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EXECUTIVE ABSTRACT 

The U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation 
(NEAMS) program develops an integrated suite of advanced reactor physics tools built upon 
the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework. Each code 
generally requires an input finite element mesh on which the physics solution is calculated, 
reported, and transferred to other physics codes. The meshing process is often burdensome for 
the complex geometries present in reactors due to lack of easy-to-use, open-source meshing 
tools.  
To address the bottleneck associated with meshing complex geometries found in nuclear 
reactors, NEAMS initiated the development of the MOOSE Reactor Module starting in FY21. 
The Reactor Module builds off the existing MOOSE Mesh System to include targeted meshing 
capabilities such as the ability to generate hexagonal pin cells, assemblies with ducts, rotating 
control drums, cores, peripheral zones around a core, as well as the automatic labeling 
(“reporting IDs”) of pin, assembly, and planar zones to simplify post-processing of results. As 
a Physics Module in MOOSE, the Reactor Module is open-source, available with any MOOSE 
installation, directly compatible with MOOSE-based tools, and can be invoked from MOOSE-
based applications to generate meshes. Functionality from the Reactor Module has been applied 
to several advanced reactor concepts to demonstrate user workflow improvements and 
accuracy. The primary objective of the Reactor Module is to improve useability of MOOSE-
based tools by streamlining mesh generation and output inspection processes. 
During FY22, the functionality of the Reactor Module (and accompanying Mesh System) has 
been expanded based on user needs. First, the Reactor Geometry Mesh Builder capability 
developed primarily in FY21 has been refactored and merged to the public MOOSE repository. 
This capability wraps underlying Reactor Module mesh generators into a “Pin – Assembly – 
Core” workflow appropriate for conventional Cartesian and hexagonal geometries, and notably 
assigns material IDs during mesh generation stage and generates only the minimal number of 
blocks needed in order to reduce computational burden. Biasing and boundary layer options 
have been added to the base mesh generators as required by thermal hydraulics solvers. The 
reporting ID functionality has been expanded to differentiate ring-wise and azimuthal sectors 
within a pin for use with depletion algorithms, and VectorPostProcessor and Reporter objects 
are now available to integrate solution variables across zones based on ID combinations. 
Functionality to trim hexagonal meshes along the center or periphery has been developed so 
users may leverage symmetry and reflective boundary conditions to reduce the mesh size. A 
flexible and powerful tool to fill the space between two sidesets has been introduced to the 
framework and can be used for transition layers such as stitching two assemblies together with 
different numbers of pins, or for complex geometries which do not follow conventional 
Cartesian/hexagonal patterns. Finally, additional verification problems were performed with 
NEAMS physics tools in complement with existing NEAMS work. 
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1 Introduction  
The U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation 
(NEAMS) program (Stanek, 2019) develops an integrated suite of advanced reactor physics tools 
built upon the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework 
(Permann, et al., 2020).. Each code generally requires an input finite element mesh on which the 
physics solution is calculated, reported, and transferred to other physics codes. The meshing process 
is often burdensome for the complex geometries present in reactors due to lack of easy-to-use, 
open-source meshing tools.  
To address the bottleneck associated with meshing complex geometries found in nuclear reactors, 
NEAMS initiated the development of the MOOSE Reactor Module starting in FY21 (Shemon, et 
al., 2021). The Reactor Module builds off the existing MOOSE Mesh System to include targeted 
meshing capabilities such as the ability to generate hexagonal pin cells, assemblies with ducts, 
rotating control drums, cores, peripheral zones around a core, as well as the automatic labeling 
(“reporting IDs”) of pin, assembly, and planar zones to simplify post-processing of results. As a 
Physics Module in MOOSE, the Reactor Module is open-source, available with any MOOSE 
installation, directly compatible with MOOSE-based tools, and can be invoked from MOOSE-
based applications to generate meshes. Functionality from the Reactor Module has been applied to 
several advanced reactor concepts to demonstrate user workflow improvements and accuracy. The 
primary objective of the Reactor Module is to improve useability of MOOSE-based tools by 
streamlining mesh generation and output inspection processes. 
During FY22, the functionality of the Reactor Module (and accompanying Mesh System) has been 
expanded based on user needs. First, the Reactor Geometry Mesh Builder capability developed 
primarily in FY21 has been refactored and merged to the public MOOSE repository. This capability 
wraps underlying Reactor Module mesh generators into a “Pin – Assembly – Core” workflow 
appropriate for conventional Cartesian and hexagonal geometries, and notably assigns material IDs 
during mesh generation stage and generates only the minimal number of blocks needed in order to 
reduce computational burden. Biasing and boundary layer options have been added to the base 
mesh generators as required by thermal hydraulics solvers. The reporting ID functionality has been 
expanded to differentiate ring-wise and azimuthal sectors within a pin for use with depletion 
algorithms, and VectorPostProcessor and Reporter objects are now available to integrate solution 
variables across zones based on ID combinations. Functionality to trim hexagonal meshes along 
the center or periphery has been developed so users may leverage symmetry and reflective 
boundary conditions to reduce the mesh size. A flexible and powerful tool to fill the space between 
two sidesets has been introduced to the framework and can be used for transition layers such as 
stitching two assemblies together with different numbers of pins, or for complex geometries which 
do not follow conventional Cartesian/hexagonal patterns. Finally, additional verification problems 
were performed with NEAMS physics tools in complement with existing NEAMS work. Software 
enhancements and verification problems related to the MOOSE Reactor Module are described in 
this technical report. 
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2 Stakeholder Engagement and Priorities 
In the first year of Reactor Module development, priorities were gathered from the MOOSE 
framework team, Griffin (Lee C. , et al., 2021) developers, and Bison (Williamson, et al., 2021) 
developers. Ideas were also drawn from previous experience developing and using Argonne’s Mesh 
Tools (Smith & Shemon, 2015) which is a reactor-oriented meshing toolkit specifically for use with 
the PROTEUS finite element transport code (Shemon, Smith, & Lee, 2016). Initial work focused 
on addressing immediate meshing needs of the reactor physics community and resulted in a series 
of mesh generator capabilities for hexagonal geometry (pins, assemblies, cores, core periphery) as 
well as reporting ID functionality.  
Stakeholder engagement expanded in FY22 to include developer/users of Thermal Fluids Technical 
Area codes, NEAMS multiphysics users (both inside and outside the program) working on specific 
reactor concepts, and research staff from the Nuclear Regulatory Commission. Oral presentations 
on new capabilities were given to NEAMS Senior Leadership, the Reactor Physics Technical Area, 
audience at the NEAMS Annual Review Meeting, the mid-year NEAMS Multiphysics 
Applications non-LWR focus meeting, and the Nuclear Regulatory Commission research group 
during FY22. Additional briefings were held with the NEAMS Workbench  (Lefebvre, et al., 2019) 
development team as they incorporate meshing workflow into PyGriffin. The team coordinated and 
provided feedback on the general Delaunay triangulator capability led by INL’s MOOSE 
framework team in FY23. Meetings with the Illinois Rocstar Small Business Innovation Research 
(SBIR) awardee were held regularly to understand the meshing capabilities they intended to deliver. 
Finally, users were supported throughout the year with input creation, debugging, and 
implementation of new requested features. 
The following work was prioritized based on stakeholder input: 

• Griffin-Related Items 
o Move generic Griffin mesh generators to Reactor Module 
o Set up Griffin to utilize Reactor Module automatically 

• Hexagonal Meshing 
o Add option to SimpleHexagonGenerator to generate 2 quads instead of 6 triangles 
o Add mesh biasing and boundary layer capabilities needed for thermal hydraulic 

calculations 
o Add option to mesh a tri-pin assembly with pins in each corner, needed for 

specialized geometries like the HTTR 
o Assembly trimming capability through center and peripheral pins, used for reducing 

mesh size due to symmetry and creation of unit cell geometries 

• Cartesian Meshing 
o Add rotation option to PolygonConcentricCircleMeshGenerator to streamline 

Cartesian mesh patterning 

• Axial Meshing 
o Add axial biasing options 
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o Permit definition of sidesets at each axial level as well as interfaces between axial 
levels 

o On the fly inverted element fixing 

• Core periphery meshing 
o Finalize merge request from FY21 which leverages the open-source poly2tri library 

(Hasse, 2021) to create triangulated core peripheries 
o Add quadrilateral meshing option to address element quality issues in triangulated 

case with heterogeneous assemblies 
o Add mesh biasing and boundary layer capability option in quad mesh option 

• Tool to Mesh Between Vectors of Points 
o Develop versatile tool for meshing between two vectors of points (this arose as a 

fundamental capability needed for meshing more complex geometries as well as the 
transition layer capability for assemblies) 

o Enhanced assembly stitching capabilities to allow stitching of assemblies with 
differing edge discretization 

• Reporting IDs 
o Finalize merge requests from FY21 which includes pin, assembly, planar reporting 

ID functionality as well as vector postprocessors 
o Add support for ring-wise and azimuthal sector IDs within a pin, needed for 

depletion zones 
o Add VectorPostProcessor to integrate solution variables across zones based on ID 

combinations 

• Reactor Geometry Mesh Builder (RGMB) 
o Finalize pending merge request from FY21 which required a major refactor in order 

to maximize material assignment flexibility while minimizing number of blocks 
generated 

o Update with core periphery meshing capability 

• Reactor Verification Problems 
o Exercise tools for a variety of reactor concepts and use cases to assess whether they 

are functioning properly and whether additional features are needed (e.g. lead cooled 
fast reactor, C5G7 for testing Cartesian geometry, Empire microreactor (DeHart, 
Ortensi, & Labouré, 2020) with rotating control drums, , gas-cooled microreactor 
concept, KRUSTY heat pipe cooled microreactor experiment, Molten Salt Reactor 
Experiment, upgrade Griffin verification problems to use Reactor Module tools) 

• User Support 
o Direct support to users who reached out to the team for meshing help, ranging from 

helping them use existing tools to creating new features (in above list) to address 
their needs  
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3 MOOSE Reactor Module Development 
This chapter describes the main software capabilities added to the MOOSE reactor module. Many 
of the capabilities mentioned here are expansions on capabilities previously described in detail in 
last year’s report (Shemon, et al., 2021) and recent conference papers (Shemon, et al., 2022; 
Kumar, et al., 2022). 

3.1 Griffin-Related Items 

3.1.1 Migration of Griffin Mesh Generators to Reactor Module 
A few custom mesh generators that were initially created for the Griffin reactor physics code 
were migrated to the MOOSE Reactor Module, since the functionality of these mesh generators 
were easily generalized to the typical MOOSE user instead of tying them solely to Griffin-based 
applications. The following mesh generators were migrated from Griffin to the open-source 
Reactor Module: 

• CoarseMeshExtraElementIDGenerator: Assigns coarse element IDs to elements on a 
fine mesh, where the coarse element IDs are taken from a separate coarse mesh 

• ExtraElementIDCopyGenerator: Copies an existing extra element ID to another extra 
element ID 

• SubdomainExtraElementIDGenerator: Assigns extra elements IDs for elements on a 
mesh based on the subdomain ID of the mesh 

3.1.2 Automatic Compilation of Griffin with Reactor Module 
MOOSE-based applications are compiled with certain flags to allow for direct compilation and 
linking with MOOSE modules. Given the tight integration of mesh generators in the Reactor 
Module to reactor physics-based applications, the build system for the Griffin reactor physics code 
was updated to compile the Reactor module and link it to the Griffin executable by default. All 
mesh generators defined in the Reactor module are usable out of the box with the latest Griffin 
executables (post-December 2021), and unit tests have been put in place in Griffin to make sure the 
executable is able to call the Reactor module mesh generators. Additionally, examples of how the 
Reactor module can be used to define reactor mesh geometries for Empire (DeHart, Ortensi, & 
Labouré, 2020), C5G7 (Lewis, 2001), and Advanced Burner Test Reactor (Shemon, Grudzinski, 
Lee, Thomas, & Yu, 2015) have been built and placed in the directory 
tests/moose_modules/reactor of the Griffin source code. 

3.2 Hexagonal Meshing Enhancements 

3.2.1 SimpleHexagonGenerator: Extension to Quad Meshes 
SimpleHexagonGenerator functionality was extended to include a two quadrilateral element option. 
This mesh generator is most typically used for generating homogeneous assemblies in nodal 
diffusion calculations. The two types of meshes possible with SimpleHexagonGenerator are 
depicted in Figure 3-1.  
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[Mesh] 
   [simplehex] 
      type = SimpleHexagonGenerator 
      hexagon_size = 0.146 
      hexagon_size_style = 'apothem' 
      # optional 
      block_id = 40 
      block_name = 'FuelAssembly' 
      external_boundary_id = 9999 
      external_boundary_name = 'FuelBdry' 
   [] 
[] 

 
[Mesh] 
   [simplehex] 
      type = SimpleHexagonGenerator 
      hexagon_size = 0.146 
      hexagon_size_style = 'apothem' 
      element_type=QUAD 
   [] 
[] 

 

Figure 3-1. SimpleHexagonGenerator triangle and (new) quadrilateral mesh options. 
 

3.2.2 Biasing and Boundary Layers for PolygonConcentricCircleMeshGenerator 
PolygonConcentricCircleMeshGenerator (PCCMG) was developed in FY21 with a uniform 
(unbiased) radial meshing option. Users of thermal hydraulic codes have requested boundary layer 
meshing capability and main body biased meshing. Boundary layer meshing is widely used in 
thermal hydraulics models to capture the detailed phenomena near domain interfaces (solid-fluid 
interface). In this region, dense and biased meshing is needed. For the main body, further from 
domain interfaces, coarse meshing usually works although sometimes a biased main body mesh is 
also needed. 
To be specific, boundary layers and the main body are depicted in an example subdomain in Figure 
3-2.  
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Figure 3-2 A schematic drawing showing the concepts of boundary layers 
 
In the radial direction, both boundary layer and main body biased meshing features have been added 
to PolygonConcentricCircleMeshGenerator (see Figure 3-19 for an example).  
 
