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ABSTRACT 

Data analytic methods are being developed to address the problem of how to assign a sensor set in a nuclear 
facility such that a requisite level of process monitoring capability is realized and that the sensor set is 
sufficiently rich to determine the status of the individual sensors with respect to need for calibration. There 
is an awareness in the nuclear industry that data analytics combined with rich sensor sets represent a means 
to improve operations and reduce costs. 

In the industry the calibration problem has been previously approached as an empirical data-driven problem 
with several methods having been developed. However, the experience of the utilities over the past ten 
years with these methods indicates that the absence of physics-based information renders the data-driven 
approach less reliable. Complicating factors such as the inherent variability of operation (both equipment 
alignment and operating condition) can confound a pure data-driven approach while there are no rigorous 
guidelines for determining what constitutes an adequate sensor set. 

The solution under development to overcome these shortcomings supplements the data analytic method 
with process information in a so-called process-constrained data-analytic approach. Simple balance 
equations are written for generic components (e.g., mechanical pump, valve, and heat exchanger). These 
do not require a priori knowledge of process parameters, such as heat transfer coefficients or friction 
factors. All that is needed on the part of the utility user is to identify the components and how they are 
connected. 

This report describes the development of a parallel computing capability for determining the optimal sensor 
set. The optimal sensor set problem suffers from the curse of dimensionality. Computation time increases 
exponentially as the size of the system grows. To overcome this difficulty a pre-conditioner algorithm is 
developed to find an approximate solution close the actual solution. This serves as a seed for the full-blown 
algorithm and acts to constrain the space that must searched. The optimization algorithms are described and 
the implementation on a parallel computing platform is described. The application of the method to a use 
case we are solving in collaboration with our utility partner served to illustrate how the default sensor set 
in a nuclear plant may not provide sufficient coverage to infer sensor calibration status. 
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1 INTRODUCTION 
 
The goal of this research is to develop and demonstrate data-analytic methods to address the problem of 
how to assign a sensor set in a nuclear facility such that a requisite level of on-line process monitoring 
capability is realized and that the sensor set is sufficiently rich to determine the status of the individual 
sensors with respect to calibration. The need for this capability was identified in discussions with utility 
executives and technical staff at industry workshops and meetings [1][2]. Furthermore, in a recent limited 
circulation report, the Electric Power Research Institute (EPRI) has identified the use of richer sensor sets 
in nuclear power plants and data analytics as an innovative means to improve operations and reduce costs.  
 
The assignment of the plant sensor set has in the past been an alarm and control problem: for a given 
system, what sensor set ensures process condition can be monitored and controlled? In the past, the high 
cost of sensors and signal transmission with specialized nuclear-grade hardware confined the sensor set to 
a bare minimum. Recent increase in communication bandwidth and sensor connectivity in hard to reach 
places due to advances in RF wireless and fiber-optical signal transmission, and sensor price decreases, 
have lowered the barrier to a richer sensor set at a facility. With these developments, one can now take 
advantage of new and low-cost hardware options to achieve new and previously unrealizable process and 
equipment diagnostic capabilities.  
 
While diagnosis of equipment degradation is a sought-after capability, a more urgent need is a reliable 
method for on-line indication of the calibration status of a sensor.  With this information, a utility 
performing sensor calibration during the refueling shutdown can confine the task to those instruments that 
require recalibration. Our utility partner has an immediate interest in addressing this problem, while only 
a longer-term interest in addressing the equipment degradation problem. Moreover, the solution to the 
latter problem is in part dependent on solving the sensor calibration problem. 
 
This report describes the development of a parallel computing capability for determining the optimal 
sensor set. The optimal sensor set problem suffers from the curse of dimensionality. Computation time 
increases exponentially as the size of the system grows. To overcome this difficulty a pre-conditioner 
algorithm is developed to find an approximate solution close to the actual solution. This serves as a seed 
for the full-blown algorithm and acts to constrain the space that must be searched. The optimization 
algorithms are described and the implementation on a parallel computing platform is described. The 
application of the method to a use case we are solving in collaboration with our utility partner is 
described. 

2 MONITORING 
The problem of diagnosing equipment performance degradation in thermal-hydraulic systems over the 
course of plant operation involves collecting and analyzing sensor data on a periodic basis. Given the long 
time scale over which component degradation typically proceeds, some of the system monitoring sensors 
may also inevitably degrade and become unreliable. Sensors in nuclear power plants are typically only 
calibrated once every fuel cycle. The calibration activity requires significant human resources in detecting 
faulty instruments and recalibrating them. Automated on-line calibration monitoring can be performed 
during plant operation to detect sensor drifts as they occur and ultimately reduce the O&M cost. It is 
therefore desirable to have a diagnostic tool with the capability to simultaneously deal with both 
component faults and sensor faults. 
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2.1 Physical Plant 

In the current state of development, the project is focusing on thermal-fluid systems. The methods under 
development are general and regard the plant as an arbitrary arrangement of individual components 
connected through loops and junctions. From a user input standpoint, the plant is viewed as a set of 
individual equipment components that are connected in a network. 

