Modifications to LEU-Modified Cintichem Process to Allow Processing of Fission-Produced 99Mo from Up to 750 g of Irradiated Uranium Targets

Chemical and Fuel Cycle Technologies Division
About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.
Modifications to LEU-Modified Cintichem Process to Allow Processing of Fission-Produced ^{99}Mo from Up to 750 g of Irradiated Uranium Targets

by
Peter Tkac and George F. Vandegrift
Chemical and Fuel Cycle Technologies Division

September, 2021
CONTENTS

1. Introduction ... 1
2. The LEU-Modified Cintichem Process ... 1
3. Potential Radiation Damage to the Mo-ABO Complex .. 3
4. Potential LMC Modifications for Eden .. 4
 4.1 Iodine Carrier .. 4
 4.2 Silver Nitrate ... 4
 4.3 Ru and Rh Carriers .. 5
 4.4 Mo Carrier and ABO ... 5
 4.5 Acidification Before Mo-ABO Precipitation .. 5
 4.6 Ag-Charcoal and Combination Column ... 6
5. Conclusion .. 7
6. References ... 8

FIGURES

Figure 1. α-benzoin oxime (ABO). ... 2
Figure 2. Scheme of LEU-modified Cintichem process for purification of ⁹⁹Mo from fission products (Ag/C = silver coated activated charcoal column, HZO = hydrated zirconium oxide). 3
1. INTRODUCTION

Eden Radioisotopes, LLC is developing a TRIGA®-sized, 2 MW all-target reactor system licensed from Sandia National Laboratories [1]. This all-target reactor uses up to 60 Argonne-designed annular LEU-foil targets to produce fission-produced 99Mo. The Eden low-enriched uranium (LEU) target contains ~137 g of uranium and will be irradiated at up to 30 kW, with a target burnup determined by the number of targets processed each week. The annular target utilizes metallic uranium foils 400 mm long by 72 mm wide by 250±25 -µm-thick covered by a thin (10 µm on each face) nickel fission barrier. The foil is placed between two 35 mil aluminum tubes that form the outer and inner walls of the cladding cylinder, which is hydroformed to provide high thermal conductivity within the target. Eden expects to process between three and five targets per process batch, to maintain the process batch 99Mo inventory at or below 5000 curies to maintain high 99Mo recovery, within a few hours of discharge from the reactor. Eden expects to meet full U.S. demand by processing 30 targets per week, with each target operated for two weeks at 30 kW. To meet less than full U.S. demand, both the target power and the number of targets processed weekly will be adjusted. With increased 99Mo production and given the size of U targets processed in a single batch (up to ~750g-U), it is important to identify whether any modifications are needed to the LEU-modified Cintichem process.

Eden’s proposed separation scheme starts with acidic dissolution of irradiated U-metal targets using nitric acid. Dissolved U containing 99Mo and other fission products is then loaded on a titania (titanium dioxide) column to separate 99Mo from the bulk uranium. Uranium and most fission products in the feed solution are not adsorbed on the column and remain in the eluate. After washing steps, molybdenum and other fission products are stripped from the TiO$_2$ column using a sodium-hydroxide solution. The strip-eluate solution is then acidified and submitted for a final purification using the LEU-modified Cintichem (LMC) process. The uranium is then precipitated by base to drive the formation of insoluble uranyl-hydroxide (most of the Tc is removed), redissolved in nitric acid, and submitted for solvent extraction with tri-n-butyl phosphate (TBP; UREX = uranium extraction) to purify and recover the uranium. After acetohydroxamic acid is used to scrub the co-extracted Np/Pu, U is stripped from the TBP using dilute nitric acid.

To recycle the uranium into new targets, this solution must be converted to uranium metal. The conversion of the UREX strip solution to uranium metal is a multistep process. The two primary steps for conversion are (1) conversion of the solution to UO$_2$ and (2) conversion of UO$_2$ to U metal [2].

2. THE LEU-MODIFIED CINTICHEM PROCESS

The Cintichem process, developed in 1974 at the Cintichem facility in Tuxedo, N.Y., is a small-scale (starting solution is ~50 mL) method for purification of fission-produced molybdenum using specific glassware designed for remote operation in a hot cell. It was developed to separate useful isotopes like 99Mo from mixed fission products produced by irradiation of 93% 235U HEU (UO$_2$) in a 5-megawatt open-

* General Atomics’ TRIGA® (Training, Research, Isotopes, General Atomics)
pool reactor [3]. From 1980 to 1989, Cintichem Inc.† was the only U.S. producer of 99Mo, with a
production rate of ~2000 6-day Ci/week (1 Ci = 3.7×10^{10} Bq).

