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Abstract 

Third-party and expert analysis is a cost-effective solution for solving specialized problems or 

processing large datasets related to reactor structural health monitoring and nondestructive 

evaluation. However, when handling proprietary information, third-party and expert analysts pose 

a privacy risk. To address this challenge, Homomorphic Encryption (HE) permits arithmetic 

operations on encrypted data without exposing the underlying data. Implementations of Machine 

Learning (ML) and Artificial Intelligence (AI) algorithms using HE greatly enhances the 

capabilities of third-party analysts while maintaining a low security risk. This paper details current 

success in applying Principal Component Analysis (PCA) and Fully Connected Neural Networks 

(NN) using the Microsoft SEAL implementation of the popular CKKS Fully Homomorphic 

Encryption (FHE) algorithm. The MNIST Handwritten Dataset is analyzed as a proof-of-concept 

demonstration of the implementations. 
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1. Introduction 

Third-party and expert analysis is a cost-effective solution for solving specialized problems or 

processing large datasets related to reactor structural health monitoring [1-3] and nondestructive 

evaluation [4-7]. However, when handling proprietary information, third-party and expert analysts 

pose a privacy risk. To address this challenge, Homomorphic Encryption (HE) permits arithmetic 

operations on encrypted data without exposing the underlying data. As a result of their ability to 

modify the underlying data of a given ciphertext, HE cryptosystems are a powerful tool for 

maintaining privacy. During operation, the user or corporate data is encrypted using the HE 

algorithm and is transferred to the data processor. The processor then completes their desired 

operations on the ciphertext without revealing the sensitive data. An example of this exchange can 

be seen in Figure 1, where a client transmits their encrypted data to a third-party server. Potential 

applications of HE cryptosystems include the application of a filter on a user image, analysis of 

network traffic data from a government network, and cyberattack detection for critical 

infrastructure. For this report, we will apply several Machine Learning (ML) and Artificial 

Intelligence (AI) models on the MNIST Handwritten dataset for model accuracy and analysis of 

storage size and timing considerations. Future work will be focused on applying HE cryptosystems 

for defect detection on thermal imaging data.  

 
Figure 1 - A common application of Homomorphic Encryption technology. The client will 

encrypt their data using the HE algorithm and will transmit it to the server for processing. The 

server will apply their chosen operations and send the resulting ciphertext back to the client for 

decryption.  

 

Homomorphic Encryption (HE) is a family of public key encryption algorithms that permit 

operations on ciphertext without exposing the underlying data. Different levels of HE exists, with 

initial generations and partially homomorphic cryptosystems providing support for limited 

operations, arbitrary circuits, and circuits of bounded depth. Recently, Fully Homomorphic 

Encryption (FHE) cryptosystems were introduced that permit arbitrary circuits of unbounded 

depth. For our purposes, we selected the Microsoft SEAL implementation of the popular CKKS 
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algorithm [8]. This algorithm was introduced by Cheon et al. to support approximate addition and 

multiplication on ciphertexts and provides a rescaling method for managing the scale of the 

plaintext during operations [9]. Due to these capabilities, the selected Microsoft SEAL 

implementation was a clear choice for constructing our Machine Learning (ML) and Artificial 

Intelligence (AI) algorithms. It is important to note that our implementation will complete training 

of the models on the plaintext data before transferring the weights to the HE implementation for 

training. However, there are two primary challenges when working with FHE cryptosystems, 

namely the large increase in size when encrypting the plaintext into ciphertext and the inability to 

directly compute comparisons and division operations.  

The remainder of this report will discuss our efforts towards implementing several Machine 

Learning and Artificial Intelligence models for Homomorphic Encryption. First, we will discuss 

challenges and solutions when working with HE. Next, we will discuss the ML and AI models that 

will be constructed for our application. Finally, we will discuss our results when building these 

models in plaintext and using the HE cryptosystem. 

