figure 2. Households with incomes higher than $75,000 account for about 79% of PEV-owning households, while households with incomes less than $50,000 account for only about 8% of PEV-owning households.

![Figure 2. U.S. households with PEVs based on household income in 2017. (Source: U.S. Energy Information Administration)](image)

The initial purchase (sticker) prices of PEVs (after federal incentive) are generally higher than those of comparable conventional vehicles, as shown in Figure 3. The cost of the vehicle battery is a significant contributor to the price of PEVs; a McKinsey report stated a difference of about $12,000 in the cost of production of PEVs compared to that of ICEVs. Used PEV purchase prices are, however, significantly lower (discussed later in section 3.3) than those of used ICEVs, and PEVs are generally less costly to maintain and...
operate. PEVs have fewer moving parts, making them less expensive to maintain than ICEVs and less costly to operate in terms of fuel costs, with an average fuel cost range of $421–$485 annually for a BEV compared to an average of $1,117–$1,500 for an ICEV according to a study by Sivak and Schoettle that took variability in fuel costs across states in the United States into consideration and a Union of Concerned Scientists survey.[17] Used PEVs may, therefore, serve as a low-cost and low-maintenance option for low-income households.

![Sticker price of selected PEVs (price after federal tax credit in dark green bar and federal tax credit in light green bar) and ICEVs.](image)

Figure 3. Sticker price of selected PEVs (price after federal tax credit in dark green bar and federal tax credit in light green bar) and ICEVs.

ICEV prices obtained from Energysage.com

PEV prices (as of October 2019) from Midwest EV Info List

3. Barriers to Adoption of PEVs in Low-Income Communities

Although used PEVs may offer a possible low-cost and low-maintenance option for improving the access of low-income households to services, amenities, and better economic conditions, there is low rate of PEV adoption among low-income households because of a number barriers both singularly and in combination. Understanding these barriers may help illuminate solutions that can increase the adoption of PEVs in these households. These barriers include but are not limited to the PEV running out of battery power, purchase cost of PEVs, limited PEV models, and the like.

The results of a survey conducted by Volvo Car USA/The Harris Poll, as shown in Figure 4, show that the main barriers to purchasing PEVs (regardless of income level) were concerns about running out of power (58%), low availability of charging points (49%), and initial vehicle costs (48%).[20] Although the poll in Figure 4 was not explicitly geared toward used PEVs, some of these concerns will likely translate to households considering buying used PEVs.
3.1 Running Out of Battery Power
When describing owners of PEVs, “range anxiety” is the concern that the PEV will not have sufficient battery charge to complete a journey. This concern is a result of a combination of factors, such as the capacity of the vehicle battery and access of the vehicle to charging infrastructure (discussed later in section 3.2), resulting in a perceived limited vehicle travel range. While the concern about running out of power was the leading barrier for 58% of the total drivers surveyed by Volvo/Harris, that percentage significantly dropped to 38% when only current PEV drivers were polled, reflecting that the concern abates as PEV driving experience increased.\[18\]

Newer PEVs, such as the Tesla Models S, X, and 3 and Chevy Bolt, do have increased battery capacities, resulting in significantly longer ranges (>200 miles) compared to the older generation PEVs (<100 miles) on a single charge; this should reduce range anxiety. The increased capacity of these newer PEVs, however, often comes with a higher price. This range versus price trade-off may take these long-range PEVs out of the price range of low-income households addressed in this report. With used PEVs, factors similar to those for new PEVs contribute to range anxiety. However, with used PEVs, their prior usage may result in reduced capacity of the battery pack relative to new PEVs. For instance, in addition to battery degradation from prior use, older PEVs such as the Nissan Leaf, with a relatively short range (official range of 100 miles), may result in a limited operating range of about 73 miles.\[21\]