The Cintichem process was later modified by Argonne National Laboratory to enable production of 99Mo
by LEU foil target, and sulfuric acid was replaced by nitric acid. The modified process is called the LEU-
modified Cintichem process or LMC process. Several full-scale demonstrations of the LMC process were
performed at the Indonesian Badan Tenaga Atom Nasional (BATAN) facility in Indonesia between 1998
and 2010 [4]. Several papers on the LMC process have been published [5, 6, 7, 8], indicating continuous
interest in this small-scale purification process.

The key reagent of the Cintichem process, α-benzoin oxime (ABO), shown in Figure 1, allows selective
precipitation of Mo from acidic media (~1M HNO$_3$) where molybdenum is primarily present as
molybdenyl cation (MoO_2^{2+}) in the following reaction:

$$\text{MoO}_2^{2+} + 2\text{C}_6\text{H}_5\text{CH(OH)C(:NOH)C}_6\text{H}_5 \rightarrow \text{MoO}_2[\text{C}_6\text{H}_5\text{CH(O)C(:NOH)C}_6\text{H}_5]_2 + 2\text{H}^+ \text{ (Eq. 1)}$$

Figure 1. α-benzoin oxime (ABO).

The LMC process (Figure 2), in which Mo is purified from actinides and other fission products, has
several steps, most of which are for the removal of radioiodine. During the dissolution of uranium foil in
nitric acid, most of the iodine present as I$_2$ is volatilized and collected in an iodine trap, although other
iodine species such as I$^-$, IO$_3^-$ and IO$_4^-$ may be present. The fission-produced 99Mo can be separated from
uranium by loading the uranium solution obtained after dissolution of irradiated targets on a titania-based
column. While uranium and some other fission products pass through, Mo is retained on the column [9,
10] and then recovered using ~1 M NaOH, which needs to be converted to ~1 M HNO$_3$ in order to further
purify Mo from other fission products by the LMC process. After the Mo-strip solution is converted to ~1
M HNO$_3$, iodide is precipitated as AgI by adding NaI and AgNO$_3$ (Figure 2). The remaining silver is
precipitated by adding HCl. Precipitation of iodide ions by the addition of silver nitrate is considered
quantitative; the solubility product of AgI is 8.3×10^{-17} M [11]. The I$_2$, which does not co-precipitate with
silver ions, can be removed by reaction with silver metal to form the insoluble AgI. The solubility of
silver iodate is also limited but is significantly larger (3.1×10^{-8} M) [11] than that of AgI. It is likely that
AgIO$_3$ is even more soluble than AgIO$_3$. Vandegrift et al. [12] have shown that radioactive iodine present

† The research facility was later sold to Hoffman-LaRoche.
as periodate can be removed by co-precipitation with AgI and AgCl if sufficient time is allowed for isotopic exchange.

The next step in the LMC process is the addition of an Mo carrier, to aid in its precipitation, and Ru and Rh hold-back reagents, to prevent their co-precipitation with Mo. To keep Mo in a hexavalent oxidation state, potassium permanganate is added. After the addition of ABO, a white flocculate precipitate is formed and is collected on a fritted-glass filter containing glass beads. The Mo-ABO precipitate is then washed multiple times with 0.1 M HNO₃. The Mo-ABO precipitate is then dissolved in a heated NaOH/H₂O₂ solution. The glass beads are present to aid in washing the precipitate and to allow for better dissolution. The solution containing Mo and re-dissolved ABO is passed through a silver-coated charcoal column (Ag/C). Molybdenum passes through, while organic residuals are retained on the charcoal bed. If I₂ is present, it reacts with the silver metal on the Ag/C column to form insoluble AgI. Before the solution is loaded on a combination column, which consists of equal volume beds of activated charcoal, hydrous ZrO (HZO, which acts as a cation exchanger), and Ag/C, precipitation of trace iodine is repeated by adding NaI and AgNO₃. The AgI precipitate is collected on the combination column, and Mo is eluted with 0.2M NaOH.