 

 
Figure 3-3 Polygon concentric circle mesh with boundary layers and biased main bodies. 

 
Since PCCMG also generates Cartesian meshes, Cartesian geometry also benefits from the 
boundary layer and biasing enhancement. 
 

3.2.3 TriPinHexAssemblyGenerator: Assembly with Corner Pins 
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A new TriPinHexAssemblyGenerator object generates a 2D hexagonal assembly mesh consisting 
of three diamond sections. Each of these sections may contain one pin defined as a series of 
concentric circles. An example of such an assembly mesh is illustrated in Figure 3-4. This type of 
geometry is known to occur in the High Temperature Test Reactor (HTTR) (Shiozawa, Fujikawa, 
Iyoku, Kunitomi, & Tachibana, 2004). 

 

Figure 3-4 A typical mesh generated by this TriPinHexAssemblyGenerator object with one large-
circular-pin section, one small-circular-pin section, and one pin-free section. 

 
The size of the assembly is defined by "hexagon_size". Users can input either radius (which is the 
same as side length for a hexagon) or apothem of the hexagon by setting "hexagon_size_style". On 
each side of the hexagon, the azimuthal meshing density is controlled by "num_sectors_per_side". 
The nodes on each side are uniformly distributed. 
The hexagon is naturally divided azimuthally into three diamond sections. The first diamond 
section has an optional pin at 12 o'clock (90 degrees) from the center of the hexagon; the second 
diamond section has an optional pin at 8 o'clock (210 degrees); and the third diamond section has 
an optional pin at at 4 o'clock (330 degrees). "ring_radii" is a 2D vector parameter used to define 
concentric ring regions within the diamond sections from one through three. "ring_intervals" 
defines the number of radial meshing subintervals for each of the concentric rings. Optionally, 
"ring_block_ids" and "ring_block_names" can be used to assign block ids/names to these rings. For 
all the four aforementioned ring-related parameters, if only one vector is provided instead of three, 
the same ring parameters will be adopted for all three sections, providing a concise way to define 
3 identical pins. The default center of a pin is halfway between the hexagon center and a vertex 
point (half the hexagon's radius). The center of the pin may be offset radially from the center of the 
diamond by a distance defined by "ring_offset". A positive "ring_offset" means the center of the 
concentric rings is radially offset towards to the assembly boundary. A negative "ring_offset" 
means the center of the concentric rings is radially offset closer to the assembly center. Users can 
set "preserve_volumes" as true to correct the polygonization effect and preserve ring volume. 
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The nodes on each interface between the two diamond sections are also uniformly distributed with 
the same number of nodes determined by "num_sectors_per_side". Therefore, the azimuthal 
intervals of each diamond section are non-uniformly distributed and are determined based on three 
factors: "num_sectors_per_side", "ring_offset" and the constraints due to the uniformly distributed 
nodes on external sides as well as interfaces between diamond sections.  
Each diamond section also contains a "background" region, which is the region outside the 
concentric rings (or the full diamond, if no rings are present). The background radial intervals and 
block id of each diamond can be defined by "background_intervals" and 
"background_block_ids"/"background_block_names". In most cases, "background_block_ids" and 
"background_block_names" have a length of one if provided. However, if there exists a least one 
ring-free section, lengths of "background_block_ids" and "background_block_names" need to be 
two to accommodate the additional triangular element region required when no pin exists at the 
center of the diamond. 
The TriPinHexAssemblyGenerator generates a complete set of MeshMetaData needed for future 
stitching with other assemblies. Therefore, meshes generated by this object can be directly used in 
"inputs" of PatternedHexMeshGenerator to form a core mesh. 
As mentioned, by default (i.e., "assembly_orientation" is set as pin_up), the first section is at 12 
o'clock. The assembly can be rotated by 180 degrees by setting "assembly_orientation" as 
pin_down. 
Optionally, users can also assign an element extra integer for each diamond sections. The name of 
the element extra integer is defined by "pin_id_name", while the assigned values of the three 
sections are defined by a three-element vector parameter, "pin_id_values". If 
"assembly_orientation" is set as pin_up, the first element of "pin_id_values" is assigned to the top 
section; the second element is assigned to the lower-left section; and the third element is assigned 
to the lower-right section. On the other hand, If "assembly_orientation" is set as pin_down, the first 
element of "pin_id_values" is assigned to the bottom section; the second element is assigned to the 
upper-right section; and the third element is assigned to the upper-left section. 
More detailed syntax and output examples can be found in the following table. 
 
[Mesh] 
  [assm_up] 
    type = TriPinHexAssemblyGenerator 
    ring_radii = '7 8;5 6; ' 
    ring_intervals = '2 1;1 1; ' 
    ring_block_ids = '200 400 600;700 800; ' 
    background_block_ids = '30 40' 
    num_sectors_per_side = 6 
    background_intervals = 2 
    hexagon_size = ${fparse 40.0/sqrt(3.0)} 
    ring_offset = 0.6 
    external_boundary_id = 200 
    external_boundary_name = 'surface' 
  [] 
[] 
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[Mesh] 
  [assm_down] 
    type = TriPinHexAssemblyGenerator 
    ring_radii = '7 8' 
    ring_intervals = '2 1' 
    ring_block_ids = '200 400 600' 
    background_block_ids = '40' 
    num_sectors_per_side = 6 
    background_intervals = 2 
    hexagon_size = ${fparse 40.0/sqrt(3.0)} 
    ring_offset = 0.6 
    assembly_orientation = pin_down 
  [] 
[] 

 

Figure 3-5 Meshes generated by TriPinHexAssemblyGenerator. 
 

 

3.3 Cartesian Meshing Enhancements 

3.3.1 Add rotation option to PCCMG in support of Cartesian patterns 
By default, the polygon mesh generated by PCCMG is oriented vertex-up (aligned with the y-
direction). In some applications including Cartesian grids, it is preferred that a flat side instead of 
a vertex should face up. Thus, the PCCMG has been updated to provide both orientation options. 
Users can use the new Boolean input parameter, flat_side_up, to control the polygon orientation. 

3.4 Axial Meshing Enhancements 

3.4.1  Mapping FancyExtruder to AdvancedExtruderGenerator 
Based on MOOSE framework reviewer feedback, the mesh generator known as FancyExtruder has 
been renamed to AdvancedExtruderGenerator to clarify its purpose. A detailed documentation page 
was created for the renamed mesh generator, which did not previously exist. More importantly, a 
series of new features have been added, as detailed in the following sections. This merge request is 
still pending as of publication of this report, but when the change goes live, FancyExtruder will be 
supported post-merge temporarly with deprecation warnings.  

3.4.2 Axial Meshing Bias and Extra Element IDs 
In each layer of extrusion, the axial meshing density can now be biased using a specific growth 
factor (see Figure 3-6). Additionally, the original subdomain swap feature has been expanded to 
extra element integer IDs so that reporting IDs on the 2D input mesh can be maintained or changed 
during extrusion on each axial level. 
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[Mesh] 
  …… 
    [extrude] 
    type = AdvancedExtruderGenerator 
    input = gmg 
    heights = '1 2 3' 
    num_layers = '1 2 3' 
    biases = '1.0 2.0 0.5' 
    direction = '0 0 1' 
    bottom_sideset = '4' 
    top_sideset = '5' 
    subdomain_swaps = '0 1; 
                       0 2; 
                       0 3' 
  []  
[] 

 
[Mesh] 
  …… 
  [extrude] 
    type = AdvancedExtruderGenerator 
    input = fg 
    heights = '1 2 3' 
    num_layers = '1 2 3' 
    direction = '0 0 1' 
    elem_integer_names_to_swap = 
'element_extra_integer_1 element_extra_integer_2' 
    elem_integers_swaps = '1 4 2 8; 
                           2 7; 
                           1 6; 
                           1 8 2 4; 
                           2 5; 
                           1 6' 
  [] 
[]  

Figure 3-6 Mesh biasing and element integer swapping options in AdvancedExtruderGenerator. 
 

3.4.3 Boundary ID Remapping 
Boundary ID remapping has been implemented to work similarly to the previously existing 
subdomain ID remapping feature. During extrusion, the lower-dimension boundaries are also 
converted into higher-dimension boundaries. A double indexed array input parameter, 
"boundary_swaps", can be used to remap the boundary ids. Here, the boundary ids to be remapped 
must exist in the input mesh, otherwise, dedicated boundary defining mesh generators, such as 
SideSetsBetweenSubdomainsGenerator and SideSetsAroundSubdomainGenerator, need to be used 
to define new boundary ids along different axial heights. An example of using boundary ID 
remapping is provided in Figure 3-7. 
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[Mesh] 
  …… 
  [extrude] 
    type = AdvancedExtruderGenerator 
    input = fmg 
    heights = '1 2 3' 
    num_layers = '1 2 1' 
    direction = '0 0 1' 
    bottom_boundary = '100' 
    top_boundary = '200' 
    subdomain_swaps = '1 11 2 12 3 13; 
                       1 21 2 22 3 23; 
                       1 31 2 32 3 33' 
    boundary_swaps = '1 11 2 12; 
                      3 23 4 24; 
                      1 31 2 32 3 33 4 34' 
  []  
[] 

 

Figure 3-7 An extruded mesh containing new boundary labels at various axial levels. 
Specification of sideset names within this mesh generator is not yet available, but users can 
presently leverage RenameBoundaryGenerator to assign sideset names. 

3.4.4 Interface Boundaries 
The other categories of the boundaries that can be defined are the interfaces between subdomains 
in different elevations, as well as the top/bottom surfaces of the subdomains. As each elevation 
interface (or top/bottom surface) is simply a duplicate of the input mesh, these interface (or 
top/bottom surface) boundaries correspond to the subdomains of the input mesh, which are referred 
to as source_blocks. These sidesets can be defined on either side of the elevation interface. Thus, 
both upward and downward boundaries can be defined. Here upward means the normal vector of 
the sideset has the "same-ish" direction as the "direction" vector; downward means the normal 
vector of the sideset has the "opposite-ish" direction as the "direction" vector. A potential use case 
of this is modeling thermo-mechanical contact at the fuel and heat pipe top/bottom interfaces in a 
heat-pipe cooled microreactor. There are likely to be additional use cases in thermal hydraulic 
applications. 
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[Mesh] 
  …… 
  [extrude] 
    type = AdvancedExtruderGenerator 
    input = fmg 
    heights = '1 2 3' 
    num_layers = '1 2 1' 
    direction = '0 0 1' 
    bottom_boundary = '100' 
    top_boundary = '200' 
    subdomain_swaps = '1 11 2 12 3 13; 
                       1 21 2 22 3 23; 
                       1 31 2 32 3 33' 
    upward_boundary_source_blocks = '1;2 3;1 2 3' 
    upward_boundary_ids = '1001;2002 2003;3001 3002 3003' 
    downward_boundary_source_blocks = '1 2 3;2 3;1' 
    downward_boundary_ids = '1501 1502 1503;2502 2503;3501' 
  []  
[]  

Figure 3-8 Definition of plane interface boundary ids. 
 

3.4.5 On-The-Fly Inverted Element Fixing 
The node numbering of an element must follow a certain convention, otherwise the element is 
regarded as inverted and cannot be used for simulation due to negative Jacobian. Such a faulty 3D 
element can be caused by extruding a 2D element along a direction vector that is not compatible 
with the 2D element’s node numbering. To avert an unpleasant user experience with attempting to 
use a mesh with inverted elements, an on-the-fly element sanity checker has been added to 
automatically check and fix elements during the extrusion. 

3.5 Core Periphery Meshing Enhancements 
The core periphery terminology in this section refers to the irregularly shaped zone surrounding a 
patterned cluster of assemblies but contained within a typically circular outer boundary.  

3.5.1 PeripheralRingMeshGenerator: Quadrilateral option with boundary layer and biasing 
In FY21, the PeripheralTriangleMeshGenerator (PTMG) was developed to triangulate core 
periphery regions. This mesh generator utilizes the poly2tri library and works well for cores 
consisting of homogenized assemblies. Element quality issues were observed when using this 
algorithm with finely meshed assemblies (such as pin-heterogeneous assemblies), which motivated 
an alternative option using quadrilateral meshes.  
PeripheralRingMeshGenerator (PRMG) was therefore created to mesh quadrilateral elements in the 
core periphery as shown in teal in Figure 3-9. The nodes on the core periphery are extended in 
straight lines normal to the outer cylinder to form element edges, resulting in higher quality 
elements for finely meshed cores. The number of layers between the core and periphery edge can 
be specified via the input.  
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[Mesh] 
  [fmg] 
    type = FileMeshGenerator 
    file = input_mesh.e 
  [] 
  [pr] 
    type = PeripheralRingMeshGenerator 
    input = fmg 
    peripheral_layer_num = 3 
    peripheral_ring_radius = 80.0 
    input_mesh_external_boundary = 10000 
    peripheral_ring_block_id = 250 
    peripheral_ring_block_name = 
reactor_ring 
  [] 
[] 

 
 

 Figure 3-9 Core periphery meshing with quadrilateral elements. 
Boundary layer and main body biasing features have also been added 
PeripheralRingMeshGenerator. The boundary layer adjacent to the input mesh’s external boundary 
(i.e., inner side of the peripheral ring) needs to maintain consistent width all the way around the 
core, so a dedicated algorithm has been implemented to achieve such a functionality (see Figure 
3-10 for an example). 
 

 

Figure 3-10 Peripheral ring mesh with a conformal inner boundary layer. 
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3.5.2 PeripheralTriangleMeshGenerator Updates 
PeripheralTriangleMeshGenerator (PTMG) was initially developed in FY21 and fully merged 
during FY22. This mesh generator utilizes the poly2tri library to triangulate the core periphery 
region. As part of the integration of this mesh generator and PeripheralRingMeshGenerator into the 
Reactor Geometry Mesh Builder (RGMB) workflow, PTMG was extended to accept additional 
subdomain/boundary name parameters to provide consistent functionality with PRMG and provide 
a consistent interface to use either mesh generator in RGMB. 
The element quality issues associated with this mesh generator are planned to be improved upon 
once the TriangleMeshGenerator (developed by the MOOSE team in FY22 which contains a 
generally Delaunay triangulator capability) is fully merged in MOOSE.  
 