3.2 Low Availability of Public Charging Stations
Another barrier to adopting PEVs, as shown in Figure 4, is the low availability of public charging stations. As reported in USA Today, the U.S. Department of Energy projects that more than 90% of charging takes place in a residential setting; however, Nicholas et al. reported that “access to home charging is closely correlated with home types.”\[22, 23\] In their research, Nicholas et al. indicated that, in California, the highest percentage of electric vehicle buyers (~83%) were located in detached houses compared to about 8% and 9% in attached houses and apartments, respectively. Davis reported that homeowners are three times more likely than renters to own an electric vehicle.\[24\] When considering homeowners and renters within the same income level, between
$75,000 and $100,000, Davis reported that 1 in 130 homeowners owned a PEV compared to 1 in 370 renters.\cite{24} One reason for the disproportionate numbers may be the relative ease of installing PEV-charging equipment in detached houses than in attached houses and apartment buildings. A 2011 survey of more than 2000 new vehicle buyers reported that about half of the respondents did not have access to an electrical connection of 110-volt service or higher required for Levels 1 and 2 charging equipment within 25 feet of where they park.\cite{25,26} Aside from proximity to an electrical connection, typical landlord–tenant contracts in apartments (single- and multi-unit dwellings) may prevent home renters from installing charging equipment. Multi-unit dwellings also typically have assigned parking spaces, making it more complicated to have PEV charging equipment installed for electric vehicle owners.\cite{26} Figure 5 shows the charging habits for electric-vehicle-owing households in California, by household type, for four different PEV types, ranging from 30-mile-range PHEVs to 150-mile-range BEVs, from the study by Nicholas et al.\cite{22} They excluded drivers of Tesla Model S and X from their survey because of Tesla’s free supercharging and the high income of those households.

Figure 5 showsthat residential Level 1 and 2 charging dominated the charging access for PEV owners in detached houses in California; about 90% of the respondents living in detached houses (based on a simple average of the four electric vehicle types surveyed) charged their PEVs at their homes; 49% of the respondents living in apartments used public charging; and about 33% used residential charging, mainly level 1. Low-income households generally tend to be renters and increasing the access of such households to public charging infrastructure may be an incentive for such households to adopt low-cost and low-maintenance used PEVs.

![Figure 5. Percentage of electric vehicle households that use home and public charging in different housing types in California.\cite{22} (Estimated using a simple average of percentages stated by Nicholas et al.\cite{22})](image)

3.3 Initial purchase cost
The initial purchase cost was also cited as a barrier to PEV ownership. As shown in Figure 3, PEVs are more expensive than comparable ICEVs based on sticker price, even after federal incentives, particularly those outside of the luxury market. However, PEVs have been reported to have higher depreciation rates than conventional vehicles, and this could potentially result in less expensive used PEVs. Some studies have reported lower resale values for used PEVs.\cite{27-30} Batchelor reported the price of a 5-year-old PEV could decrease to 10% of its initial price based on ACF Finance prediction of a strong depreciation.\cite{27} Woodyard found low
resale values for PHEVs after the first 3 to 5 years of ownership based on transaction prices of used PHEVs from model years 2011 through 2014.\cite{28} Guo and Zhou performed a residual value analysis of PEVs and compared them with other vehicle powertrain technologies.\cite{29} They found that after the first year a mass-market BEV retains about 55% of its initial price compared to about 66% retained by a mass-market ICEV. Schoettle and Sivak reported that a BEV would retain about 21.2% of its initial manufacturer suggested retail price (MSRP) after six years compared to 27.9% and 32.3% retention for PHEV and ICEV, respectively.\cite{30} The significant difference in the MSRP retention may result in less expensive used PEVs compared to used ICEVs, thus making used PEVs a more affordable option for low-income households.