![Diagram of the LEU-modified Cintichem process for purification of 99Mo from fission products]

Figure 2. Scheme of LEU-modified Cintichem process for purification of 99Mo from fission products (Ag/C = silver coated activated charcoal column, HZO = hydrated zirconium oxide).

3. POTENTIAL RADIATION DAMAGE TO THE Mo-ABO COMPLEX

Typically, Cintichem and BATAN processed targets containing less than 1000 Ci of 99Mo and did so without losses in Mo recovery, due to a radiolytic instability of the Mo-ABO complex. Since Eden is
expecting to produce several kCi of 99Mo and process it using a single LMC run, it is important to understand the activity limit (kCi of 99Mo) that could cause radiation damage to the Mo-ABO complex and negatively affect Mo recovery. With increased 99Mo production, due to the size of U targets processed in a single batch (up to ~750g-U), it is important to identify whether any modifications are needed to the LEU-modified Cintichem process. To cover 50% of U.S. demand, Eden plans to process 21 targets per week, producing ~1,300 6-day Ci/week. By processing five targets in a single batch, Eden is expected to process ~2.7kCi of 99Mo activity—more than what was normally processed from 1980 to 1989 in the Cintichem facility, the only former U.S. producer of fission-produced 99Mo with weekly production of ~2000 6-day Ci/week [13, 14, 15, 16, 5]. With higher activities of 99Mo processed in a single batch, a concern is that $^\alpha$-benzoin oxime (ABO), the key reagent in the process, could break down under high radiation conditions. However, previous experiments on radiation stability of ABO performed at Argonne indicate that 99Mo yields will not be decreased when up to ~7kCi of 99Mo is processed in a single batch [17, 18, 19].

4. POTENTIAL LMC MODIFICATIONS FOR EDEN

With the increased amount of irradiated uranium processed in a single batch, it is important to see whether any modifications are needed in the LMC process to offset the higher concentration of certain elements (assuming 30kW for 21d irradiation per target). By processing up to five U targets in a single batch, it is expected that final volume of acidic HNO$_3$ solution produced after dissolution of U targets would be around 2 L. This solution would be passed through a TiO$_2$ column to remove bulk U, and the Mo solution would then be eluted in a basic NaOH solution (<50 mL). After acidification to ~1 M HNO$_3$, this solution could then be directly used by LMC to purify 99Mo. For this exercise, it is assumed that fission-produced Mo, I, Ru, and Rh are not retained by the TiO$_2$ column. Because natural Mo, I, Ru, and Rh compounds are added as carriers in the LMC process, this is an important assumption for the discussion below.

4.1 Iodine Carrier

The first step in the LMC process is iodine precipitation. In this step, 4 mg of iodine are added as 4 mL NaI (4mg/mL) to facilitate the precipitation of radioiodine. This is equivalent to ~0.0315 mmol of iodine. However, the expected amount of iodine produced in five U targets is ~45 mg (0.425 mmol). Although it is likely that the bulk of the iodine will be volatilized during the nitric acid dissolution of the foils, it is currently not clear what fraction will remain in solution, and iodine is constantly being formed by the decay of radioactive tellurium isotopes. In the standard LMC process, 50 mg of Ag (0.463 mmol) are added as 0.5 mL of 10% AgNO$_3$ in 0.1M HNO$_3$ to precipitate added the 4mg of iodine carrier. Due to the much greater quantity of Ag than I in the standard LMC process (~15x), to effectively remove iodine produced in five irradiated targets, the amount of Ag needs to be increased to a maximum of 560 mg of Ag (5.2 mmol of Ag), or ~5.6 mL of 10% AgNO$_3$ solution. The effectiveness of this iodine removal should be explored experimentally.

4.2 Silver Nitrate

Because large amounts of Ag are needed to effectively remove iodine, the next step in the standard LMC process is to remove Ag by adding HCl (1 mL of 1M HCl or 1 mmol of HCl). This needs to be increased to 11.3 mmol of HCl or 1.13 mL of 10 M HCl.
4.3 Ru and Rh Carriers

Then, before the selective precipitation of Mo with ABO, Ru and Rh carriers are added to prevent their coprecipitation with Mo. In the standard LMC process, 12 mg of Rh (0.117 mmol of Rh) is added as 1.5 mL of 8 mg-Rh/mL, and 10 mg of Ru (0.099 mmol of Ru) is added as 2 mL of 5 mg-Ru/mL. The amount of Ru produced in five irradiated targets—204.5 mg (2 mmol of Ru)—greatly exceeds the amount that is added as a carrier in the standard LMC process. The amount of Rh produced is 9.1 mg (~0.088 mmol), which is close to the amount currently added as a carrier. It is expected that addition of Ru and Rh carriers should not affect Mo decontamination, but experiments should be performed to validate this claim.