3.6 Development of Multi-Purpose Transition Layer Meshing Tools 
In the process of developing a targeted capability to mesh transition layers between assemblies, a 
more general capability was first developed and modularized. This capability is called 
FillBetweenPointVectorsTools and described first. The tool turned out to have very useful 
applications beyond what was originally envisioned. The application of this tool to assist with 
assembly stitching is then described.  

3.6.1 FillBetweenPointVectorsTools 
FillBetweenPointVectorsTools contains tools that can be used to generate a triangular 
element transition layer mesh to connect two given curves (i.e., vectors of points) in the XY plane. 
It was originally developed for PeripheralModifyGenerator of the Reactor module. As these 
tools may also be useful for other applications, they are made available in this namespace. 

3.6.1.1 Fundamentals 

This tool set was designed to create a mesh for a transition layer. A transition layer accommodates 
the shape and node placement of two pre-existing boundaries and fills the gap between them with 
elements. The most important input data needed to generate a transition layer is the node positions 
of the two boundaries. The generated mesh conforms to these two boundaries and connects the end 
nodes of each boundary using a straight line, as indicated in Figure 3-11. 
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Figure 3-11 A schematic drawing showing the fundamental functionality of the 
FillBetweenPointVectorsTools 

3.6.1.2 Single-Layer Transition Layer Meshing 

The most straightforward solution is to create a single layer of triangular elements as the transition 
layer. A triangular element is created by selecting and connecting three vertices from the two sets 
of boundary nodes. One node is selected from one of the two pre-existing boundaries and two nodes 
are selected from the other boundary. The selection of the nodes should minimize the length of 
sides connecting the two boundaries. This algorithm is illustrated in Figure 3-12. 

 

Figure 3-12 A schematic drawing showing the principle of single-layer transition layer meshing 
algorithm. 

3.6.1.3 Multi-Layer Transition Layer Meshing 

In many cases, more than one layer of triangular elements is desired to improve mesh quality. The 
generation of a transition layer containing multiple sublayers can be done by repeating the single-
layer transition layer meshing steps once the nodes of the intermediate sublayers are generated. 
Thus, the key procedure here is to create those intermediate nodes based on the two given vectors 
of nodes on the input boundaries. Here, the algorithm to generate the nodes for each sublayer is 
described from the simplest case to the most generalized scenario. 

3.6.1.3.1 Surrogate Node Interpolation Algorithm 
Surrogate node interpolation algorithm is the most fundamental method used in this tool set for 
intermediate node generation. For simplicity, assume a case where all the nodes on each boundary 
are uniformly distributed. (Namely, the distance between neighboring nodes within a boundary is 
equal.) Assume that the two boundaries have M nodes (Side 1) and N nodes (Side 2), respectively, 
and that there are K sublayers of elements in between. From Side 1 to Side 2, using arithmetic 
progression, the kth layer of intermediate nodes have S=⌈M+k(N-M)/K⌋ nodes. To get the positions 
of these nodes, surrogate nodes are first calculated on the two input boundaries using interpolation 
leveraging MOOSE's LinearInterpolation utility. 
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Here, take Side 1 as an example. As mentioned above, Side 1 has MM nodes, the coordinates of 
which are (x0,y0,z0), (x1,y1,z1)..., (xM-1,yM-1,zM-1). To get interpolated coordinates of the nodes on 
Side 1, the coordinate parameters {xi} and {yi} will be the dependent variables of interpolation 
(i.e., Y in the LinearInterpolation of MOOSE), while the X was set as {0, 1/(M-1), 2/(M-1),...,(M-
2)/(M-1), 1} (equal intervals). Note that {zi} does not need interpolation as we are working in the 
XY plane. For an intermediate layer with S, SS surrogate nodes are created on Side 1 using the 
aforementioned interpolation data and the following X values {0, 1/(S-1), 2/(S-1),...,(S-2)/(S-1), 
1}. Meanwhile, another S surrogate nodes are created on Side 2 using a similar approach. Finally, 
the positions of the S intermediate nodes can be calculated by further interpolating the surrogate 
nodes created on the two boundaries. An example of applying surrogate node interpolation 
algorithm to a boundary with 9 uniformly distributed nodes and a boundary with 4 uniformly 
distributed nodes to generate an intermediate node layer with six nodes is illustrated in Figure 3-13. 

 

Figure 3-13 A schematic drawing showing an example of surrogate node interpolation algorithm.  
Blue and green nodes belong to the original boundaries; yellow nodes are surrogate nodes generated 
by linear interpolation on the two original boundaries; and orange nodes are the produced 
intermediate layer nodes calculated by interpolating the surrogate nodes on the two boundaries. 

3.6.1.3.2 Weighted Surrogate Nodes 
A more general scenario is that the nodes on the two original boundaries are not uniformly 
distributed. In that case, weights need to be used during the linear interpolation for surrogate node 
generation. Again, given a boundary (Side 1) with M nodes, {1p0, 1p1  ,..., 1pM-2  , 1pM-1}, the distance 
between the neighboring nodes are {1l1, 1l2,..., 1lM-2 , 1lM-1 }. The total length of Side 1 is L, which 
is the summation of {1li}. This boundary can be mapped to a boundary with uniformly distributed 
nodes. For the new boundary, each segment has a weight 1wi=(M-1)li/L. Surrogated nodes can then 
be generated on the new boundary using the same approach as mentioned in the previous 
subsection. After that, using the weights calculated before, the surrogate nodes are derived to 
weighted surrogate nodes. After repeating these steps on Side 2, the intermediate nodes can be 
generated. These procedures are visualized in Figure 3-14. 
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Figure 3-14 A schematic drawing showing an example of weighted surrogate node interpolation 
algorithm used for intermediate nodes generation when non-uniform distributed nodes are 
involved on the two original boundaries. 

3.6.1.3.3 Quadrilateral Element Transition Layer in a Special Case 
FillBetweenPointVectorsTools is generally designed for meshing with triangular elements because 
of their flexibility in accommodating complex node distribution. However, if Side 1 and Side 2 
boundaries have the same number of nodes, then the transition layer can be meshed using 
quadrilateral elements straightforwardly. FillBetweenPointVectorsTools is equipped with this 
special quadrilateral meshing capability. 

3.6.1.4 Applications of FillBetweenPointVectorsTools 

FillBetweenPointVectorsTools is a utility for developers and users cannot directly access it. We 
will later describe a mesh generator which uses this utility.  
In FillBetweenPointVectorsTools, the transition layer generation functionality is provided as a 
method shown as follows: 
 

 
Figure 3-15 Syntax of the FillBetweenPointVectorsTools 
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Here, mesh is a reference ReplicatedMesh to contain the generated transition layer mesh; 
boundary_points_vec_1 and boundary_points_vec_2 are vectors of nodes for Side 1 and Side 2 
boundaries; num_layers is the number of element sublayers; transition_layer_id is the subdomain 
ID of the generated transition layer elements; input_boundary_1_id and input_boundary_2_id are 
the IDs of the boundaries of the generated transition layer mesh corresponding to the input Sides 1 
and 2, respectively; begin_side_boundary_id and end_side_boundary_id are the IDs of the other 
two boundaries of the generated transition layer mesh that connect the starting and ending points 
of the two input Sides; and type and name are the class type and object name of the mesh generator 
calling this method for error message generation purpose.  
If boundary_points_vec_1 and boundary_points_vec_2 have the same size, quad_elem can be set 
as true so that quadrilateral elements instead of triangular elements are used to construct the 
transition layer mesh. In addition, bias_parameter can be used to control the meshing biasing of the 
element sublayers. By default, a non-biased sublayer meshing (i.e., equally spaced) is selected by 
setting bias_parameter as 1.0. Any positive bias_parameter is used as the manually set biasing 
factor, while a zero or negative bias_parameter activates automatic biasing, where the local node 
density values on the two input boundaries are used to determine the local biasing factor. If 
automatic biasing is selected, sigma is used as the Gaussian parameter to perform Gaussian blurring 
to smoothen the local node density to enhance robustness of the algorithm. 
 

 
Figure 3-16 Some representative meshes generated by FillBetweenPointVectorsTools: (left) a 
transition layer mesh defined by two oppositely oriented arcs; (middle) a transition layer mesh 
defined by one arc and a complex curve; (right) a half-circle mesh. 
 
One application of this tool is to generate a mesh with two curves and two straight lines as its 
external boundaries. As shown in Figure 3-16, a series of simple and complex shapes can be 
meshed. 

3.6.2 FillBetweenPointVectorsGenerator 
The FillBetweenPointVectorsGenerator class uses the fundamental functionalities of 
FillBetweenPointVectorsTools and is accessible to users. Therefore, this class provides a testing 
tool for FillBetweenPointVectorsTools, as well as a generalized platform for users to create meshes 
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using the tool set. Users are required to provide the three major inputs needed to use 
FillBetweenPointVectorsTools: 

• "positions_vector_1" and "positions_vector_2": the vectors of points on the two boundaries 
(i.e., Side 1 and Side 2). 

• "num_layers": number of element sublayers. 

Aside from these fundamental input parameters, users can also assign block and the external 
boundary IDs through "block_id" and "input_boundary_{1,2}_id", 
"{begin,end}_side_boundary_id". 

 

Figure 3-17 A schematic drawing showing different transition layer meshes generated between 
two arc boundaries: (left to right) very fine mesh, fine mesh, and coarse mesh; (top to bottom) 
uniformly distributed nodes, slightly biased nodes, and heavily biased nodes. 
 
In general, FillBetweenPointVectorsGenerator handles many different scenarios. As shown in 
Figure 3-17, non-uniformly distributed boundary nodes (i.e., biased) may be input. The mesh 
generator does have some limitations. For example, the two input curves cannot intersect each 
other; and the interpolated nodes should not lead to flipped elements or overlapped elements. Due 
to the complexity of geometry, the mesh generator may not produce an error message in all the 
problematic cases. Users should cautiously examine the generated mesh by setting "show_info" as 
true and by running a simple diffusion problem. 
The spacings of element sublayers can be biased by setting "bias_parameter". Any positive 
"bias_parameter" is directly used as the fixed mesh biasing factor with the default value 1.0 for 
non-bias. By setting "bias_parameter" as 0.0, automatic biasing will be used, where the local node 
density values on the two input boundaries are used to determine the local biasing factor (see Figure 
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3-18 as an example). In that case, Gaussian blurring is used to smoothen the local node density to 
enhance stability of the algorithm, which can be tuned through "gaussian_sigma". 
 

 
Figure 3-18 A schematic drawing showing different biasing option for sublayers: (left) non-bias; 
(middle) fixed biasing factor = 0.8; (right) automatic biased based on boundary nodes. 
 
In some special cases, when "positions_vector_1" and "positions_vector_2" have the same length, 
users can set "use_quad_elements" as true to construct the transition layer mesh using quadrilateral 
elements (see Figure 3-19 as an example). 
 

 
Figure 3-19 A schematic drawing showing a transition layer meshed by quadrilateral elements. 

 
More detailed syntax and output examples can be found in the following table. 
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[Mesh] 
  [fbpvg] 
    type = FillBetweenPointVectorsGenerator 
    positions_vector_1 = '2 0 0 
                          1.41 1.41 0 
                          0 2 0' 
 
    positions_vector_2 = '1 0 0 
                          0.8 0.5 0 
                          0.5 0.8 0 
                          0 1 0' 
    num_layers = 3 
    # optional 
    input_boundary_1_id = 10 
    input_boundary_2_id = 20 
    begin_side_boundary_id = 30 
    end_side_boundary_id = 40 
  [] 
[] 

 

[Mesh] 
  [fbpvg] 
    type = FillBetweenPointVectorsGenerator 
    positions_vector_1 = '2 0 0 
                          1.6 1 0 
                          1 1.6 0 
                          0 2 0' 
 
    positions_vector_2 = '1 0 0 
                          0.8 0.5 0 
                          0.5 0.8 0 
                          0 1 0' 
    num_layers = 3 
    use_quad_elements = true 
  [] 
[] 

 

Figure 3-20. Syntax of FillBetweenPointVectorsGenerator. 
 

3.6.3 FillBetweenSidesetsGenerator 
The FillBetweenSidesetsGenerator offers similar functionality to 
FillBetweenPointVectorsGenerator by leveraging the FillBetweenPointVectorsTools utility. 
Instead of manually inputting the two boundaries "positions_vector_1" and "positions_vector_2", 
The FillBetweenSidesetsGenerator directly takes boundary information ("boundary_1" and 
"boundary_2") of two input meshes, "input_mesh_1" and "input_mesh_2". The input meshes can 
be translated using "mesh_1_shift" and "mesh_2_shift". The generated transition layer mesh can 
be output as a standalone mesh or a stitched mesh with the input meshes, depending on 
"keep_inputs". If "keep_inputs" is set as true, the original boundaries of the input meshes defined 
by "boundary_1" and "boundary_2" are deleted after stitching the input meshes with the generated 
transition layer mesh.  
All the other meshing options are the same as FillBetweenPointVectorsGenerator. The syntax and 
output mesh can be found  
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[Mesh] 
  …… 
  [fbsg] 
    type = FillBetweenSidesetsGenerator 
    input_mesh_1 = 'rotate_1' 
    input_mesh_2 = 'rotate_2' 
    boundary_1 = 'top right' 
    boundary_2 = 'left top' 
    mesh_1_shift = '-1.5 0.5 0.0' 
    mesh_2_shift = '0.8 -0.3 0.0' 
    num_layers = 3 
    keep_inputs = true 
  [] 
[] 

 

Figure 3-21 Syntax and output from FillBetweenPointVectorsGenerator. 