Although there has been a significant increase in the number of PEVs sold in the United States from about 18,000 in 2011 to 360,000 in 2018, another barrier to PEV adoption is that there is still limited general knowledge of the benefits of PEVs and the incentives currently associated with PEV purchases.\cite{14} Krause et al. pointed out that there was a high degree of misinformation about the basic features of PEVs.\cite{31} In their study, more than 70% of survey respondents underestimated the extent of the cost from fuel savings for PEVs compared to that for gas-powered vehicles, while about 60% believed that the maintenance cost for PEVs was higher than that for ICEVs. A 2017 survey of more than 3,500 potential buyers by McKinsey showed that although about 96% of the respondents in the United States and Germany were aware of PEVs, about 50% were unsure of how PEVs operated.\cite{32} A more recent survey by Zhou et al. in 2019 gauged the opinions of survey respondents in the Midwest before and after driving a PEV.\cite{33} Zhou et al. observed that respondents were more likely to consider a PEV post-drive, as shown in Figure 6. For PHEVs, the percentage of people likely to consider a PEV rose from 60% to 68% (72% nationally), while for BEVs, the percentage rose from 56% to 63% (75% nationally).\cite{33} National post-drive results indicated a 72% and 75% likelihood to consider purchasing a PHEV and BEV, respectively.
4. Programs to Assist in Used PEV Adoption

4.1 Charging Infrastructure

There has been a significant increase in the number of charging stations in the United States over the past three decades, as shown in Figure 7. Increasing the number of public charging outlets may be one of the ways to increase the adoption of PEVs in general, but this may be even more important for used PEVs in low-income households that may not have access to residential charging.
California, which currently leads the United States in PEV adoption with about 350,000 electric vehicles registered as of 2017, accounts for about 5,500 (~24%) and 22,000 (~32%) of the charging stations and outlets in the United States, respectively.36 It would be interesting to know whether the significantly higher PEV adoption in California drives the higher number of charging stations, or vice versa, compared to other states. Note that other factors such as the Zero Emission Vehicle policy in California are also a likely factor for the high PEV adoption in California. Electricify America, a wholly owned subsidiary of the Volkswagen Group of America, as part of a court-ordered settlement against the parent company, plans to have more than 3,000 chargers operational by the end of 2021 across the United States. Table 1 shows the number of public charging outlets currently available in selected states in the United States.

\begin{table}[h]
\centering
\caption{The number of public charging outlets in select states in the United States. (Source: Alternative Fuels Data Center 36)}
\begin{tabular}{|l|c|}
\hline
State & Number of Public Charging Outlets \\
\hline
California & 21,604 \\
New York & 3,552 \\
Florida & 3,321 \\
Texas & 3,284 \\
Washington & 2,539 \\
Colorado & 2,095 \\
\hline
\end{tabular}
\end{table}
4.2 Monetary Incentives

There are some incentives, both monetary and nonmonetary, in place to increase the adoption of PEVs. These incentives range from federal level incentives to city level incentives and even from utility companies seeking to increase PEV adoption. A one-time federal tax credit was established in the United States in 2010 to offer a tax credit of $7,500 for the purchase of a new PEV. The tax credit is then halved once a PEV manufacturer has reached a threshold of 200,000-unit sales of its PEV models. Tesla, for instance, reached its 200,000-unit sales in 2018, resulting in current tax credits of $1,875 for Tesla Models 3, S, and X. Some states and cities also offer incentives independent of the federal tax credit. As of February 2020, California offers sales incentives in the form of rebates (post-purchase) of either $2,000 or $1,000 for BEVs and PHEVs, respectively, through the Clean Vehicle Rebate Project (CVRP), while the Clean Vehicle Assistance Program (CVAP) provides grants (pre-purchase) of up to $5,000 for new PEVs.[37, 38] As of December 2019, the CVAP is, however, not receiving applications for the grant. As of 2019, Colorado provides tax credits up to $5,000 for the purchase and $2,500 for the lease of new PEVs.[39] Oregon offers sales incentives up to $2,500 depending on PEV battery capacity and income, while New York offers a rebate of $2,000 depending on vehicle price.[40, 41] Some programs also provide additional incentives to low-income households. Through the CVRP, the sales incentive in California mentioned earlier offers a further rebate of about $2,000 for low- and moderate-income households ($\leq 300\%$ of the federal poverty level) beyond the general rebate ($2,000) for all households, raising total incentives to about $4,000 for low-income households for the purchase of new BEVs.[37] The CVRP in California also prioritizes rebate payment for low-income households.[37] Oregon also offers a further rebate of $2,500 for low- to moderate-income households beyond the general rebate ($2,500), raising the rebates for qualified low- to moderate-income households to $5,000 for the purchase or lease of a new PEV.