A component that appears in this report for an instance where a plant example is cited is the feedwater 
heater shown in Fig. 1. In a Rankine cycle this component takes turbine extraction steam to heat 
feedwater coming from the condenser before it enters the steam generator. The steam side has a 
condensing region and a subcooled region. On the feedwater side the water is in the subcooled state. 

 

 
Fig. 1. Schematic of High Pressure Feedwater System heater 

 

2.2 Piping and Instrument Diagram 

The physical plant is represented in this project by the Piping and Instrumentation Diagram (P&ID). The 
P&ID represents a system as an interconnected collection of components and identifies the locations of 
sensors. The P&ID through the inter-connectedness of components allows the mass, energy, and 
momentum balances to be written that connect physics-based component models. The P&ID for a portion 
of the high-pressure feedwater system cited as a use case in this report is shown in Fig. 2. 

2.3 Physics-Based Models 

A thermal-fluid system in a nuclear power plant can be decomposed into separate components of known 
generic types, e.g. valve, pump, heat exchanger. Each component of a generic type is designed to perform 
a basic function of either mass, momentum or energy transfer. The behavior or performance of a 
component in normal working conditions is described by separate models constructed for each of these 
three processes. In addition, given the component connections in the P&ID, the conservation equations 
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for mass, energy, and momentum can also be solved for the network of components, which introduces 
additional component models, specifically the mixing junction and the splitting tee. 
 

 
Fig. 2. Example Piping and Instrumentation Diagram taken from use case 

 
Presently the user under this project has available a set of modules for a physics-based modeling of the 
P&ID.  The set includes heat exchangers (single phase and condensing), turbomachines (centrifugal 
pump), and component connectors (mixing junction and splitting tee). This library of components is 
accessed in the use case described in Section 6. 
 
A fault is defined to be any change in the characteristics of a component that affect its ability to perform 
its designed function. Any fault or malfunction in the component would alter its characteristic. Since the 
models for each component are constructed based on the three conservation equations, any fault in the 
component would result in an imbalance in at least one of the conservation equations which leads to a 
non-zero residual for the corresponding model. Presently the project is considering faults of the slow 
degradation type during which the operation of each component can be considered quasi-static. The faults 
associated with the P&ID of Fig. 2 are shown in Table 1. 

2.4 Process Constraints 

In the so-called process-constrained data-analytic approach, simple balance equations are written for 
generic components as described above under section 2.3 Physics-Based Models with these equations 
acting to constrain the model of the process to physical reality. By comparison, there is not explicit 
provision for ensuring this of a model in a pure data-driven approach. 

In this work, these physics-based models are written so that there is not a need to provide a priori 
knowledge of engineering parameters, such as component dimensions and material properties. The model 
representation allows for these parameters to be determined from measurements taken at a nominal 
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operating condition. All that is needed on the part of the user is to identify the components and how they 
are connected, information that is obtained from the P&ID. 

 

Table 1. Diagnostic models for the high-pressure feedwater system 
ID Name Model Type Components Relevant Fault Types 
1 DP-1 Generic pressure 

difference 
Feed pumps 1A and 1B, valves, 
FWH 1A and 1B, pipes 

Leakage, Blockage 

2 FR-1 Flow ratio FWHs 1A and 1B, pipes Leakage, Blockage 
3 SDP-1A Pump head Drain pump 1A Pump fault 
4 SDP-1B Pump head Drain pump 1B Pump fault 
5 SDP-1C Pump head Drain pump 1C Pump fault 
6 FWH-1A HX performance FWH 1A Leakage, Fouling 
7 FWH-1B HX performance FWH 1B Leakage, Fouling 

 

2.5 Quantitative Reasoning 

Once the model equations for each component are calibrated, they can be used as a source of analytical 
redundancy to check for inconsistencies in the data collected from sensor readings. Residuals, computed 
as the differences between model predictions and observations from measurement, are evaluated and used 
to monitor the status of the system. A non-zero residual would serve as an indication that the system has 
deviated from its normal behavior because of a fault. Since a fault in either the component or any of the 
sensors involved could result in a non-zero residual, the reasoning process in the diagnostic task will have 
to distinguish between sensor faults and component faults to be able to localize the fault. 
 