4.4 Mo Carrier and ABO

The addition of a Mo carrier for precipitation of 99Mo with ABO can affect the specific activity of the final product. This depends on curie production of 99Mo and how much carrier is added. In the standard LMC process, 5 mg of Mo (0.052 mmol of Mo) is added as 0.5 mL of 10 mg–Mo/mL solution. It is expected that up to ~260 mg of Mo (2.7 mmol of Mo) can be produced in five irradiated targets; therefore no addition of Mo carrier would be needed. However, due to the higher content of Mo, the amount of ABO needs to be increased to ensure the complete precipitation of Mo. In the standard LMC process, 20 mL of fresh 2% ABO (1.76 mmol of ABO) in 0.4M NaOH is added, which produces an ABO:Mo molar ratio of 33.8. To keep the same ABO:Mo ratio as in the standard LMC process, ~91.5 mmol of ABO would be required. Due to the limited solubility of ABO in 0.4M NaOH, its concentration needs to remain the same, and practically speaking, only the volume of solution can be increased. This, however, leads to the unreasonable volume of ~1 L of 2% ABO. Previous studies that looked at the minimum ABO:Mo ratio for effective precipitation of Mo suggest that much smaller amounts of ABO could be sufficient [20]. It was demonstrated that an ABO:Mo ratio of 3.6 or higher led to complete Mo precipitation. Therefore, it is expected that 4x ABO:Mo mole ratio should provide satisfactory Mo precipitation yields. Based on these results, about 2.5 g of ABO would be needed, which could be added as ~120 mL of 2% ABO in 0.4 M NaOH.

It should be noted, however, that increased amounts of KMnO$_4$ can have a negative impact. The addition of KMnO$_4$ in the LMC process is performed as a colorimetric titration, where the addition is stopped after a deep pink color develops. This ensures that Mo is in the appropriate oxidation state for complexation with ABO. At low KMnO$_4$ concentrations, the Mo-ABO complexation formed a white flocculent precipitate that was easy to transfer and that dissolved readily in hot NaOH/H$_2$O$_2$ solutions. When increased amounts of 2.5% KMnO$_4$ solution were used (20x), significant losses of Mo were observed. First, the precipitation of Mo with ABO was affected, and 24% of Mo was found in the effluent stream [20]. Secondly, the precipitate morphology changed, forming dense, viscid clumps that resisted dissolution and adsorbed easily to glass and plastic surfaces. These precipitate characteristics led to downstream losses during the mixing and dissolution steps. About 12% of the Mo was left undissolved on the filter after dissolution, with other losses accruing on surfaces and mixing equipment, leading to a total Mo loss of 36% [20].

4.5 Acidification Before Mo-ABO Precipitation

As indicated previously, it is important that Mo is present as molybdenyl species to allow for complexation with ABO (Eq. 1). This can only be achieved under acidic conditions, so an appropriate amount of HNO$_3$ is needed. In the standard LMC process, 11 mL of 4 M HNO$_3$ is added after the iodine precipitation step to wash the AgI precipitate; however, with increased amounts of ABO in 0.4 M NaOH added to offset higher the Mo content in Eden’s process, the amount of HNO$_3$ needs to be appropriately
increased to keep the solution ~1 M HNO₃. Total H⁺/OH⁻ concentrations in the standard LMC process are shown in Table 1. In Table 1, the reagents are listed horizontally as they are added. The first column is the reagent added followed by its volume and hydrogen ion or hydroxide concentrations. The next column is the total volume of the resulting solution, followed by the resulting hydrogen ion concentration. After the addition of the ABO solution, the hydrogen ion concentration is calculated to be 0.971 M.