3.6.4 PatternedHexPeripheralModifier: Assembly Stitchability Tool 
The PatternedHexPeripheralModifier class utilizes FillBetweenPointVectorsTools to replace the 
outmost layer of quad elements of a 2D hexagonal assembly mesh generated by 
PatternedHexMeshGenerator (or its derived class HexIDPatternedMeshGenerator) with a transition 
layer consisting of triangular elements so that the assembly mesh can have nodes on designated 
positions on the external boundary. This boundary modification facilitates the stitching of 
hexagonal assemblies which have different node numbers on their outer periphery due to differing 
numbers of interior pins and/or different azimuthal discretization. 

3.6.4.1 Stitching Assemblies Using the Least Common Multiple Approach 

When PatternedHexMeshGenerator is used to generate a hexagonal assembly mesh, the number of 
nodes on each hexagon side follows a pre-determined formula based on the pin cell meshes which 
comprise the assembly. The pin cell hexagonal meshes used by PatternedHexMeshGenerator have 
a uniform even number of sectors per side (e.g., 2M) given by "num_sectors_per_side" in 
PolygonConcentricCircleMeshGenerator. When PatternedHexMeshGenerator creates a hexagonal 
bundle with N (N>1) pins on each side of the outermost ring, there are 2M⋅(2N−1) sectors and 
2M⋅(2N−1)+1 nodes on each side of the hexagonal assembly mesh. If all the assemblies within a 
reactor core contain identical numbers of pins, it is straightforward to make assembly meshes 
stitchable with each other by using the same M number for the azimuthal discretization of each pin 
cell.  
However, if a reactor core includes assemblies with different numbers of pins, M must be wisely 
selected based on the least common multiple of 4Ni-2 (i is the assembly index) of all the assemblies 
involved. This approach may be practical in cases where two assembly types with different pin 
numbers are involved, as shown in the following table: 
  



MOOSE Reactor Module Meshing Enhancements to Support Reactor Physics Analysis 
September 15, 2022 
 

 23 ANL/NSE-22/65 

Table 3-1. Manual selection of assembly discretization to ensure stitchability. 

Assm. #1 
Number of 

pins per 
side N1 

Assm. #1 
Number of 
azimuthal 

intervals per 
sector M1 

Assm. #2 
Number of 

pins per 
side N2 

Assm. #2 
Number of 
azimuthal 

intervals per 
sector M2 

Required 
Nodes on 
Assembly 

Side 

2 5 3 3 30 
2 7 4 3 42 
2 3 5 1 18 
2 11 6 3 66 
2 13 7 3 78 
3 7 4 5 70 
3 9 5 5 90 
3 11 6 5 110 
3 13 7 5 130 
4 9 5 7 126 
4 11 6 7 154 
4 13 7 7 182 
5 11 6 9 198 
5 13 7 9 234 
6 13 7 11 286 

 
However, when multiple different assemblies with unique numbers of pins are involved in a 
reactor core, the "num_sectors_per_side" (i.e., 2M) may be impractically large, as indicated in the 
following table: 
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Assm. 
#1 N1 

Assm. 
#1 M1 

Assm. 
#2 N2 

Assm. 
#2 M2 

Assm. 
#3 N3 

Assm. 
#3 M3 

Required Nodes on Assembly 
Side 

2 35 3 21 4 15 210 
2 15 3 9 5 5 90 
2 55 3 33 6 15 330 
2 21 4 9 5 7 126 
2 77 4 33 6 21 462 
2 33 5 11 6 9 198 
3 63 4 45 5 35 630 
3 77 4 55 6 35 770 
3 99 5 55 6 45 990 
4 99 5 77 6 63 1386 

 

3.6.4.2 Modification of Peripheral Boundary to Allow Stitching 

The PatternedHexPeripheralModifier class modifies assembly meshes so that assemblies with 
different number of pins can be stitched together without increasing the mesh fidelity to an 
impractically fine fidelity (as shown in the previous section). This mesh generator only works with 
the "input" mesh created by PatternedHexMeshGenerator. Users must specify the external 
boundary of the input assembly mesh through "input_mesh_external_boundary". Given this input, 
the mesh generator identifies and deletes the outmost layer of elements and uses the newly formed 
external boundary as one of the two vectors of boundary nodes needed by 
FillBetweenPointVectorsTools after symmetry reduction. In addition, uniformly distributed nodes 
are placed along the original external boundary of the mesh and defined as the second vector of 
boundary nodes needed by FillBetweenPointVectorsTools. The number of new boundary nodes is 
specified using "new_num_sector". Thus, the outmost layer of the assembly mesh can be replaced 
with a triangular element transition layer mesh that can be easily stitched with another transition 
layer mesh. An example of the assembly mesh modified by this mesh generator is shown in the 
following figure. 
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Figure 3-22 A schematic drawing of an example assembly mesh with transition layer as its 

outmost mesh layer. 
 
This mesh generator forces the number of nodes on a hexagonal mesh to match a user-specified 
input, which allows assemblies with different number of pins or azimuthal discretizations (and 
consequently different numbers of boundary nodes) to be stitched together without increasing the 
mesh density to an unreasonable level. 
 

 
Figure 3-23 A schematic drawing showing a virtual core design with assemblies including 7, 19, 

37 and 61 pins. 
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Figure 3-23 illustrates a core comprising four types of assemblies. This mesh generator's 
functionality was leveraged to force a common mesh density on each hexagonal assembly side (16 
nodes on each assembly side) so that the assemblies can be easily stitched. In the absence of this 
mesh generator, the least common multiple approach would require 631 nodes on each assembly 
side as shown in Figure 3-24. The mesh density would be increased dramatically just to ensure 
stitchability, showing the prominent advantage of using this mesh generator instead of the least 
common multiple approach. 
 

 
Figure 3-24 A close-up comparison between core meshes using (left) the new mesh generator and 

(right) the manual least common multiple approach. 
 

3.6.4.3 Handling Reporting IDs 

If the input mesh contains extra element integers (reporting IDs), the 
PatternedHexPeripheralModifier provides options to retain or reassign these reporting IDs (see 
Figure 3-25). By default, all the extra element integers existing on the input mesh are retained. Due 
to the nature of the transition layer which creates a new set of elements, the original boundaries 
between different reporting ID values have to be slightly shifted after modification. When 
PatternedHexPeripheralModifier assigns reporting ID values to a new element in the transition 
layer, it utilizes the reporting ID values of the original element that is nearest to the new element 
(based on centroid positions) to retain the setting of the input mesh. Alternatively, users can specify 
the names of reporting IDs to be reassigned through "extra_id_names_to_modify". The customized 
reporting ID values can then be set by providing the parameter "new_extra_id_values_to_assign". 
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Figure 3-25 Different approaches to handle a reporting id: (Left) input mesh with reporting id 
(pin_id); (Middle) retained pin_id for transition layer; (Right) user provided pin_id value for 

transition layer. 
 

More detailed syntax and output examples can be found in the following table. 
 
[Mesh] 
  …… 
  [pmg] 
    type = PatternedHexPeripheralModifier 
    input = pattern 
    input_mesh_external_boundary = 10000 
    new_num_sector = 10 
    num_layers = 2 
  [] 
[] 

 

Figure 3-26 Syntax and output of PatternedHexPeripheralModifier 
 

3.7 Hexagon Mesh Trimmer 
The HexagonMeshTrimmer object takes the hexagonal mesh generated by 
PatternedHexMeshGenerator as "input" and trims off part of the mesh. The input mesh can also be 
PatternedHexMeshGenerator's output processed by PeripheralRingMeshGenerator or 
PatternedHexPeripheralModifier. 
Two types of trimming can be performed by HexagonMeshTrimmer: Peripheral Trimming and 
Through-the-Center Trimming, which will be introduced separately as follows. 
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Figure 3-27 A schematic drawing showing different trimming schemes for a hexagonal mesh. 
 

3.7.1 Peripheral Trimming 
Peripheral trimming trims off peripheral region(s) of one or multiple sides of the input hexagonal 
assembly mesh. To be specific, for each side, half of the unit pin meshes are trimmed off, as shown 
by the purple lines in Figure 1. Each side of the hexagonal assembly is assigned an index as 
illustrated in Figure 1. Users can use "trim_peripheral_region" to set which sides need to be 
trimmed off (1) and which need to be retained (0). The setting "trim_peripheral_region" = "1 1 1 1 
1 1" trims off all the sides (full peripheral trimming) to create a hexagonal assembly mesh with 
half-pins on each of the external 6 boundaries. Partial peripheral trimming may be employed for 
practical applications to create peripheral assemblies in a core whose normal interior assembly units 
contain half-pins on the boundary. The mesh metadata generated by PatternedHexMeshGenerator 
are retained, with pattern_pitch_meta updated to take trimming into consideration. The output of 
this object can be assembled into a patterned lattice using PatternedHexMeshGenerator. 

3.7.2 Center Trimming 
Center trimming removes azimuthal sectors from the input hexagonal assembly or core mesh. The 
mesh may be trimmed along lines of symmetry in the input mesh. Only certain hexagonal meshes 
are eligible to be trimmed by this object due to imposed symmetries (see Trimmability). Valid 
hexagonal input meshes may be trimmed at twelve possible center trimming lines, indexed from 0 
to 11 as the blue lines shown in Figure 1. Each unit azimuthal sector is 30º. A practical application 
of center trimming is to reduce the domain size (and simulation scale) by leveraging symmetry 
through reflected boundary conditions. Therefore the largest possible output mesh after center 
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trimming contains six consecutive azimuthal sectors (i.e., half of the input mesh), while the smallest 
possible output mesh has only one azimuthal sector (i.e., one twelfth of the input mesh). This mesh 
trimmer object retains any sectors which are included between the trimming line defined by 
"center_trim_starting_index" to the trimming line defined by "center_trim_ending_index" swept 
out in a counterclockwise direction. Other sectors are discarded. 

3.7.3 Trimmability 
In general, HexagonMeshTrimmer trims meshes generated by PatternedHexMeshGenerator. An 
assembly mesh consisting of patterned pin meshes has both peripheral and center trimmability; 
whereas a core mesh consisting of patterned assembly meshes only has center trimmability. Two 
mesh metadata entries (peripheral_trimmability and center_trimmability) are created by 
PatternedHexMeshGenerator to tell HexagonMeshTrimmer which trimming options are valid. In 
the absence of these two meta data, HexagonMeshTrimmer will throw an incompatible error 
message. 
In addition, PeripheralRingMeshGenerator and PatternedHexPeripheralModifier, which apply 
quadrilateral and triangle (respectively) peripheral meshes, retain these two mesh meta data from 
the input mesh so that valid meshes generated by PeripheralRingMeshGenerator may also be 
trimmed. 
 

 
Figure 3-28 Example outputs of HexagonMeshTrimmer 

 

Input 
Hexagonal 

MeshFull 
Peripheral 
Trimming

Central 
Trimming

Central Trimming 
with Peripheral Ring

Partial 
Peripheral 
Trimming

Central & 
Peripheral 
Trimming
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3.7.4 Handling Degenerate Quadrilateral Elements 
When trimming a mesh, some elements may be located across the trimming line and thus need to 
be processed to ensure a smooth trimming boundary. PlaneDeletionGenerator is capable of 
trimming meshes but leaves a zigzag trimming boundary in the presence of elements which lay 
across the trimming line. 
To avoid this zig-zag boundary, HexagonMeshTrimmer adopts a post-trimming processing 
algorithm to smooth the trimming boundary. The algorithm moves the nodes of the across-
trimming-line elements in the normal direction of the trimming line onto the trimming line. During 
this procedure, some elements may become zero volume and will be removed. More importantly, 
after node moving, some quadrilateral elements may have three co-linear vertices on the trimming 
line, which make the element degenerate. To fix this issue, these degenerate quadrilateral elements 
are converted into triangular elements. As triangular elements and quadrilateral elements cannot 
share a single subdomain id/name, new subdomains are created for any affected quadrilateral 
element subdomains. The subdomain ids of the new subdomains are decided by shifting the original 
subdomain ids by "tri_elem_subdomain_shift" (default shift value is the maximum subdomain id 
of the mesh), while the subdomain names of the new subdomains are created by appending 
"tri_elem_subdomain_name_suffix" after the original subdomain names. 
 
Syntax and output example can be found in the following table. 
  



MOOSE Reactor Module Meshing Enhancements to Support Reactor Physics Analysis 
September 15, 2022 
 

 31 ANL/NSE-22/65 

 
[Mesh] 
  …… 
  [trim_0] 
    type = HexagonMeshTrimmer 
    input = pattern 
    trim_peripheral_region = '1 1 1 1 1 1' 
    peripheral_trimming_section_boundary = 
peripheral_section 
  []  
[] 

 
[Mesh] 
  …… 
  [trim_0] 
    type = HexagonMeshTrimmer 
    input = pattern 
    trim_peripheral_region = '1 0 1 0 0 1' 
    peripheral_trimming_section_boundary = 
peripheral_section 
  []  
[] 

 
[Mesh] 
  …… 
  [trim] 
    type = HexagonMeshTrimmer 
    input = pattern 
    center_trim_starting_index = 5 
    center_trim_ending_index = 11 
    center_trimming_section_boundary = center_section 
  []  
[] 
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[Mesh] 
  …… 
  [trim] 
    type = HexagonMeshTrimmer 
    input = pattern 
    center_trim_starting_index = 5 
    center_trim_ending_index = 11 
    center_trimming_section_boundary = center_section 
    trim_peripheral_region = "1 1 1 1 1 1" 
    peripheral_trimming_section_boundary = 
peripheral_section 
  []  
[]  

Figure 3-29 Syntax and output for HexagonMeshTrimmer. 
 