When a residual value change is detected, i.e. a residual is determined to be non-zero statistically, there 
are three possibilities:  

• A component fault: A fault in a component would lead to changes in its behaviors. When the new 
behaviors are compared to model outputs, which predict the component behaviors under normal 
working conditions, the changes in component behaviors are reflected in changes of residuals. 

• Sensor error: Changes in performance of instruments would lead to change in model outputs, 
which would also result in changes of the residuals even though the component behaviors remain 
normal. 

• False alarm: With the presence of noise and uncertainty, there is a false alarm rate associated 
every time a residual is determined to be non-zero by the change detection algorithm.  

Component faults and sensor faults can be differentiated based on the evaluation of all the residuals 
available. Recall that each sensor is used in the calculation of multiple residuals. Each model can be used 
to compute multiple residuals, each with a different combination of sensors if available. The basic logic, 
based on which the reasoning rules are formulated, is as follow: 

• If a sensor fault occurs, every residual whose calculation involved that sensor would become non-
zero. 

• If a component fault occurs which is reflected by a component model, every residual computed 
for that model would be non-zero, regardless of which combination of sensor readings was used. 

When the code is initialized, a list of sensors and component models associated with each residual can be 
generated. Analyzing which residuals are zero and which are not allows the code to pinpoint the fault 
using an automated reasoning process. 
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3 DEFINITION OF OPTIMIZATION PROBLEM 

3.1 Sensor Assignment 

The inverse sensor problem amounts to finding a suitable population of sensors that enable a requisite 
degree of monitoring capability. More specifically, given a list of faults that need to be detected and 
isolated to a prescribed degree of spatial resolution, we wish to find the sensor set that will accomplish 
this goal at the least cost. It is an inverse problem in the sense that it is the opposite of determining what 
faults can be diagnosed using an existing sensor set. Instead, determine the sensor set needed to provide a 
requisite fault diagnosis capability. 
 
Through the data analytic approach being developed in this work, the inverse sensor set problem can be 
solved. To proceed, a set of faults to be diagnosed is drawn up a priori. For each component in the 
system, eligible locations for sensors are tabulated. The inverse sensor algorithm then proceeds to find 
that subset of possible system sensors which yield the minimum value of the cost function. 
Algorithmically, for each of the possible subsets, the cost of successfully diagnosing all the faults on the 
list is computed. Iterating over all sensor subsets yields the subset with the least cost. 

3.2 Cost Function 

The cost function represents the cost of satisfying a set of diagnostic objectives for a given set of sensors. 
The cost function in principle should reflect the degree of fault spatial localization achieved, the quality of 
diagnosis measured in terms of sensitivity to fault severity, and the cost of installing the sensor set. The 
cost varies with the number and types of sensors in the sensor set. The cost function is minimized to 
obtain the highest value sensor set. That is, the sensor set that best delivers on the required fault diagnosis 
capabilities while considering cost. 
 
At this time, we are evaluating a simplified cost function that includes cost of sensor installation and 
accounts for whether a required diagnosis was in fact made. 
 
 ( ) ( )Total Cost

j jI S ij l
j m l

m
i

C C k Dα= + −∑∑ ∑∑  (1) 

where: 

i =  sensor location on the P&ID, 
j =  sensor type (e.g. pressure, temperature, …), 

1ijk =  for new sensor of type j  at location i ; 0ijk =  otherwise, 
l =  fault type (e.g. leak, fouling, …), 
m =  component index, 

and: 

jIC =  cost of installing sensor of type j , 

jSC =  cost of procuring sensor of type j , 

( )l mD =  diagnosis made for fault of type l  in component m , 
α =  scaling factor. 
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4 OPTIMIZATION ALGORITHM 

4.1 Mixed Integer Formulation 

A mixed-integer problem is one where some of the decision variables are constrained to be integer values (i.e. 
whole numbers such as -1, 0, 1, 2, etc.) at the optimal solution. Typically, in mixed integer problems a binary 
variable is used to connote a yes/no decision. In our case the decision is whether to install a sensor or not.  
 
It is the binary variable kij in the cost function of Eq. (1) that renders the sensor assignment optimization problem a 
mixed integer problem.  
 
Integer variables make an optimization problem non-convex, and difficult to solve.  Memory and solution time 
may rise exponentially as you add more integer variables. When the binary variables number in the few hundreds it 
may not be computationally feasible to find a solution. In our sensor assignment application, there typically 20 to 
30 sensors. 