 

  



6 
 

2. Homomorphic Encryption Challenges and Solutions 

During initialization, the CKKS algorithm requires a poly-modulus degree, which sets the 

ciphertext space for operations, along with a set of coefficients for resizing. Whenever a 

multiplication operation is completed, the size of the ciphertext grows linearly and must be 

rescaled and re-linearized before completing any new operations [10]. This prevents our ciphertext 

from outgrowing the allotted space while also limiting the potential error size. Further, since this 

procedure uses one of the pre-selected coefficients, there is a hard limit on the number of 

operations depending on how many coefficients and the size of the poly-modulus degree. For 

instance, for a set of 2 operations we require 4 coefficients with a poly-modulus degree of 8192 

while 4 operations require 6 coefficients and an even larger poly-modulus degree of 16384. When 

stored, 10 standardized images are stored as 68.4 Kilobytes whereas the encrypted data is stored 

as 2.45 Gigabytes for a poly-modulus degree of 8192 and 7.73 Gigabytes for a poly-modulus 

degree of 16384. In addition to increasing the storage size for our ciphertext, this also increases 

the memory space used by plaintext values that we intend on multiplying or adding to our 

ciphertext. A comparison between the storage size for each poly-modulus degree can be seen in 

Figure 2. Unfortunately, we do not present a solution for this challenge in this paper but will 

explore this challenge in future endeavors.  

 

Type Size Size Ratio 

Plaintext 68.4 KB 1 

8192 poly-modulus degree 2.45 GB  35,818 

16384 poly-modulus degree 7.73 GB  113,011 

Figure 2 - Storage size comparison for 10 standardized images from the MNIST Handwritten 

dataset. The compared files were for the plaintext, the images encrypted with a poly-modulus 

degree of 8192, and images encrypted with a poly-modulus degree of 16384. As shown FHE 

greatly increases the required storage size when compared to the plaintext. 

 

Since we are limited to only addition and multiplication operations, we are limited in the types 

of functions that we can directly implement using the HE toolkits. For instance, the ReLU, 

SoftMax, and sigmoid functions require comparisons and division operations. To work around this 

challenge, we can use polynomial approximation to develop approximate functions for these 

common activation functions [11-15]. During polynomial approximation, we will attempt to find 

the coefficients for the order of the equation that we desire. An example equation with order 2 can 

be seen in Equation 1. Determining the required coefficients is accomplished by taking the 

difference between the desired function and the approximate function over a given limit, as shown 

in Equation 2. By minimizing Equation 2, we achieve the necessary coefficients. For a ReLU 

function over the range -20 to +30, we receive Equation 3. A comparison between the ReLU 

function and its polynomial approximation is displayed in Figure 3.  

 

 



7 
 

 

𝑝𝑛(𝑥) =  𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2                                              (1) 

 

                                        𝑔(𝑥) = ∫ (𝑓(𝑥) − 𝑝𝑛(𝑥))2𝑑𝑥 
𝐿

−𝐿
                                          (2) 

 

                                     𝑝(𝑥) = 2.593 + 0.4752𝑥 + 0.0173𝑥2                                                       (3) 

 

 
Figure 3 - Comparison between the ReLU activation function and its polynomial approximation. 

  



8 
 

3. Machine Learning and Artificial Intelligence Models  
Due to their flexibility in solving a wide range of problems, Machine Learning (ML) and 

Artificial Intelligence (AI) were selected for implementation using the Homomorphic Encryption 

(HE) toolkit. As noted, many of these algorithms rely on non-arithmetic operations that require 

polynomial approximation. First, we decided to examine Fully Connected Neural Networks due 

to their simplicity and application in other AI models. Shown in Figure 4, a small NN with two 

layers is displayed. The first hidden layer uses the ReLU activation function and has 100 output 

nodes while the second layer uses the SoftMax function with 10 output nodes. Polynomial 

approximation was used for the ReLU function, but since the largest output of the second layer 

will be the largest value of the SoftMax function, we did not approximate the SoftMax function. 

 
Figure 4 - Architecture of a small Fully Connected Neural Network. For our implementation, the 

first hidden layer used the ReLU activation function with 100 output nodes while the final layer 

used the SoftMax function and had 10 output nodes. 