 

 

3.8 Ring and Sector Reporting IDs 
Reporting ID capabilities were implemented in the mesh generators to provide a way to identify 
the geometric components in the reactor mesh without using coordinate information. In order to 
expand the reporting ID capabilities to the sub-pin level, reporting IDs for rings and sectors within 
the Cartesian and hexagonal pins were introduced in the base pin mesh generator in the Reactor 
module. Users can utilize the ring and sector IDs to identify and manipulate sub-pin level 
information in the mesh generation and the post-processing stages of the simulation. The new 
functionality to assign ring and sector ID was added to PolygonalConcentricMeshGenerator and 
TriPinHexAssemblyGenerator. The detailed descriptions for these two pin mesh generators and the 
utilization of ring and sector IDs for the depletion ID setting are given in the following sub-sections. 

3.8.1 PolygonConcentricCircleMeshGenerator 
The ring and sector IDs are optionally assigned in the pin mesh generation by defining the extra 
integer names in ring_id_name and sector_id_name parameters, respectively. User can choose 
whether the ring IDs are assigned for each annular block defined in ring_radii or for each actual 
annular meshes by defiing the parameter ring_id_assign_type to block-wise or ring-wise. Note that 
the ring IDs are not defined for the background region of pin cell. Unique sector IDs are assigned 
to each sector formed by the pin cell center point and boundary surfaces. Thus, the number of sector 
IDs are equal to the number of boundary sides. Once set up in the pin cell mesh generation stages, 
IDs are automatically propagated to subsequent mesh generation stage and made available in the 
final mesh output, as shown in Figure X. More detailed syntax and output examples can be found 
in the following table. 
 
[Mesh] 

[rect_pin] 
    type = PolygonConcentricCircleMeshGenerator 
    num_sides = 4 
    num_sectors_per_side = '4 4 4 4' 
    background_intervals = 2 
    polygon_size = 0.63 

 



MOOSE Reactor Module Meshing Enhancements to Support Reactor Physics Analysis 
September 15, 2022 
 

 33 ANL/NSE-22/65 

    polygon_size_style ='apothem' 
    ring_radii = '0.2 0.4 0.5' 
    ring_intervals = '2 2 1' 
    flat_side_up = true 
    ring_id_name = ‘ring_id’ 
    ring_id_assign_type = ‘block_wise’ # block_wise or ring_wise  
    sector_id_name = ‘sector_id’ 

[] 
[] 

block_wise 

 
ring_wise 

[Mesh] 
[rect_pin] 

    type = PolygonConcentricCircleMeshGenerator 
    ...  
    sector_id_name = ‘sector_id’ 

[] 
[]  

Figure 3-30 Example of setting ring and sector reporting IDs inside PCCMG. 
 

 

Figure 3-31 Rings and sectors colored by ID in hexagonal assembly 
 

3.8.2 TriPinHexAssemblyGenerator 
Ring and sector IDs described in the above sub-section were also implemented to 
TriPinHexAssemblyGenerator. If the settings for sector and ring IDs are defined in the input block, 
they are universally applied to the three pin cells in hexagonal assembly generated here. More 
detailed syntax and output examples can be found in the following figure. 
 
[Mesh] 
  [assm_up] 
    type = TriPinHexAssemblyGenerator 
    ... 
    pin_id_values = '0 1 2' 
    sector_id_name = 'sector_id' 
    ring_id_name = 'ring_id' 
  [] 
[] 

    

Figure 3-32 Rings and sectors colored by ID in hexagonal assembly 
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3.8.3 Utilization in Depletion ID Generation 
Sub-pin level detailed depletion zones can be easily set up by utilizing the ring and sector IDs. 
DepletionIDGenerator assigns depletion IDs on individual elements by finding unique 
combinations of user-specified IDs. Users can easily control the level of detail for which depletion 
IDs are assigned through the selection of reporting IDs used in the depletion ID generation. Thus, 
by including the ring and sector IDs, the unique depletion IDs are set on each sector and ring of 
individual pins. Thus, the sub-pin level detailed zones can be readily generated as shown in the 
below table.  
 
[Mesh] 
  [depletion_id] 
    type = DepletionIDGenerator 
    input = 'core' 
    id_name = 'pin_id ring_id' 
    material_id_name = 'material_id' 
    exclude_id_name = 'material_id ring_id' 
    exclude_id_value = '8 9; 0' 
  [] 
[]  
[Mesh] 
  [depletion_id] 
    type = DepletionIDGenerator 
    input = 'core' 
    id_name = 'pin_id ring_id sector_id' 
    material_id_name = 'material_id' 
    exclude_id_name = 'material_id ring_id' 
    exclude_id_value = '8 9; 0' 
  [] 
[]  

Figure 3-33 Setting sub-pin depletion IDs using DepletionIDGenerator 
 

3.9 Vector Post Processor Based on Reporting IDs 
MOOSE VectorPostprocessors can be used to query data on elements with extra IDs, simplifying 
output processing significantly since collections of elements forming pins and assemblies are now 
identifiable without providing information on their physical location.  
ExtraIDIntegralVectorPostProcessor integrates solution variables over zones identified by 
combinations of reporting IDs. For reactor applications, component-wise values such as pin-by-pin 
power distribution can be easily yielded by specifying integration over pin and assembly reporting 
IDs. The detailed syntax and output examples can be found in the following table. 
 



MOOSE Reactor Module Meshing Enhancements to Support Reactor Physics Analysis 
September 15, 2022 
 

 35 ANL/NSE-22/65 

[VectorPostprocessors] 
  [integral] 
    type = ExtraIDIntegralVectorPostprocessor 
    variable = 'power' 
    id_name = 'assembly_id pin_id' 
  [] 
[] 

 
Figure 3-34 Integration of assembly and pin power using new VectorPostProcessor. 

 
 
ExtraIDIntegralVectorPostProcessor exports the post-processed results in CSV file format. Its 
derivative ExtraIDIntegralVectorReporter, based on the MOOSE reporting system, can output in 
JSON file format, which can be easily parsed using script languages such as Python and Perl.  
 
[Reporters] 
  [extra_id_integral] 
    type = ExtraIDIntegralReporter 
    variable = 'power' 
    id_name = 'assembly_id pin_id' 
  [] 
[] 
"extra_id_integral": { 
    "extra_id_data": { 
        "extra_id_data": { 
            "id_name": ["assembly_id", "pin_id"], 
            "map_id_to_value": [  
               [...], [...] 
            ], 
            "num_id_name": 2, 
            "num_values_per_integral": 1 
        }, 
        "integrals": { 
            "num_variables": 1, 
            "value1_integral": [ 
               1.5671450533836675, 
               1.5069591468755417, 
               ... 
            ], 
            "variable_names": ["power"] 
        } 
    } 
} 

Figure 3-35 Integration of assembly and pin power using new Reporter. 
 
 

3.10 Updates to Reactor Geometry Mesh Builder (RGMB) Capabilities  
The Reactor Geometry Mesh Builder (RGMB) is a set of mesh generators that was introduced to 
the Reactor module to simplify the process of generating conventional Cartesian and hexagonal 
reactor cores by calling underlying mesh generators for pin, assembly, and core definitions while 
simplifying the user options needed to define the mesh specifications and lattice structures 
(Shemon, et al., 2021). The ability to call mesh generators inside of mesh generators is known as 
“mesh sub-generators” and was developed by MOOSE framework team at INL (Lindsay, et al., 
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2021)in direct support of this project. This capability is integral to RGMB’s simplicity and is 
detailed in Section 3.10.1.  
In addition to simplifying inputs for the user, RGMB mesh generators also provide two additional 
benefits to the reactor analyst. First, RGMB automates the assignment of pin-level, assembly-level, 
and plane-level (if mesh is extruded) reporting IDs by calling and setting the relevant parameters 
needed to define these extra element integers under the hood.  
Second, the mapping between mesh elements and region IDs can be made directly from the RGMB 
mesh generators, which can pre-identify regions in the mesh that share similar material properties 
and simplify input in the downstream physics problem. These region IDs (referred to as material 
IDs in the FY21 MOOSE meshing report) are set as extra element integers, which can later be 
referenced directly by the physics problem to assign shared material properties to common regions 
in the mesh without having to rely on mesh-specific block IDs that may not be easily determined 
prior to mesh generation. While RGMB mesh generators were introduced in FY21, the review 
process and eventual merging of these mesh generators into the MOOSE reactor module codebase 
saw numerous changes to the RGMB functionality. Thus, the mesh generators comprising of the 
RGMB system are summarized here once again with latest specifications and capabilities. 
Additionally, Sections 4.1-4.5 illustrate how the RGMB mesh generators can be used for definition 
of two candidate reactor mesh geometries. 

3.10.1 Mesh Sub-Generator Objects in MOOSE 
Before discussing the Reactor Geometry Mesh Builder, we first review recent improvements in the 
framework which make the Reactor Geometry Mesh Builder workflow possible.  
The MeshGenerator class hierarchy enables MOOSE users to create meshes for a number of basic 
domain shapes, controlling domain and mesh parameters via input file. These meshes can them be 
modified and combined via multiple generator objects specified in other input file subsections. This 
allows users to create arbitrarily large trees of MOOSE mesh generator dependencies at runtime so 
they can construct meshes for complex simulation domains. 
The flexibility of this interface, however, has also been a source of difficulty: to construct a mesh 
in this fashion, parameters for every sub-mesh must be specified independently, correctly, and 
sometimes redundantly, in each user input file. Even the number of subgenerators can only be 
varied by adding or deleting input file sections for each. 
For common complex combinations of mesh generators, MOOSE now alternatively encourages a 
complex MeshGenerator object to create its own “sub-generator” objects via C++ code, specifying 
sub-generator parameters at runtime, based on higher-level-generator parameters, without the need 
for additional user input. Application-specific MeshGenerator subclasses thereby take the 
micromanagement of mesh subcomponent construction out of user hands, and construct detailed 
meshes of known or parametrically defined domains based on only a simplified set of input 
parameters. The recent MeshGenerator::addMeshSubgenerator() APIs now in MOOSE are the 
preferred (documented, regression-tested, supported) mechanism for doing this in higher-level 
generator codes, controlled by either providing a MOOSE InputParameters object or by allowing 
MOOSE to build up parameters on the fly from a variadic argument list. 
The RGMB mesh generator objects routinely use sub-generators objects under-the-hood in order 
to pass information from the original mesh generator object through a series of additional objects 
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“hidden” from the user. This allows the use to see a very simple and concise input structure while 
performing complex operations behind the scenes.  

3.10.2 ReactorMeshParams 
 
ReactorMeshParams is the mesh generator that defines all static parameters that are unchanged 
throughout the RGMB mesh generation process. While it cannot be used to generate a mesh on its 
own, it is responsible for storing any information about the mesh that needs to be accessed by 
multiple subsequent RGMB mesh generators. Table 3-2 summarizes the parameters that can be set 
through ReactorMeshParams: 

 
Table 3-2. Global Parameters used in Reactor Geometry Mesh Builder 

Parameter Name Description of Parameter 

dim The dimension of the mesh to be generated (2-D or 3-D) 

geom The geometry type of the reactor mesh (Square or Hex) 

assembly_pitch Center-to-center distance of adjacent assemblies 

bottom_boundary_id Boundary ID given to bottom boundary of mesh (Required for extruded meshes) 

top_boundary_id Boundary ID given to top boundary of mesh (Required for extruded meshes) 

radial_boundary_id Boundary ID given to radial boundary of CoreMeshGenerator mesh 

axial_regions Length of each axial region 

axial_mesh_intervals Number of elements in the z-direction for each axial region. 

 

It should be noted that the option for procedural subdomain assignment is no longer available in 
RGMB and instead the users must provide an explicit mapping of region IDs to mesh elements 
throughout the RGMB mesh generation process. This process will be explained in the following 
subsections. 

3.10.3 PinMeshGenerator 
PinMeshGenerator is the mesh generator in charge of defining a single pin or all unique pins that 
belong to a larger assembly lattice. These pins can have three substructures – the innermost radial 
pin regions, the single bridging background region (required for all pins), and the duct regions, and 
this mesh generator calls PolygonConcentricCircleMeshGenerator to define the 2-D pin and 
FancyExtruderGenerator if extruding the pin to three dimensions. 
(AdvancedExtruderGenerator will be supported once the merge request discussed in Section 
3.4.1 is finalized.) The following parameters are exposed to the user to define the pin geometry: 
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Table 3-3. Parameters used in Reactor Geometry Mesh Builder’s PinMeshGenerator 

Parameter Name Description of Parameter 

reactor_params The name of the ReactorMeshParams mesh generator used to define reactor mesh 
properties 

pin_type Integer ID given to pin 

pitch Center-to-center pitch of pin 

num_sectors Number of azimuthal sectors in each quadrant 

ring_radii Radii of major concentric circles of pin. If unspecified, no pin rings are created 

duct_halfpitch Apothems of duct regions. If unspecified, no duct regions are created 

mesh_intervals Number of mesh intervals for each pin region, starting at the center. The length of 
this vector should be (length of ring_radii + 1 + length of duct_halfpitch). The 
additional interval defines the number of mesh elements in the background region 

block_names 2-D vector of size A * R specifying the block names for each radial and axial zone, 
where A is the number of axial regions (defined in ReactorMeshParams) and R is 
the number of radial regions (defined in mesh_intervals). If this parameter is 
unspecified, one block name is assigned to all quad elements and another block 
name is assigned to all tri elements in the mesh. 

region_ids 2-D vector of size A * R specifying the region IDs for each radial and axial zone, 
where A is the number of axial regions (defined in ReactorMeshParams) and R is 
the number of radial regions (defined in mesh_intervals) 

extrude Boolean to specify whether pin mesh should be extruded to 3-D. Extrusion must 
occur as the last step of mesh generation in RGMB so if this parameter is true, this 
pin cannot be used in further mesh building in the Reactor workflow 

quad_center_elements Boolean to set whether center elements of this mesh are quad (true) or tri (false) 