4.2 Genetic Algorithm Solver 

 

 
(a) 

 
(b) 

Fig. 3. Graphical representation of the adopted procedure to perform the cross-over of selected chromosomes.[3] 
 
The mixed integer problem in this work is approached as a parallelizable problem that makes use of the 
genetic algorithm solution method. Genetic algorithms are general purpose optimization techniques based 
on principles inspired from biological evolution as the “survival of the fittest” [4]. The evolution usually 
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starts from a population of randomly generated individuals (called chromosomes), which represent the 
candidate solutions of the optimization problem. Each chromosome has a set of properties which can be 
altered. In the evolutionary process, to establish which individuals should have a higher probability of 
being allowed to produce offspring (i.e. new problem solutions), and which individuals should have a 
higher probability of being removed from the population, a suitable, problem-specific metrics (called 
fitness) needs to be defined [5][6]. According to this metrics, certain chromosomes are stochastically 
selected from the current population, their genome is recombined and possibly mutated, and form a new 
generation is formed. Fig. 3 represents a typical cross-over of selected chromosomes to generate a series 
of offspring. 
 
The “survival of the fittest” principle was applied in the selection of each generation of offspring by 
discarding the ones yielding high fitness function values. Such evaluation can be accelerated through 
parallel computing techniques. 

5 IMPLEMENTATION 
This section describes the implementation on a parallel computing platform for determining the optimal 
sensor set. 

5.1 Software 

The Genetic algorithm can be executed in parallel by its nature. The most fundamental parallel computing 
environment is a multi-core machine. In order to develop and run parallel Python codes on multi-core 
machines, the software requirements are the same for Windows and Linux machines: One platform and 
one package. 

1. Data Science Platform: “Anaconda 3” [7]. Anaconda is an open-source distribution of Python for 
data science research. It provides the platform to download and manage 7,500+ Python packages, 
to develop serial and parallel Python codes, to analyze data with scalability and performance, and 
to visualize results. 

2. Python parallel computing package: “Multiprocessing” [8]. Multiprocessing is an open-source 
package that supports parallel processing on single multi-core machines either synchronously or 
asynchronously, which provides the ease and flexibility of parallel computing. The installation 
and an example are shown in Section 6.1 of this report. 

The parallel code can also be executed in a distributed cluster for better performance. In order to run 
parallel Python codes on a distributed Linux cluster, one additional package is required: 

3. Distributed and Parallel Computing package: “Ray” [9]. Ray is a fast and simple framework for 
building and running distributed applications. It provides a user-friendly framework to create and 
manage the distributed cluster, and to submit and schedule the computational tasks. The 
installation and example is shown in Section 6.1 of this report. 

Solving the mixed integer problem needs the optimization packages that support integer parameter tuning. 
Currently there are several candidates available: 

1. Mixed Integer Programming Class Library: “MIPCL-PY”[10]. MIPCL-PY is a Python module 
that facilitates modeling and solving linear and mixed integer programming problems.  It supports 
implementation of both branch-and-cut and branch-and-price algorithms. 

2. Python Mixed Integer Linear Programming Library: “Python-MIP”[11]. Python-MIP package 
provides tools for modeling and solving Mixed-Integer Linear Programming Problems (MIPs) in 
Python. It includes the COIN-OR Linear Programming Solver - CLP, which is currently the 
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fastest open source linear programming solver, and the COIN-OR Branch-and-Cut solver - CBC, 
a highly configurable MIP solver. 

The genetic algorithm is the key to accomplishing this research project. In order to perform genetic 
algorithm optimization, special Python packages are required to provide the GA-based optimization 
capability in a parallel computing environment. Currently there are two options available:  

1. Distributed Evolutionary Algorithms in Python: “DEAP” [12]. DEAP is a novel computation 
framework including genetic algorithm, evolution strategies, multi-objective optimization and 
more features. In addition, DEAP supports the parallelization mechanisms such as 
multiprocessing. 

2. Economic Dispatch Genetic AlgoRithm: “EDGAR” [13]. EDGAR is an improved version of a 
genetic algorithm-based optimization tool focusing on the power generating unit commitment and 
economic dispatching problem [4]. The EDGAR code was developed in Python by one of the 
authors at Argonne National Laboratory, and it was deployed in a 24-core Linux server for 
production purposes. 

5.2 Hardware 

The computers designed in recent years are largely multi-core machines. The most common configuration 
has multiple cores and threads in a single CPU package, while some high-performance workstations and 
servers may have multiple CPU packages installed. Intrinsically, each CPU core is able to execute a set of 
commands without the assistance of other cores, and such capability gives rise to the opportunity of 
reducing computational time through parallel computing.  
 