Table 1. Concentration of H⁺ before precipitation of Mo-ABO versus reagents added in the standard LMC process.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>V ml</th>
<th>[H⁺] M</th>
<th>[OH⁻] M</th>
<th>V(total) mL</th>
<th>H⁺ M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M HNO₃</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>60</td>
<td>1.000</td>
</tr>
<tr>
<td>NaI</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>0.938</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>0.5</td>
<td>0.1</td>
<td>0</td>
<td>64.5</td>
<td>0.931</td>
</tr>
<tr>
<td>HNO₃</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>75.5</td>
<td>1.378</td>
</tr>
<tr>
<td>HCl</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>76.5</td>
<td>1.373</td>
</tr>
<tr>
<td>Mo carrier</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>77</td>
<td>1.364</td>
</tr>
<tr>
<td>KMnO₄</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>1.313</td>
</tr>
<tr>
<td>ABO</td>
<td>20</td>
<td>0</td>
<td>0.4</td>
<td>100</td>
<td>0.971</td>
</tr>
</tbody>
</table>

If no additional HNO₃ is added, and the volume of ABO is increased to 120 mL to offset the higher Mo content, the concentration of HNO₃ before Mo precipitation would be 0.282 M, which is not sufficient. Therefore, it is important to adjust the acidity of the solution before the Mo-ABO precipitation step. This could be done by addition of 12 mL of 16 M HNO₃ after the iodine precipitation step, or, more conveniently, adjust the HNO₃ concentration after the acidification of the titania strip solution to ~3.4 M (instead of ~1 M). Based on this exercise, modified volumes of reagents and the adjusted starting HNO₃ concentration are shown in Table 2. The final hydrogen ion concentration in this case is 0.98 M.

Table 2. Concentration of H⁺ before precipitation of Mo-ABO versus reagents added for the LMC process with higher volume of ABO

<table>
<thead>
<tr>
<th>Reagent</th>
<th>V ml</th>
<th>[H⁺] M</th>
<th>[OH⁻] M</th>
<th>V(total) mL</th>
<th>H⁺ M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M HNO₃</td>
<td>60</td>
<td>3.4</td>
<td>0</td>
<td>60</td>
<td>3.400</td>
</tr>
<tr>
<td>NaI</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>3.188</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>6.75</td>
<td>0.1</td>
<td>0</td>
<td>70.75</td>
<td>2.893</td>
</tr>
<tr>
<td>HNO₃</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>81.75</td>
<td>3.042</td>
</tr>
<tr>
<td>HCl</td>
<td>1.35</td>
<td>1</td>
<td>0</td>
<td>83.1</td>
<td>3.009</td>
</tr>
<tr>
<td>Mo carrier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83.1</td>
<td>3.009</td>
</tr>
<tr>
<td>KMnO₄</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>86.1</td>
<td>2.904</td>
</tr>
<tr>
<td>ABO</td>
<td>120</td>
<td>0</td>
<td>0.4</td>
<td>206.1</td>
<td>0.980</td>
</tr>
</tbody>
</table>

4.6 Ag-Charcoal and Combination Column

The final purification steps performed in the LMC process are performed by a combination of the Ag-charcoal column, which removes residual organic content after the dissolution of the Mo-ABO complex, and the combination column, composed of Ag-charcoal, hydrous zirconia and activated charcoal, which acts as a final step for the removal of any impurities left in Mo product. Due to the increased amount of ABO needed for the Eden-modified LMC process, is possible that a larger column will be needed for
effective purification. The column size needed for effective removal of organic content needs to be determined experimentally.

5. CONCLUSION

Overall, the LMC process is applicable to purifying the 99Mo produced by the Eden system, but because of the amount of fission products expected in five irradiated U targets (750g of U total, at 30kW and 21d irradiation) several modifications are needed:

- Due to the higher iodine content expected, the amount of AgNO₃ and HCl needs to be increased.
- Due to an expected higher Mo content, the amount of ABO needed to effectively remove Mo by precipitation rises from 20 mL of 2% ABO to about 120 mL.
- This in turn leads to the need to increase the amount of HNO₃ added to ensure acidic conditions before the Mo-ABO precipitation step.
- It is also possible that the appropriate size of the Ag-charcoal and combination columns would need to change; this should be determined experimentally.

Because of the complex redox chemistry in these solutions, the changes suggested above must be tested with irradiated uranium to assure high yields and purity of the 99Mo product.
6. REFERENCES