Most of the programs mentioned earlier are, however, geared only toward the purchase of new PEVs, and only a few programs cater to the purchase of used PEVs. The $5,000 grant offered by the California CVAP (which is not accepting applications as of January 2020) for income-qualified households also applies to the purchase of old PEVs. The CVRP in Oregon offers low- and medium-income households rebates of $2,500 for the purchase or lease of used all-electric vehicles.[40] Drive Forward Electric in partnership with Peninsula Family Service through the Peninsula Clean Energy (PCE) program offers vehicle incentives up to $4,000 for income-qualifying San Mateo County residents. This incentive from PCE is $2,000 if stacked with other programs such as the CVAP. Utility company Southern California Edison offers up to a $1,000 rebate for its residential customers who purchase or lease eligible used and new PEVs.[42] The Alternative Fuel Vehicle (AFV) rebate in Pennsylvania offers a $1,000 rebate for eligible residents for the purchase of a one-time pre-owned alternative fuel vehicle.

Figure 8 shows the direct incentives in the form of either grants (pre-purchase) or rebates (post-purchase) offered by state governments and utility companies in the United States. As mentioned earlier, some of these incentives can be stacked to further reduce the upfront purchase cost of used PEVs. However, there are some caveats on which incentives can be stacked and the amount of the incentives when stacked with other incentives. More details on the stacking requirements and eligibility for these incentives are provided on the websites of the different programs.
Research on the impact of financial incentives on the adoption of electrified vehicles (mostly hybrid electric vehicle [HEVs]) adoption is mixed. Some studies, such as that of Diamond, reported a weak relationship between incentive policies and HEV adoption, while Jenn et al. stated that incentives from the 2005 Energy Policy Act had a significant effect on the increase in HEV sales in the United States. In their study, Bjerkan et al. stated that of all the incentives for BEV adoption in Norway, the incentive that made the purchase price of the more expensive BEVs almost equal to a that of comparable ICEVs was the most critical aspect in promoting BEV sales. As shown in Figure 9, focusing on low-income households and using data from a California CVRP survey of those who applied for a rebate through the CVRP, Williams found that the percentage of low-income households (less than $49,999) that received the CVRP rebate for new PEVs increased from about 3% around December 2015 to about 10% around June 2017.
While other factors, such as the CVRP prioritizing low-income applicants, may also contribute to the upward trend, Figure 9 shows that rebate incentives increased the participation of low-income households in the adoption of PEVs. A similar pattern may, therefore, be observed if there is an increase in the incentive for used PEV adoption in low-income households. Some programs, such as Clean Cars for All, in California also offer rebates or grants for used PEVs; however, these programs require income-qualified households to retire an older vehicle. Programs such as Clean Cars for All are not applicable within the context of low-income zero-vehicle households discussed in this paper and therefore are not included here.

Figure 10 shows monetary incentives in the form of rebates for the installation of residential charging infrastructure. Note that although this charging infrastructure incentive is applicable to all EV owners (new and used EVs), it is not limited to low-income households. Although the incentive does not apply directly to the purchase of an EV, it can improve access of households to charging infrastructure as well as lower range anxiety, and therefore possibly bolster the adoption of EVs. As shown in Figure 10, this form of incentive is mostly provided by utility companies.
Figure 10. Incentives for PEVs in the form of rebates for electric-vehicle-charging infrastructure or electric vehicle registration. (Consult programs for more details on incentives and eligibility requirements.)
4.3 Increase PEV Exposure

One approach to addressing the misinformation associated with PEVs can be car- and ride-sharing programs focused on PEVs. Car- and ride-sharing typically provides access to vehicles for people who either do not have access to a vehicle or are looking to avoid expenses related to vehicle ownership. Including PEVs in such fleets will not only go beyond providing access but also provide a personal experience by introducing future buyers to PEVs, which can help in assuaging some of the fears/misconceptions associated with PEVs. Survey results from Volvo Car USA/The Harris Poll (Figure 11) show that existing PEV drivers in the survey have significantly lower concerns about the main barriers to purchasing a PEV than the total driver population (of the 1,510 U.S. drivers 18 years and older in the poll).