In a properly designed program, the parallel computation on a multi-core machine is executed as follows: 
One core will serve as the controller and issues the individual computational tasks to multiple worker 
cores; the worker cores will perform the actual computation independently and return the result to the 
controller core. Due to the high I/O bandwidth of the communication bus within the same computer, the 
multi-core machine is capable of yielding a performance nearly proportional to the number of involved 
cores. 
 
In this project, the Multiprocessing Python package is used to perform the parallel computing on a multi-
core machine. It provides the software platform to distribute individual computational tasks to the other 
physical cores in CPU. Note that the CPU threads (or logical cores) have a relatively limited contribution 
to the computational power than the CPU physical cores. 
 
The distributed cluster is an expansion to the multi-core computers: it is a computer system composed of 
multiple computational nodes (individual computers) connected through high-speed network.  
 
Being like the multi-core machine, the cluster usually has one controller node and several worker nodes. 
The controller node provides users the service of account login, data storage, and computational job 
submission. The CPU cores in worker nodes perform the actual computation based on the commands and 
data from the controller node and return the results back to the controller node. The computational tasks 
are prepared and issued by the job scheduler in the controller node, and the data communication between 
nodes is done through the network. Due to the limited bandwidth of the network, the communication 
overhead on top of the actual computational time will be relatively longer than that in a multi-core 
machine, but the scalability using multiple worker nodes will yield a total performance that usually cannot 
be achieved by a single multi-core machine. 
 
In this project, the Ray Python package could be used to perform the distributed computing on a Linux 
cluster. It provides the inter-node communication platform in Python environment, as well as the job 
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scheduling capability for distributed computing. By performing the computation on multiple nodes 
simultaneously, the computational time will be significantly reduced. 

5.3 Cost Function Minimization 

The optimal sensor set problem suffers from the curse of dimensionality. Computation time increases 
exponentially as the size of the system grows. To overcome this difficulty a pre-conditioner algorithm is 
developed to find an approximate solution close to the actual solution. This serves as a seed for the full-
blown algorithm and acts to constrain the space that must be searched. 

5.3.1 Rule-based Preconditioner 

The computational feasibility is addressed by developing a first approximation to the optimum sensor set 
for use in initializing the full-blown solution.  The assumption is that the default sensor set provided by 
the system design engineer in the form of the P&ID provides a designer-informed diagnostic capability 
and thus represents a good starting point.  The method begins by identifying the virtual sensors that exist 
based on inter-component connections given by the P&ID.  Given this collection of physical and virtual 
sensors, the method then identifies all available models for diagnostic purposes and from that determines 
the structure of the model residuals. A residual-to-fault table can then be generated automatically for the 
system.  The degree to which the list of required faults is diagnosed is assessed. 
 
The diagnostic model is specific to a component and its individual sensor set. For each component type in 
the P&ID there is a corresponding physics-based model module. Associated with the module are different 
sensor sets, one of which will match that in the P&ID. And accompanying the module for that particular 
sensor set is a list of models and possible model residuals.  
 
To see this, consider a counterflow heat exchanger outfitted with sensor set i = 1,2,…6 that denote the 
sensors for the flow rate, inlet temperature, outlet temperature of the cold side and then those for the hot 
side, respectively. Consider both component faults and sensor faults: 

• Component faults: leakage (denoted by FL) and fouling (F0) 
• Sensors faults: fault in sensor Si , denoted by Fi for i = 1, 2,...6 

The fault-rule table appearing in the module for that sensor set is shown in Table 2. Each column 
represents a different set of residual values with the fault giving rise to that particular set of values 
appearing at the top of the column. 
 

Table 2. Fault signatures for single-phase heat exchanger  
FL F0 F1 F2 F3 F4 F5 F6 Multiple Faults No Fault 

rL 1 0 1 1 1 1 1 1 1 0 
r0 1 1 1 1 1 1 1 1 1 0 
r1 1 1 0 1 1 1 1 1 1 0 
r2 1 1 1 0 1 1 1 1 1 0 
r3 1 1 1 1 0 1 1 1 1 0 
r4 1 1 1 1 1 0 1 1 1 0 
r5 1 1 1 1 1 1 0 1 1 0 
r6 1 1 1 1 1 1 1 0 1 0 

FL : leakage,  F0  : fouling,  Fi    for i ≥ 1 : fault in sensor Si. 
1  indicates a non-zero residual, 0  indicates zero residual 

 
The rule-based preconditioner operates by spawning a set of candidate sensors for the P&ID. It then 
locates for each component in the P&ID the column in the residual-to-fault table that corresponds to the 
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sensors spawned for that component. From these columns the faults at the top of the column are collected. 
The cost function is then evaluated using the cost of failing to diagnose a fault and the cost of installing 
the spawned set of sensors. A new set of sensors is then spawned. This continues until a cost minimum is 
reached. 