 
The definition of the parameters region_ids and block_names sets the region IDs and block 
names of the pin mesh. region_ids provides a map of radial and axial zones that share material 
properties. Downstream physics calculations can then use the “region_id” extra element integer 
map created by RGMB to set material properties, instead of relying on a mapping between the 
block ID of the input mesh and the material ID of the physics problem, thus saving an additional 
step for the user. In this workflow, users no longer have to monitor information related to the block 
ID and block name of the mesh. RGMB defaults to generating a single block ID for all quad 
elements in the pin mesh and another block ID for the tri elements in the pin mesh. The quad 
elements will also have block name RGMB_PIN<pin_type_id>, where <pin_type_id> is the pin 
ID provided by the pin_type parameter, while all tri elements will have the block name 
RGMB_PIN<pin_type_id>_TRI. However, for users who require explicit definition of block names, 
the block_names parameter can be used to define the block name of each radial and axial region 
of the mesh. 
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After the pin mesh is created, PinMeshGenerator sets a number of extra element IDs based on the 
“region_id” map  and "pin_type".  Finally, if the pin mesh is extruded to three dimensions, each 
axial layer is tagged with the extra integer name "plane_id" to distinguish mesh elements that 
belong to the same axial plane. 
With respect to the exterior boundary information, PinMeshGenerator automatically generates 
boundary sidesets and nodesets for the pin. The radial pin boundary is assigned the ID equal to 
(20000 + <pin_type_id>) and is named "outer_pin_<pin_type_id>", where <pin_type_id> is 
the pin ID provided by the pin_type parameter. For example, a pin with a pin type ID of 1 will 
have a boundary ID of 20001 and boundary name of "outer_pin_1". If the pin is extruded to three 
dimensions the top-most boundary ID must be assigned using 
ReactorMeshParams/top_boundary_id and will have the name "top", while the bottom-most 
boundary must be assigned using ReactorMeshParams/bottom_boundary_id and will have the 
name "bottom". 
The following example shows how to define a circular pin within a Cartesian enclosure using 
PinMeshGenerator. The left image shows the resulting mesh block layout, where by default a single 
block is assigned to the triangular elements and another block is assigned to the quadrilateral 
elements. On the other hand, all region-wise heterogeneities are controlled by the "region_id" extra 
element integer layout, which is shown in the right image. These region IDs are set for each radial 
region in Mesh/pin1/region_ids. 

  
[Mesh] 
  [rmp] 
    type = ReactorMeshParams 
    dim = 2 
    geom = "Square" 
  [] 
  [pin1] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 2 
    pitch = 1.42063 
    num_sectors = 4 
    region_ids = '1 2 3 4' 
    mesh_intervals = '1 1 1 1' 
    quad_center_elements = false 
  [] 
[] 

      
Block ID layout                    Region ID layout 

 

Figure 3-36 Creation of Cartesian pin using Reactor Geometry Mesh Builder’s 
PinMeshGenerator. 

3.10.4 AssemblyMeshGenerator 
AssemblyMeshGenerator defines a single assembly-like structure or all unique assemblies that 
belong to a larger core lattice. The assembly-like structures must consist of a full pattern of equal 
sized pins from PinMeshGenerator. Pins inside the hexagonal assembly will be placed inside of a 
bounding hexagon consisting of a background region and, optionally, one or more duct regions.  
This object automates the use and functionality of the CartesianIDPatternedMeshGenerator for 
Cartesian reactor geometry, and HexIDPatternedMeshGenerator for hexagonal reactor geometry. 
If extruding to three dimensions, AssemblyMeshGenerator also calls FancyExtruderGenerator. 
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Like PinMeshGenerator, AssemblyMeshGenerator automates block ID and region ID 
assignment for the assembly background and duct regions (duct regions only available for 
hexagonal assemblies) and boundary ID and name assignment. The following parameters are 
exposed to the user to define the assembly geometry using AssemblyMeshGenerator: 

 
Table 3-4. Parameters used in Reactor Geometry Mesh Builder’s PinMeshGenerator 

Parameter Name Description of Parameter 

inputs The names of the PinMeshGenerator objects that will be used to form the 
assembly lattice. 

assembly_type Integer ID given to assembly 

pattern A double indexed array starting with the upper-left corner, where the index 
represents the layout of input pins in the assembly lattice 

duct_halfpitch Distance(s) from center of assembly to duct inner boundary(ies). 

background_intervals Radial intervals in the assembly background region.  

duct_intervals Number of meshing intervals in each enclosing duct. 

background_region_id The region ID for the assembly background region, used for setting “region_id” 
extra element integers. If the assembly is extruded to three-dimensions, then a 
region ID must be provided for each axial level, starting from the bottom layer to 
the top layer. 

duct_region_ids The region ID for the assembly duct regions, used for setting “region_id” extra 
element integers. If the assembly is extruded to three-dimensions, then a duct 
region ID must be provided for each axial level, starting from the bottom layer to 
the top layer. Dimension of 2-D vector is A * D, where A is the number of axial 
layers and D is the number of radial duct regions in each axial layer. 

background_block_name The block names for the assembly background region. If the assembly is extruded 
to three-dimensions, then a region ID must be provided for each axial level, 
starting from the bottom layer to the top layer. If this parameter is unspecified, one 
block name is assigned to all quad elements in the background region and another 
block name is assigned to all tri elements in the background region. 

duct_block_names 2-D vector of size A * D, where A is the number of axial layers and D is the 
number of radial duct regions in each axial layer, used for setting the block names 
of each duct region. If this parameter is unspecified, one block name is assigned to 
all quad elements in the background region and another block name is assigned to 
all tri elements in the background region. 

extrude Boolean to specify whether assembly mesh should be extruded to 3-D. Extrusion 
must occur as the last step of mesh generation in RGMB so if this parameter is 
true, this assembly cannot be used in further mesh building in the Reactor 
workflow 
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Similar to the conventions followed in PinMeshGenerator, the parameters 
background_region_id and duct_region_ids must be set by the user to identify regions within 
the assembly around the lattice of fuel pins. This functionality is intended for identification of 
regions within the mesh that will have the same physics properties such as material assignments, 
and will be used to set the “region_id” extra element integer of the resultant mesh. 
Likewise, block IDs are generated automatically by AssemblyMeshGenerator, and for users who 
require element identification by block name, the optional parameters background_block_name 
and duct_block_names can be defined to set block names for the assembly background and duct 
regions respectively. By default, each quad element within the assembly (pin elements inclusive) 
will have the block name “RGMB_ASSEMBLY<assembly_type_id>”, where 
<assembly_type_id> is the assembly ID provided by the user through the parameter 
assembly_type. All tri elements within the mesh will have the block name 
RGMB_ASSEMBLY<assembly_type_id>. 

AssemblyMeshGenerator will tag all elements with the following extra element integer map 
names, followed by a description of these maps: 
 

Table 3-5. Extra Element IDs Assigned in Reactor Geometry Mesh Builder’s 
AssemblyMeshGenerator 

Extra element ID name Extra element integer map description 
region_id Groups all elements within the assembly with equivalent material properties 
assembly_type All elements within the assembly will have the same value 

<assembly_type_id>, based on the value of the assembly_type parameter. 
plane_id Integer map to distinguish each axial layer, if assembly mesh is extruded to 

three dimensions 
pin_id ID given to each pin in the assembly lattice, based on the conventions used 

by CartesianIDPatternedMeshGenerator or 
HexIDPatternedMeshGenerator. Pin IDs are set using the “cell” 
assignment type 

 
Finally, AssemblyMeshGenerator automatically generates boundary sidesets and nodesets for the 
assembly, where the radial assembly boundary is assigned the ID equal to (2000 + 
<assembly_type_id>) and is named "outer_assembly_<assembly_type_id>", where 
<assembly_type_id> is the assembly ID provided by the assembly_type parameter. For 
example, an assembly with an assembly type ID of 1 will have a boundary ID of 2001 and boundary 
name of "outer_assembly_1". If the assembly is extruded to three dimensions the top-most 
boundary ID must be assigned using ReactorMeshParams/top_boundary_id and will have the 
name "top", while the bottom-most boundary must be assigned using 
ReactorMeshParams/bottom_boundary_id and will have the name "bottom". 

The following example shows how to define a Cartesian assembly lattice using 
AssemblyMeshGenerator. The top image shows the resulting mesh block layout, where by default 
a single block is assigned to the triangular elements and another block is assigned to the 
quadrilateral elements. Region-wise heterogeneities are controlled by the "region_id" extra element 
integer layout, which is shown in the bottom image. 
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[Mesh] 
  [rmp] 
    type = ReactorMeshParams 
    dim = 2 
    geom = "Square" 
    assembly_pitch = 2.84126 
  [] 
 
  [pin1] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 1 
    pitch = 1.42063 
    num_sectors = 2 
    ring_radii = '0.2' 
    duct_halfpitch = '0.68' 
    mesh_intervals = '1 1 1' 
    quad_center_elements = false 
    region_ids = '1 2 5' 
  [] 
 
  [pin2] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 2 
    pitch = 1.42063 
    num_sectors = 2 
    mesh_intervals = '2' 
    region_ids = '3; 13' 
  [] 
 
  [amg] 
    type = AssemblyMeshGenerator 
    assembly_type = 1 
    inputs = 'pin1 pin2' 
    pattern = '0 0; 
               0 1;' 
  [] 
[] 

 
Block ID layout 

 
 

 
Region ID Layout 

 

Figure 3-37 Creation of Cartesian assembly using Reactor Geometry Mesh Builder’s 
AssemblyMeshGenerator depicting block IDs and Region IDs 
 

3.10.5 CoreMeshGenerator 
CoreMeshGenerator is the mesh generator in charge of defining a core-like structure consisting 
of assemblies with equivalent pitch sizes in a lattice configuration. This core lattice layout is 
permitted to have empty or “dummy” locations. 
This object automates the use and functionality of the CartesianIDPatternedMeshGenerator for 
Cartesian reactor geometry, and HexIDPatternedMeshGenerator for hexagonal reactor geometry. 
If extruding to three dimensions, CoreMeshGenerator also calls FancyExtruderGenerator. The 
following parameters are exposed to the user to define the core geometry using 
CoreMeshGenerator: 

 
Table 3-6. Parameters in Reactor Geometry Mesh Builder’s CoreMeshGenerator 
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Parameter Name Description of Parameter 

inputs The names of the AssemblyMeshGenerator objects that will be used to form the 
core lattice. 

pattern A double indexed array starting with the upper-left corner, where the index 
represents the layout of input assemblies in the core lattice 

dummy_assembly_name Name given to the dummy assembly which can be used in the inputs and pattern 
parameters to place dummy assemblies in the core lattice. 

extrude Boolean to specify whether core mesh should be extruded to 3-D. Extrusion must 
occur as the last step of mesh generation in RGMB so if this parameter is true, this 
assembly cannot be used in further mesh building in the Reactor workflow 

 
CoreMeshGenerator will tag all elements with the following extra element integer map names, 
followed by a description of these maps: 
 
Table 3-7. Extra Element IDs Assigned in Reactor Geometry Mesh Builder’s CoreMeshGenerator 

Extra element ID name Extra element integer map description 
plane_id Integer map to distinguish each axial layer, if core mesh is extruded to three 

dimensions 
assembly_id ID given to each assembly in the assembly lattice, based on the conventions 

used by CartesianIDPatternedMeshGenerator or 
HexIDPatternedMeshGenerator. Assembly IDs are set using the “cell” 
assignment type and any "dummy" assembly locations (identified via the 
dummy_assembly_name parameter) will be excluded from the assembly ID 
numbering. 

 
CoreMeshGenerator automatically generates boundary sidesets and nodesets for the assembly, 
where the radial core boundary is assigned the ID specified in 
ReactorMeshParams/radial_boundary_id  and is named "outer_core". If the assembly is 
extruded to three dimensions the top-most boundary ID must be assigned using 
ReactorMeshParams/top_boundary_id and will have the name "top", while the bottom-most 
boundary must be assigned using ReactorMeshParams/bottom_boundary_id and will have the 
name "bottom". 
The following example shows how to define a Cartesian core lattice using CoreMeshGenerator. 
The top image shows the resulting mesh block layout, where a single block is assigned to elements 
since they are all quadrilateral type elements. All region-wise heterogeneities are controlled by the 
"region_id" extra element integer layout, which is shown in the bottom image. 
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[Mesh] 
  [rmp] 
    type = ReactorMeshParams 
    dim = 2 
    geom = "Square" 
    assembly_pitch = 2.84126 
    top_boundary_id = 201 
    bottom_boundary_id = 202 
    radial_boundary_id = 200 
  [] 
  # Pin Definitions 
  [pin1] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 1 
    pitch = 1.42063 
    num_sectors = 2 
    ring_radii = '0.2' 
    duct_halfpitch = '0.68' 
    mesh_intervals = '1 1 1' 
    region_ids = '1 2 5' 
    quad_center_elements = true 
  [] 
  [pin2] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 2 
    pitch = 1.42063 
    num_sectors = 2 
    mesh_intervals = '2' 
    region_ids = '2' 
    quad_center_elements = true 
  [] 
  [pin3] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 3 
    pitch = 1.42063 
    num_sectors = 2 
    ring_radii = '0.3818' 
    mesh_intervals = '1 1' 
    region_ids = '3 4' 
    quad_center_elements = true 
  [] 
  # Assembly Definitions 
  [amg1] 
    type = AssemblyMeshGenerator 
    assembly_type = 1 
    inputs = 'pin2' 
    pattern = '0 0; 
               0 0' 
  [] 
  [amg2] 
    type = AssemblyMeshGenerator 
    assembly_type = 2 
    inputs = 'pin3 pin1 pin2' 
    pattern = '0 1; 
               1 2' 
  [] 
 
  [cmg] 
    type = CoreMeshGenerator 
    inputs = 'amg2 amg1' 
    pattern = '1 0; 
               0 1' 
  [] 
[] 

 
Block ID layout 

 
 

 
Region ID Layout 

 

Figure 3-38 Creation of Cartesian core using Reactor Geometry Mesh Builder’s 
CoreMeshGenerator 
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3.10.6 Periphery Mesh Generation 
CoreMeshGenerator also now integrates in periphery mesh generation capabilities using either 
the PeripheralTriangleMeshGenerator (PTMG) or PeripheralRingMeshGenerator 
(PRMG). Both periphery mesh generators create a circular reactor boundary surrounding the core 
region and meshes the area between the reactor boundary and the core region that was created as 
part of the primary CMG functionality. PTMG meshes the periphery region with triangles (TRI3 
elements) while PTMG meshes the periphery region with quads (QUAD4 elements). 
CoreMeshGenerator adds in the periphery region after the core region has been created, and before 
extrusion into 3D if that step is being performed as part of the mesh builder workflow. The 
following parameters are exposed to the user to define the periphery region using 
CoreMeshGenerator. 