![Figure 11. Comparison of the main barriers to PEV adoption between total drivers and existing PEV owners. (Reproduced from EVAdoption)](image)

One PEV car- and ride-sharing program aimed at low-income households is BlueLA, which currently offers lower rates of 15 cents per minute for low-income qualified households compared standard rates of 20 cents per minute and an annual membership fee of $12 for low-income eligible households compared to the standard membership fee of $60. The Our Community CarShare program, a community pilot program operated by Zipcar in Sacramento, offers a free membership transportation service to communities in low-income areas throughout the city of Sacramento by providing PEVs for free for up to 3 hours per day or a total of 9 hours per week to eligible residents. The California Energy Commission awarded nearly $3 million in 2017 to car-sharing programs that use electric vehicles in disadvantaged communities through Caltart, Inc. and Envoy Technologies to use BEVs for ride-hailing and car-sharing, respectively. Mutual Housing California, a company that owns and operates affordable housing in Sacramento, California, in partnership with the Sacramento Metropolitan Air Quality Management District, provides an electric car-sharing service for its resident members.
4.4 Utility Cost Reduction
Salisbury and Toor reported that electric utilities could benefit from PEV adoption if the PEV share of total vehicles becomes significantly large through the increase in electricity sales. Based on the U.S. Department of Energy 2015 Annual Energy Outlook that projected a continued decrease in the growth rates of electricity in the United States, Salisbury and Toor stated that, “an increase in PEV adoption/penetration offers an opportunity to increase demand and potentially reverse the trend toward lower electricity sales.” Also, increasing the adoption of PEVs by encouraging the participation of low-income households through low-cost and low-maintenance used PEVs can benefit utility companies from an economies-of-scale standpoint in the deployment of a smart charging network, which will require some investment. The smart connected grid will help flatten the “duck” curve associated with electricity distribution in some regions, thereby evening out the load on the grid, limiting over-generation, and potentially lowering the electric utilities cost for all consumers. In addition, electric utility companies are embracing the adoption of PEVs mainly through the deployment of charging infrastructure that, as noted earlier, will also ease some of the barriers to PEV adoption (range anxiety and limited access to charging stations) and also balance the load on the grid. Pacific Gas and Electric through its EV Charge Network program in 2018 launched plans to deploy 7,500 charging stations at apartments, condos, and workplaces with 15% of the charging stations deployed in disadvantaged communities and 20% in multi-unit dwellings.

5. Conclusions
In conclusion, increasing the adoption of used PEVs by low-income households could be an opportunity for improving the mobility of these households. The combination of the low cost of maintenance, low operating cost, and low purchase cost stems from the PEVs’ comparatively lower number of moving parts compared to ICEVs, low cost of electricity per mile compared to gasoline’s price per mile, and the PEVs’ higher depreciation than ICEVs could make used PEVs more appealing compared to used ICEVs for low-income households. Although access to low-cost and low-maintenance PEVs will not solely move low-income households out of poverty, it can, however, improve their chances for higher wage job opportunities and access to local services and amenities. Addressing some/all of the barriers highlighted earlier might, therefore, help increase the participation of low-income households in electric mobility. Note, however, the low rate of technology adoption in low-income households. Anderson and Kumar observed a disproportionate divide between low-income households and high-income households in the adoption of technological devices, such as smartphones and laptops, among other devices. A total of 71% of low-income households (<$30,000) polled had smartphones compared to 97% of high-income household ($100,000+), while only 54% of low-income households had a desktop or laptop computer compared to 94% of high-income household. This technology adoption barrier is no doubt partially driven by differences in disposable income, but it may be illustrative of the potential for a PEV diffusion lag into low-income households. Given the potential for used PEVs to be of material assistance to such households, it is important to address such barriers as they relate to PEV adoption.
References