5.3.2 System Code Based 

With an approximation in the neighborhood of the optimum, the lowest cost sensor set with requisite 
sensitivity and fault discrimination capability is found using a genetic algorithm (GA) search procedure.  
The problem formulation includes measurement and model uncertainty.  Faulted system scenarios are 
simulated using a 1-D systems code.  A cost function that additionally weighs diagnosis sensitivity is 
minimized over the set of faulted scenarios. 

6 APPLICATION 
The application of the method to a use case we are solving in collaboration with our utility partner is 
described. 

6.1 Use Case 

The diagnostic framework that has been developed is being demonstrated by application to the high-
pressure feedwater system of a PWR plant. The high-pressure feedwater system is part of the condensate 
and feedwater system that is responsible for the supply of pre-heated feedwater to the steam generators. A 
detailed description can be found in the final safety analysis report for Unit 1 and 2 of the North Anna 
Power Station.  

6.2 Piping and Instrument Diagram 

The P&ID is shown in Fig. 4. Exhaust from the turbines turn into condensate and get heated up by 
feedwater heaters in multiple heating stages before re-entering the steam generators. The high-pressure 
feedwater system we are considering here consists of the two heating stages closest to the inlets of the 
steam generators, referred to as the first-point and second-point stages.  
 
The feedwater heater in each stage is of the closed two-shell type and thus, each heating stage effectively 
consists of two feedwater heaters in parallel piping lines. Therefore, for this example we have four 
feedwater heaters: two first-point heaters, labeled by 1-FW-E-1A and 1- FW-E-1B, and two second-point 
heaters, labeled by 1-FW-E-2A and 1-FW-E-2B, as shown by the P&ID in Fig. 4. The system as shown 
also include three steam generator feed pumps, labeled by 1-FW-P-1A to -P-1C, and three drain pumps, 
labeled by 1-SD-P-1A to -P-1C. 
 
From the top of the P&ID, two-phase mixtures from the high-pressure turbine and moisture separator 
reheaters flow into the shells of the first and second-point heaters. Drains from the first-point heaters flow 
into the shells of the second-point heaters. On the right of the P&ID, feedwater from later heating stages 
flows through the two second-point heaters to the suction header of the feed pumps. Drains from the two-
point heater shells are collected by the high- pressure heater drain receivers, TK-2A and TK-2B. Drains 
from the moisture separators (not shown in Fig. 4) are collected by a third drain receiver, TK-2C. The 
three drain pumps pump condensate from the drain receivers to the suction header of the feed pumps. 
During normal operation, only two of the three feed pumps operate to pump feedwater through the two 
first- point heaters to a discharge header to supply the steam generators. In emergency situations, 
excessive drains from the first-point heaters and the drain receivers are collected by a condenser. All the 
valves to the condenser are otherwise closed off during normal operation. 
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Fig. 4. Process and Instrumentation Diagram for use case 

 
The yellow tags in Fig. 4 indicate the sensors typically available for such system. Each label containing 
PT denotes a pressure sensor, FE denotes a flowrate sensor and TE denotes a temperature sensor. For 
brevity, we will use short-handed labels when referring sensors. For example, E2.T, with E2 being the 
location label and T the variable type, refers to the temperature sensor at the inlet of FWH 1B as shown in 
Fig. 4. A Dymola simulation model for this system has been developed. Simulation data from the model 
was used for the analysis in this chapter. 
 
For this demonstration, we excluded the condenser from the P&ID as all its incoming piping lines are 
normally closed. The components in the system can be characterize by known generic types. Each drain 
receiver will be treated as coolant tank. Model development for each generic component type is discussed 
in the remainder of this section. 

6.3 Cluster-Based Optimization 

This section describes the steps to configure and use the Python parallel computing environment in multi-
core machine and multi-node distributed cluster. 
 
The user provides the following case specific information for evaluation of the cost function of Eq. (1). 
 

A. Piping and Instrument Diagram (PID) for use-case plant, which shows components, 
piping, and default sensor set. 

B. Alternate eligible locations for sensors for use case. 
C. Cost of sensor and installation for each of pressure, temperature, flowrate, and level 

measurement. 
D. Cost of correct diagnosis but where degree of spatial localization is greater than that of 

the actual faulted component 
E. Cost of failing to diagnose a particular fault. 
F. Cost of not uniquely diagnosing a particular fault. i.e. one of the more than one diagnosed 

faults is correct. 
G. Cost of an incorrect diagnosis 
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The key to the above list is Item A, the P&ID information suitably encoded for input. A select set lines 
from the input file for the use case is reproduced in Fig. 5. 
 