 
Table 3-8. Common parameters in CoreMeshGenerator for core periphery meshing 

Parameter Name Description of Parameter 

mesh_periphery Boolean to determine if the periphery meshing should be performed  

periphery_generator Selector for which periphery mesh generator to use (PTMG or PRMG) 

outer_boundary_id The boundary id to set on the generated outer boundary 

periphery_region_id The extra element region_id to be assigned to the periphery region 

periphery_block_name The block name to be assigned to the periphery region 

outer_circle_radius The radius of the periphery to be meshed 

 
Since PTMG and PRMG generate the periphery region in different ways, additional parameters 
are specific to the periphery generator being used:  
 

Table 3-9. Extra parameters in CoreMeshGenerator for core periphery meshing depending on 
type of mesh desired 

Parameter Name Description of Parameter 

outer_circle_num_segments 
(PTMG) 

Number of segments to subdivide the outer circle boundary 

extra_circle_radii 
(PTMG) 

Vector of radii for extra Steiner point circles 

extra_circle_num_segments 
(PTMG) 

Vector of number of segments to subdivide the extra_circle_radii for 
extra Steiner point circles 

periphery_num_layers 
(PRMG) 

Number of layers to subdivide the peripheral region 
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The following example shows how to create a triangulated periphery region using PTMG around 
the core region using CoreMeshGenerator. The mesh quality in the triangulated periphery is poor 
due to lack of Steiner points and could be improved by adding Steiner points or switching the 
quadrilateral option. 
 
[Mesh] 
  [rmp] 
    type = ReactorMeshParams 
    dim = 3 
    geom = "Hex" 
    assembly_pitch = 7.10315 
    axial_regions='10.0 10.0' 
    axial_mesh_intervals='1 1' 
    top_boundary_id = 201 
    bottom_boundary_id = 202 
    radial_boundary_id = 200 
  [] 
 
  ### pin definitions omitted for brevity 
 
  # Assembly definitions 
  [amg1] 
    type = AssemblyMeshGenerator 
    assembly_type = 1 
    background_intervals = 1 
    inputs = 'pin2' 
    pattern = '0 0; 
              0 0 0; 
               0 0' 
    background_region_id='41 141' 
    background_block_name='A1_R41 A1_R141' 
 
  [] 
  [amg2] 
    type = AssemblyMeshGenerator 
    assembly_type = 2 
    background_intervals = 1 
    inputs = 'pin1 pin3' 
    pattern = '0 0; 
              0 1 0; 
               1 0' 
    background_region_id='51 151' 
    background_block_name='A2_R51 A2_R151' 
    duct_region_ids='52; 152' 
    duct_block_names='A2_R52; A2_R152' 
    duct_halfpitch='3.5' 
    duct_intervals='1' 
  [] 
 
  # Core definition 
  [cmg] 
    type = CoreMeshGenerator 
    inputs = 'amg1 amg2 empty' 
    dummy_assembly_name = empty 
    pattern = '2 1; 
              1 0 2; 
               2 1' 
 
    # periphery mesh occurs before extrusion 
    extrude = true 
 
    # periphery meshing 
    mesh_periphery=true 
    periphery_region_id='200' 
    periphery_block_name = 'PERIPHERY' 
 
    # PTMG periphery 
    periphery_generator=PTMG 
    outer_circle_radius=15 
    outer_circle_num_segments=100 
  [] 
[] 

 
Region ID Layout (2D) 

 

 
Region ID Layout (After extrusion to 3D) 
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Figure 3-39 Creation of 3D core with meshed peripheral region using Reactor Geometry Mesh 
Builder 

 

3.11 User Support 
The team assisted users at various laboratories with mesh generation. Two more unusual examples 
are depicted below. The first example, shown in Figure 3-40, drove the development of new 
capability (TriPinHexAssemblyGenerator described in Section 3.2.3) to create the individual 3-pin 
assemblies needed in a Griffin HTTR model developed by V. Laboure (INL). 
 

 
Figure 3-40 Preliminary HTTR Mesh in collaboration with V. Laboure (INL) 

 
The second example Figure 3-41 leveraged combinations of Reactor Module tools produced by this 
team as well as the new Delaunay triangulation mesh generator (official name is pending merge 
request) developed by the INL MOOSE Framework team. This second example was constructed 
as a request from Griffin laboratory users to mesh fuel pins placed in a ring among a homogenized, 
triangulated background region. The corner of the assemblies consist of 1/3 pin sectors as shown 
in the left reference figure. Some of the basic geometry features were constructed to demonstrate 
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feasibility using the Reactor Module and the Delaunay triangulation mesh generator as shown in 
the right figure. This input was provided to the user. 

  
Figure 3-41 (left) Target reactor assembly design showing center hole, ring of fuel, and circular 

sector at hexagon vertices, provided by M. Lindell (INL). (right) Initial mesh of fundamental 
features using the upcoming Delaunay triangulation mesh generator and the Reactor Module. 
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4 Reactor Geometry Verification Examples and Meshes  
To verify the mesh generators developed in this work were functioning properly, several physics 
benchmark cases were set up using the new MOOSE mesh tools. Some results were compared to 
pre-existing results that used externally generated meshes from either CUBIT or Argonne’s Mesh 
Tools system. 

4.1 Heterogeneous Lead-Cooled Fast Reactor Assembly 
Griffin was employed to test the RGMB functionality described in Section 3.10. As described in 
Section 3.1.2, Griffin is compiled by linking directly to the MOOSE Reactor module, so all Reactor 
module mesh generators are accessible through the Griffin executable. To demonstrate the benefits 
of using RGMB mesh generators, a 3-D lead-cooled fast reactor (LFR) assembly example is 
studied. The geometry and design specifications of the assembly are based on inner zone fuel 
assembly of a 950 MWth liquid lead-cooled, fast neutron spectrum core designed by Westinghouse 
Electric Company (WEC) (Grasso, Levinsky, Franceschini, & Ferroni, 2019).  The assembly 
consists of 7 rings of hexagonal pins discretized into 10 axial zones based on material heterogeneity. 
MOX fuel composed of depleted uranium and enriched plutonium is used in the inner fuel zones 
of the fuel pins in the assembly. 

4.1.1 Mesh Generation 
Figure 4-1 illustrates the top-down and side view of the assembly geometry generated using RGMB 
objects. Each hexagonal pin region is discretized radially into 4 rings representing (1) central 
helium hole surrounded by annular rings of (2) fuel, (3) helium gap, and  (4) cladding, plus a 
background region of coolant. Two duct regions surround the entire assembly, representing the 
solid duct and the inter-assembly coolant gap. The 2D mesh is axially extruded into 3D with 10 
regions of varying material composition. The general input structure for defining this mesh is 
provided below: 
 

[Mesh] 
  [rmp] 
    type = ReactorMeshParams 
    dim = 3 
    geom = "Hex" 
    assembly_pitch = 16.4165 
    axial_regions = '10.07 30.79 6.56 85.85 1.52 106.07 1.51 12.13 5.05 93.87' 
    axial_mesh_intervals = '1 3 1 9 1 20 1 2 1 9' 
    top_boundary_id = 201 
    bottom_boundary_id = 202 
    radial_boundary_id = 200 
  [] 
  [pin1] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 1 
    pitch = 1.3425 
    num_sectors = 2 
    mesh_intervals = '1 3 1 1 1' 
    ring_radii = '0.2020 0.4319 0.4495 0.5404' 
    region_ids='1 1 1 1 1; 
                2 2 2 2 2; 
                3 3 3 3 3; 
                4 4 4 5 6; 
                8 8 8 9 10; 
                20 19 20 13 21; 
                24 24 24 25 26; 
                28 28 28 29 30; 
                32 32 32 32 32; 
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                33 33 33 33 33' 
    quad_center_elements = false 
  [] 
  # Define all other pins with unique region IDs radially / axially 
  # This step is omitted for brevity 
  [assembly] 
    type = AssemblyMeshGenerator 
    inputs = 'pin1 pin2 pin3 pin4 pin5 pin6 pin7' 
    pattern =  ' 0 0 0 0 0 0 0; 
                0 1 1 1 1 1 1 0; 
               0 1 2 2 2 2 2 1 0; 
              0 1 2 3 3 3 3 2 1 0; 
             0 1 2 3 4 4 4 3 2 1 0; 
            0 1 2 3 4 5 5 4 3 2 1 0; 
           0 1 2 3 4 5 6 5 4 3 2 1 0; 
            0 1 2 3 4 5 5 4 3 2 1 0; 
             0 1 2 3 4 4 4 3 2 1 0; 
              0 1 2 3 3 3 3 2 1 0; 
               0 1 2 2 2 2 2 1 0; 
                0 1 1 1 1 1 1 0; 
                 0 0 0 0 0 0 0' 
    extrude = true 
    assembly_type = 1 
    background_region_id = '1 2 3 6 10 21 26 30 32 33' 
    background_intervals = '1' 
    duct_halfpitch = '7.6712 8.0245' 
    duct_intervals = '1 1' 
    duct_region_ids = '1 1; 2 2; 3 3; 7 6; 11 10; 
                       22 23; 27 26; 31 30; 32 32; 33 33' 
  [] 
[] 
Figure 4-1 Reactor Geometry Mesh Builder input for LFR assembly 

 
In the first step, the ring radii, pin pitch, and radial and azimuthal discretizations of the pin are 
specified. In addition, the region IDs corresponding to material zones in the pin are specified 
through the region_ids parameter. This generates a map of all radial and axial region IDs within 
the pin as an extra element integer map, which the Griffin code uses downstream to set material 
properties directly instead of relying on a separate mapping input for blocks to materials. In the 
second step, each of the pins defined in the first step are placed in a hexagonal lattice, and the 
extrude=true option is used to inform the mesh generator to extrude the geometry into 3-D. At this 
stage, the dimensions and region IDs of the assembly duct and background regions are also 
provided.  
Upon completion, AssemblyMeshGenerator generates the 3-D assembly mesh and automatically 
produce the extra element integers related to pin IDs (unique id given to each pin region in the 
assembly), plane IDs (unique id given to each axial region in the assembly), and region IDs (unique 
id given to each material region, specified through the user input). These reporting IDs can be 
queried by MOOSE’s ExtraIDIntegralVectorPostprocessor to compute integral quantities of 
interest such as scalar flux and fission source based on pin location, axial location, and/or material 
region. 
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                                                            (a)                                         (b) 

Figure 4-2. Top-down (a) and side (b) views of LFR heterogeneous assembly, created using 
RGMB objects in the Reactor Module. Each color represents a unique material region in the 

assembly. 
 

4.1.2 Computation and Results 
The neutronic behavior for the LFR assembly was simulated with Griffin, and the “region_id” extra 
element integer map generated by the RGMB mesh generators is used directly to specify material 
regions in Griffin. The multigroup cross sections for each material region were generated prior to 
the Griffin simulation with MC2-3 (Lee, Jung, & Yang, 2018). For this verification test, three 
avenues for mesh generation are explored: (1) using the RGMB mesh generators described above, 
(2) using the base Reactor Module mesh generators that are called by the RGMB mesh generators, 
and (3) using Argonne Mesh Tools (external software used for generating reactor-based meshes) 
to generate the mesh. All neutronics parameters are kept the same across Griffin runs: 9 energy 
groups, P1A3 Gauss-Chebyshev cubature, and a solver scheme that utilizes the discontinuous finite 
element method (DFEM) with discrete ordinates (SN). Vacuum boundary conditions are applied to 
the top and bottom of the assembly; reflective boundary conditions are applied to the radial 
boundary. Coarse mesh finite differences (CMFD) is used to accelerate the transport problem 
convergence, and the input coarse mesh for this acceleration scheme – also defined with MOOSE 
mesh tools - homogenizes each pin region into a single hexagonal region composed of 12 triangles. 
K-effective is used as a metric for comparing neutronics results between the three methods for mesh 
generation described above, and these results are summarized in Table 4-1. The MOOSE-based 
mesh generators produce identical eigenvalues, while there is a 20pcm difference in the Griffin 
simulation that uses Argonne’s Mesh Tools for mesh generation, which is due to the minor variation 
in the discretization schemes employed by MOOSE and Argonne’s Mesh Tools in the assembly 
background region. This is described in more detail in the FY21 report (Shemon, et al., 2021). 
While the two MOOSE-based mesh generation approaches produce identical results, the RGMB-
based procedure offers several advantages.  
First, the parameters within PinMeshGenerator and AssemblyMeshGenerator have been 
optimized to simplify input generation to focus solely on parameters of interest to the reactor 
analyst while masking any extraneous parameter definitions in base Reactor module mesh 
generators that would otherwise need to be specified. Secondly, material ID assignments can be 
made directly onto the resultant RGMB mesh, which Griffin can natively read to greatly simplify 
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the procedure of mapping cross section materials to elements within the input mesh. Base mesh 
generators defined in the Reactor module do not have this capability, and instead material 
assignments must be made based on block ID assignments of the mesh, which can be a very 
cumbersome process for problems with a large degree of radial and axial material heterogeneity. 
Finally, RGMB mesh generators are seamlessly integrated with reporting ID generation (pin, 
assembly, plane, and region IDs), and these reporting IDs streamline the definition of tally regions 
commonly used by reactor analysts. 