 

Next, we examined Convolutional Neural Networks (CNN) as they are a powerful tool at 

categorizing and analyzing images. For a simple implementation, we developed our CNN to use 

two convolutional layers, a max pool layer, and two fully connected layers. This yielded mediocre 

results and further testing will be conducted before it is converted into a fully HE implementation.  

  

 
Figure 5 - Architecture of a simple Convolutional Neural Network. This CNN included two 

convolutional layers, a max pool layer, and two fully connected layers. 
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Finally, the only Machine Learning model that is currently being considered is Principal 

Component Analysis (PCA). This unsupervised model allows us to reduce our features based on 

their contribution. We have successfully implemented the plaintext version and still need to 

implement the HE version. PCA will be a great tool in decreasing the feature space, and will also 

be used later during defect detection for thermal imaging.  
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4. Results 
We used the MNIST Handwritten Dataset to validate our plaintext and Homomorphic 

Encryption models. The MNIST Handwritten Dataset is composed of 28x28 black and white 

images that represent handwritten versions of the digits 0-9. In terms of our models, we 

successfully implemented the Fully Connected Neural Network described in Figure 4 and the 

Convolutional Neural Network described in Figure 5. Additionally, we successfully implemented 

an Approximated Neural Network that replaced the ReLU function with the polynomial 

approximation. Further, an additional model that preprocesses the dataset using PCA was also 

implemented in plaintext but not in HE. Figure 6 presents the accuracy results after training the 

models on 1000 images and testing the models on 100 images. Based on these results, we still need 

to conduct further work on different CNN architectures as the current implementation can only 

achieve an accuracy of 59.1%. The Neural Network performed well with 83.8% accuracy while 

the Approximate ReLU function decreased the accuracy by around 7.7%, so different orders of 

approximation will be explored to decrease the change. Finally, the PCA implementation achieved 

the best result with 85.9% accuracy, which is promising as a method for improving accuracy and 

decreasing runtime.  

 

Model  Accuracy  

Neural Network   83.8% 

Approximated Neural Network  76.1% 

Principal Component Analysis + Neural Network  85.9% 

Convolutional Neural Network  59.1% 

Figure 6 - Testing accuracy when categorizing the MNIST Handwritten dataset. The models 

included a simple Neural Network, pre-processing using Principal Component Analysis, a 

Convolutional Neural Network, and an Approximated Neural Network. 

 

While we only implemented the Neural Network using Homomorphic Encryption, we had 

clear results regarding the large impact on timing that is experienced. While we receive an identical 

result between the NN and Approximated NN models, the Approximate version took around 

150,000 times longer to run on average. Figure 7 presents the average runtime per image when 

running our different models. For the Approximated model, it took around 5 minutes per prediction 

whereas the plaintext version only took 2 milliseconds on average.  

 

Model  Time  

Plaintext Operations 2.001×10-3 seconds 

Homomorphic Encryption Operations  295.3 seconds 

Figure 7 - Average Timing analysis of the Approximated Neural Network when completed 

using plaintext operations and when completed using Homomorphic Encryption operations. As 

shown, the HE implementation takes far longer to complete. 
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5. Conclusions 

Overall, we were successful at exploring the potential use of Machine Learning and Artificial 

Intelligence within the scope of Homomorphic Encryption. Polynomial Approximation was 

explored as a potential solution to the limited scope of operations presented by the HE toolkits. 

Neural Networks, Convolutional Neural Networks, and Principal Component Analysis were 

implemented in plaintext while an Approximate Neural Network was implemented in HE. Based 

on our results, the Approximate Neural Network was accurate, but experienced very poor runtime 

characteristics which need to be analyzed in future work. We plan on exploring the PCA 

implementation further along with other Machine Learning Models, such as Independent 

Component Analysis, Sparse Coding, and Exploratory Factor Analysis. These will be applied 

towards defect detection in thermal imaging.  
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