 

 
Fig. 5. Select lines from use case P&ID file 

 
To configure and use the “multiprocessing” package on a multi-core machine: 

1. Install the Data Science Platform “Anaconda 3”; 
2. In Anaconda, install the “multiprocessing” package using the command: 

~$ pip install multiprocessing 
3. A simple parallel program is as follows: 

import multiprocessing as mp 
 
def func(x): 
    return x * x # a function to return the square of a value 
 
if __name__ == '__main__': 
    pool = mp.Pool() # open a parallel pool 
    for j in range(1, 100000): 
        pool.apply_async(func, args=(j)) # Append the asynchronous jobs to pool 
    pool.close()  # Prevents any more tasks from being submitted to the pool 
    pool.join()  # Wait for the worker processes to exit. 

4. This program will automatically run on all the available CPU cores in the multi-core machine. 
 
To configure and use the “ray” package on a Linux cluster: 

1. Configure the IP address for each node: (the following is an example) 
a. Controller node: 192.168.0.201 
b. Worker node: 192.168.0.202 

2. Install the Data Science Platform “Anaconda 3” on all the nodes; 
3. In Anaconda, install the “ray” package on all the nodes: 

~$ pip install -U ray 
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4. On controller node, start the cluster service: 
~$ ray start –head –redis-port=1234 

5. On all the worker nodes, join the cluster by indicating the IP address of the controller node: 
~$ ray start –address=’192.168.0.201:1234’ 

6. Now the cluster service is active on all the nodes. A simple distributed program is as follows: 
import ray 
 
ray.init(address=”192.168.0.201:1234”) 
 
@ray.remote 
def func(x): 
    return x * x # a function to return the square of a value 
 
processes = [] 
if __name__ == '__main__': 
    for j in range(1, 100000): 
        processes.append(func.remote(j)) Append the remote jobs to sequence 
ray.get(processes) Fetch results from the sequence 

7. This program will automatically run on all the available CPU cores in the cluster. 

6.4 Preliminary Results 

The default sensor set for the high-pressure feedwater system appears in the P&ID of Fig. 4. For each of 
the components in the P&ID with their respective default sensor set there is an associated residual-fault 
table in the component model module. The list of realizable faults is shown in Table 3: 
 

Table 3. List of faults for the high-pressure feedwater system 
ID Comp. Label Comp. Type Fault 
1 1-FW-E-1A FWH Fouling 
2 1-FW-E-1A FWH Tube leak 
3 1-FW-E-1A FWH Shell leak 
4 1-FW-E-1A FWH Tube block 
5 1-FW-E-1B FWH Fouling 
6 1-FW-E-1B FWH Tube leak 
7 1-FW-E-1B FWH Shell leak 
8 1-FW-E-1B FWH Tube block 
9 FE-105 Flow sensor Sensor fault 

10 FW-TE-109A Temp. sensor Sensor fault 
11 FW-TE-110A Temp. sensor Sensor fault 
12 SD-FT-102A Flow sensor Sensor fault 
13 SD-TE-110A Temp. sensor Sensor fault 
14 ES-PT-100A Press. sensor Sensor fault 
15 FW-TE-109B Temp. sensor Sensor fault 
16 FW-TE-110B Temp. sensor Sensor fault 
17 SD-FT-102B Flow sensor Sensor fault 
18 SD-TE-110B Temp. sensor Sensor fault 
19 ES-PT-100B Press. sensor Sensor fault 
20 FW-PT-158 Press. sensor Sensor fault 
21 PT-100 Press. sensor Sensor fault 
22 1-FW-P-1A Feed pump Pump fault 
23 1-FW-P-1B Feed pump Pump fault 
24 MOV-150A Valve Leakage 
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25 MOV-150A Valve Blockage 
26 MOV-150B Valve Leakage 
27 MOV-150B Valve Blockage 
28 1-SD-P-1A Drain pump Pump fault 
29 1-SD-PT-100A Press. sensor Sensor fault 
30 1-SD-FT-100A Flow sensor Sensor fault 
31 1-SD-PT-108A Press. sensor Sensor fault 
32 1-SD-P-1B Drain pump Pump fault 
33 1-SD-PT-100B Press. sensor Sensor fault 
34 1-SD-FT-100B Flow sensor Sensor fault 
35 1-SD-PT-108B Press. sensor Sensor fault 
36 1-SD-P-1C Drain pump Pump fault 
37 1-SD-PT-100C Press. sensor Sensor fault 
38 1-SD-FT-100C Flow sensor Sensor fault 
39 1-SD-PT-108C Press. sensor Sensor fault 

 
 
In a preliminary demonstration, sensor E2.T (FW-TE-109B) was subjected to a bias that represents a 
calibration error. The posterior probabilities for the case of this sensor fault are shown in Table 4. The 
faults with the significant posterior probability are the four sensor faults and FWH 1B shell leakage. One 
can conclude the sensor faults are more likely than the leakage but, because of the limitation of the 
current sensor set, cannot differentiate among the four sensor faults. 
 
The inability to uniquely identify sensor E2.T as the failed sensor indicates that the default sensor set does 
not provide adequate coverage for diagnosing this sensor failure. The sensor assignment problem here 
then would be to determine that minimum cost sensor addition that would allow for a unique diagnosis to 
be made. The solution to that problem can be obtained with the methods and algorithms in this report. 
 

Table 4. Posterior probabilities for the case of a sensor fault at E2.T 
 

Fault ID 
 

Fault 
Symptoms 

r2 , r6 , r9 r2 , r6 , r7 , r9 
15 Sensor E2.T 25.7% 25.8% 
16 Sensor F2.T 25.7% 25.8% 
17 Sensor G2.w 25.7% 25.8% 
18 Sensor G2.T 25.7% 25.8% 
5 FWH 1B, Fouling 10.1% 10.1% 
7 FWH 1B, Shell leak. 5.1% 5.2% 
19 Sensor D2.P 5.0% 5.0% 

Other faults < 0.1% < 0.1% 
 

7 CONCLUSIONS 
The development of a parallel computing capability for determining the optimal sensor set was described. 
The optimal sensor set problem suffers from the curse of dimensionality. Computation time increases 
exponentially as the size of the system grows. To overcome this difficulty a pre-conditioner algorithm 
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was developed to find an approximate solution close to the actual solution. This serves as a seed for the 
full-blown algorithm and acts to constrain the space that must be searched. The optimization algorithms 
were described and the implementation on a parallel computing platform was described. The application 
of the method to a use case we are solving in collaboration with our utility partner served to illustrate how 
the default sensor set in a nuclear plant may not provide sufficient coverage to infer sensor calibration 
status.  



Description of Sensor Assignment Optimization Method as Deployed on a Multi-Node Cluster 
March 31, 2020 
 
8 REFERENCES 
[1] Big Data for Nuclear Power Plants Workshop, The Ohio State University, September 8, 2017. 
[2] Nuclear Plant Digitalization, Charlotte, NC, November 13, 2017. 
[3] R. Ponciroli, N.E. Stauff, J. Ramsey, F. Ganda and R.B. Vilim, “An Improved Genetic Algorithm 

approach to the Unit Commitment/Economic Dispatch problem,” IEEE Transactions on Power 
Systems, accepted for publication, March 2020. 

[4] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Reading, MA, 
USA: Addison-Wesley, 1989. 

[5] K.S. Swarup and S. Yamashiro, “Unit commitment solution methodology using genetic algorithm”, 
IEEE Trans. Power Syst., vol. 17, pp. 87-91, 2002. 

[6] S.A. Kazarlis, A.G. Bakirtzis, and V. Petridis, “A genetic algorithm solution to the unit commitment 
problem”, IEEE Trans. Power Syst., vol. 11, pp. 83-92, 1996. 

[7] Anaconda 3, https://www.anaconda.com/distribution/ 
[8] Multiprocessing package, https://docs.python.org/3.7/library/multiprocessing.html 
[9] Ray package, https://ray.readthedocs.io/en/latest/ 
[10] MIPCL-PY package, http://www.mipcl-cpp.appspot.com/mipcl-py.html 
[11] Python-MIP package, https://docs.python-mip.com/en/latest/intro.html 
[12] DEAP package, https://deap.readthedocs.io/en/master/ 
[13] Nicolas E. Stauff, R. Ponciroli, T. K. Kim, T. A. Taiwo, “Economic Impact of Flexible Nuclear 

Operation Estimated with EDGAR Optimization Code,” NURER 2018, Sept 30 – Oct 3, 2018, Jeju, 
Korea. 

  



Description of Sensor Assignment Optimization Method as Deployed on a Multi-Node Cluster 
March 31, 2020 
 
 
 
 
 
 
 
 
 
 

 
 

Nuclear Science and Engineering (NSE) Division 
Argonne National Laboratory 
9700 South Cass Avenue, Bldg. 208 
Argonne, IL 60439 
 
www.anl.gov 

 
Argonne National Laboratory is a U.S. Department of Energy  
laboratory managed by UChicago Argonne, LLC 