 
Table 4-1. Griffin-computed k-effective results for LFR Assembly Problem: MOOSE mesh vs. 

Argonne Mesh Tools. 
Mesh Generation Tool Griffin Solver Scheme K-Effective 
MOOSE RGMB Mesh 

Generators  
DFEM-SN with CMFD 

Acceleration 
1.17142 

MOOSE Base Reactor 
Module Mesh Generators 

DFEM-SN with CMFD 
Acceleration 

1.17142 

Argonne Mesh Tools DFEM-SN with CMFD 
Acceleration 

1.17122 

 
 
To illustrate how automatically-generated reporting IDs from RGMB mesh generators can be used 
for reactor analysis workflows, the ExtraIDIntegralVectorPostprocessor is used in 
conjunction with the RGMB reporting IDs to inspect pin-by-pin tallies of interest. For this specific 
problem, scalar flux was specified as the tally variable, and both pin ID and axial plane ID were set 
as the reporting IDs that tell Griffin where to tally. Based on these specifications, an output CSV 
file is produced by Griffin, which tabulates the scalar flux for each unique combination of pin ID 
and axial plane ID. The data from this file can be used with a custom processing script to aggregate 
the scalar flux over like reporting IDs to generate pin-wide and axial plane-wide flux distributions 
over the entire core. For reference, the axially integrated pin scalar flux map produced from the 
processing script is illustrated in Figure 4-3.  
This LFR verification example illustrates how the Reactor Module can streamline the Griffin 
workflow to execute a 3-D reactor analysis from input mesh construction, simulation execution, 
and output data generation for post-processing neutronics assembly or core distributions. 
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Figure 4-3. Axially integrated pin-by-pin group 0 normalized scalar flux distribution for the LFR 

assembly example. 
 

4.2 Heterogeneous Cartesian Light Water Reactor Core 
As an example of how a Cartesian-based core example can be meshed with the RGMB tools, the 
2-D C5 problem was also investigated. In a similar fashion to Section 4.1, RGMB mesh generators 
are used to define the pin, assembly, and core configurations, and Griffin is used to simulate the 
neutronics problem. In this example, the DFEM-SN solver with CMFD acceleration is employed 
with 11 energy groups. The input file to define this mesh is provided in Figure 4-4, and the region 
ID map of the resultant mesh is shown in Figure 4-5. 
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[Mesh] 
  # ReactorMeshParams and PinMeshGenerator  
  # definitions 
  [rmp] 
    type = ReactorMeshParams 
    dim = 2 
    geom = "Square" 
    assembly_pitch = 21.42 
    radial_boundary_id = 200 
  [] 
  [pin1_mox4.3] 
    type = PinMeshGenerator 
    pin_type = 1 
    region_ids='2 2 6' 
    pitch = 1.26 
    reactor_params = rmp 
    num_sectors = 2 
    ring_radii = '0.18 0.54' 
    mesh_intervals = '1 2 2' 
    quad_center_elements = false 
  [] 
  [pin2_mox7.0] 
    type = PinMeshGenerator 
    pin_type = 2 
    region_ids='3 3 6' 
    reactor_params = rmp 
    pitch = 1.26 
    num_sectors = 2 
    ring_radii = '0.18 0.54' 
    mesh_intervals = '1 2 2' 
    quad_center_elements = false 
  [] 
  [pin3_mox8.7] 
    type = PinMeshGenerator 
    pin_type = 3 
    region_ids='4 4 6' 
    # Full specifications omitted for brevity 
  [] 
  [pin4_fission_chamber] 
    type = PinMeshGenerator 
    pin_type = 4 
    region_ids='6 6 6' 
    # Full specifications omitted for brevity 
  [] 
  [pin5_guide_tube] 
    type = PinMeshGenerator 
    pin_type = 5 
    region_ids='6 6 6' 
    # Full specifications omitted for brevity 
  [] 
  [pin6_uo2] 
    type = PinMeshGenerator 
    pin_type = 6 
    region_ids='1 1 6' 
    # Full specifications omitted for brevity 
  [] 
  [pin7_mod] 
    type = PinMeshGenerator 
    reactor_params = rmp 
    pin_type = 7 
    pitch = 1.26 
    num_sectors = 2 
    duct_halfpitch = '0.1575' 
    mesh_intervals = '1 3' 
    region_ids='6 6' 
    quad_center_elements = false 
  [] 

  # AssemblyMeshGenerator and CoreMeshGenerator 
definitions 
  [mox_assy] 
    type = AssemblyMeshGenerator 
    assembly_type = 1 
    inputs = 'pin1_mox4.3 pin2_mox7.0 pin3_mox8.7  
              pin4_fission_chamber pin5_guide_tube' 
    pattern = '0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0; 
               0 1 1 1 1 4 1 1 4 1 1 4 1 1 1 1 0; 
               0 1 1 4 1 2 2 2 2 2 2 2 1 4 1 1 0; 
               0 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 0; 
               0 1 4 2 2 4 2 2 4 2 2 4 2 2 4 1 0; 
               0 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0; 
               0 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0; 
               0 1 4 2 2 4 2 2 3 2 2 4 2 2 4 1 0; 
               0 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0; 
               0 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 0; 
               0 1 4 2 2 4 2 2 4 2 2 4 2 2 4 1 0; 
               0 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 0; 
               0 1 1 4 1 2 2 2 2 2 2 2 1 4 1 1 0; 
               0 1 1 1 1 4 1 1 4 1 1 4 1 1 1 1 0; 
               0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 
  [] 
  [uo2_assy] 
    type = AssemblyMeshGenerator 
    assembly_type = 2 
    inputs = 'pin6_uo2 pin4_fission_chamber  
              pin5_guide_tube' 
    pattern = '0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 0; 
               0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 2 0 0 2 0 0 1 0 0 2 0 0 2 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0; 
               0 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 
  [] 
  [refl_assy] 
    type = AssemblyMeshGenerator 
    assembly_type = 3 
    inputs = 'pin7_mod' 
    pattern = '0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 
  [] 
  [c5g7_2d] 
    type = CoreMeshGenerator 
    inputs = 'uo2_assy mox_assy refl_assy' 
    pattern = '0 1 2; 
               1 0 2; 
               2 2 2' 
  [] 
[] 
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Figure 4-4. RGMB input for C5G6 Cartesian core example. 

 

        

Figure 4-5 Region ID map of full-core C5G7 mesh (left) and zoomed in mesh discretization of 
MOX assembly (right). 

Results from the Griffin problem are compared to the case where base mesh generators called by 
RGMB – namely PolygonConcentricCircleMeshGenerator and PatternedMeshGenerator – are 
defined explicitly to define the input mesh in place of the RGMB mesh generators. In both cases, 
the computed eigenvalue in Griffin is 1.07226, showing that RGMB mesh generators are capable 
of reproducing the same results as their constituent mesh generators while providing users the 
options to automatically define pin-wise and assembly-wise extra element IDs and directly map 
mesh elements to the material IDs in Griffin. 

4.3 Heat Pipe-Cooled Microreactor (HPMR) 
As a subset of Small Modular Reactors (SMRs) (Peakman, Hodgson, & Merk, 2018), nuclear 
microreactors have unique advantages over other typical types of large-scale nuclear reactors. The 
main advantages include factory fabrication, high transportability, and fast on-site installation (US 
DOE Office of Nuclear Energy, 2022), stemmed from their small size and simple design compared 
to commercial light water reactors (LWRs). A typical microreactor generates thermal power in the 
range of 1-20 MWth that can be directly used as heat, or further converted to electric power (US 
DOE Office of Nuclear Energy, 2022) or other secondary energy forms such as hydrogen (Dasari, 
Trellue, & Arafat, 2020). One of the advanced cooling methods that have been applied to 
microreactor designs is heat pipes featured of highly efficient heat transfer. To demonstrate and 
verify the capabilities of MOOSE meshgenerator system, two heat-pipe cooled microreactor 
(HPMR) examples are shown in the below sections. 

4.3.1 2D Empire Model 
Empire (Matthews, et al., 2021) is a 2MW (thermal) heat-pipe microreactor with up to 18 unit 
assemblies, originally developed at Los Alamos National Laboratory (LANL). Empire was selected 
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to be one of the examples in Griffin. Two different meshes in Griffin were generated by using 
Argonne’s Mesh Tools (AMT) system assisted with CUBIT (CUBIT, 2021): (1) Coarse mesh in 
Figure 4-6(a) & (2) Fine mesh in Figure 4-7(a). 
  

 

Figure 4-6. Coarse meshes of Empire Core: (A) mesh generated using Argonne’s Mesh Tools 
system; and (B) mesh generated using MOOSE meshgenerators 

 

 

Figure 4-7. Fine meshes of Empire Core: (A) mesh generated using Argonne’s Mesh Tools 
system and CUBIT; and (B) mesh generated using MOOSE meshgenerators 
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The recent developed capabilities in MOOSE enabled these meshes to be generated directly in 
MOOSE without other tools. 
The coarse Empire mesh was generated using three objects in meshgenerator systems: 

1. PolygonConcentricCircleMeshGenerator: generate two unit hexagonal meshes (Figure 4-8(A)). 

2. PatternedHexMeshGenerator: stitch the unit hexagonal meshes with a given pattern to form the 
reactor core  (Figure 4-8(B)). 

3. PlaneDeletionGenerator: trim the mesh into hexagonal shape with flat boundaries, by using the 
PlaneDeletionGenerator to remove the meshes outside the blue hexagon region (Figure 4-8(C)). 

 

Figure 4-8. Construction of coarse Empire mesh 
Construction of the fine Empire mesh is more complicated. The procedure to construct the fine 
Empire mesh is show below and demonstrated in Figure 4-9: 

1. Generation of unit hexagonal mesh (fuel, heat pipe and moderator pin cells) using 
PolygonConcentricCircleMeshGenerator (Figure 4-9(A)). 

2. Construction of the unit assembly mesh by stitching the unit hexagonal meshes with a given 
pattern using PatternedHexMeshGenerator (Figure 4-9(B)). 

3. Generation of control drum mesh using 
HexagonConcentricCircleAdaptiveBoundaryMeshGenerator and AzimuthalBlockSplitGenerator 
(Figure 4-9(C)). 
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4. Generation of air hole mesh using PolygonConcentricCircleMeshGenerator (Figure 4-9(D)). 

5. Construction of Empire core mesh by stitching the assembly, control drum and air hole meshes 
with a given pattern, using PatternedHexMeshGenerator (Figure 4-9(E)). 

6. Trimming the Empire core mesh into hexagonal shape with flat boundaries, by using 
PlaneDeletionGenerator to remove the meshes outside the blue hexagon frame (Figure 4-9(F)). 

 

Figure 4-9. Construction of fine Empire mesh 
 
Figure 4-6(b) & Figure 4-7(b) show the coarse and fine meshes generated using MOOSE 
meshgenerators. There is no visible difference in Empire coarse meshes generated by MOOSE and 
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AMT. The only difference in Empire fine meshes by MOOSE and AMT with CUBIT is the control 
drum mesh (Figure 4-9(c)). For the MOOSE mesh, the center of the control drum mesh was meshed 
by triangular elements using “HexagonConcentricCircleAdaptiveBoundaryMeshGenerator,” while 
CUBIT used the “pave” algorithm to mesh the control drum by quadrilateral elements. 
Griffin was used to compare the eigenvalue results between a CUBIT/AMT-based input mesh and 
a mesh generated entirely with the Reactor module. The Griffin simulation used 11 energy groups 
and a P3A4 Gauss-Chebyshev cubature, and vacuum boundary conditions were applied around the 
entire 2-D mesh. In addition, the DFEM-SN solver with CMFD acceleration was used with the fine 
mesh and coarse mesh generation procedure described above. The eigenvalue results show close 
agreement of 20pcm between the two methods for mesh generation. 
 

Table 4-2. Griffin-computed k-effective results for 2-D EMPIRE Problem: MOOSE mesh vs. 
CUBIT / Argonne Mesh Tools. 

Mesh Generation Tool Griffin Solver Scheme K-Effective 
MOOSE Reactor Module 

Mesh Generators  
DFEM-SN with CMFD 

Acceleration 
1.20068 

Argonne Mesh Tools / 
CUBIT 

DFEM-SN with CMFD 
Acceleration 

1.20088 

 

4.3.2 3D HPMR Model 
As the EMPIRE examples in Griffin is only for 2D neutronic simulations, a 3D HPMR core design 
is employed to demonstrate and verify capabilities of MOOSE mesh generator system for 3D 
reactor geometry generation. This 3D HPMR design is similar to the example reported in FY21 
(Shemon, et al., 2021) but with an additional outer shield zone. A recent developed object, 
“PeripheralRingMeshGenerator,” was utilized to generate the mesh in the outer shield zone.  
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Figure 4-10. Construction of 3D HPMR mesh 
Construction of the 3D HPMR mesh is similar to that of the Empire fine mesh but with an extrusion 
to 3D structure (Figure 4-10): 

1. Generation of unit hexagonal mesh (fuel, heat pipe and moderator pin cells) using 
PolygonConcentricCircleMeshGenerator (Figure 4-10(A)). 

2. Construction of the unit assembly mesh by stitching the unit hexagonal meshes with a given 
pattern using PatternedHexMeshGenerator (Figure 4-10 (B)). 

3. Generation of control drum mesh using 
HexagonConcentricCircleAdaptiveBoundaryMeshGenerator and AzimuthalBlockSplitGenerator 
(Figure 4-10 I). 

4. Generation of air hole mesh using HexagonConcentricCircleAdaptiveBoundaryMeshGenerator 
(Figure 4-10 (D)). 

5. Generation of dummy mesh using PolygonConcentricCircleMeshGenerator (Figure 4-10 I). 
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6. Construction of 2D HPMR core mesh by stitching the assembly, control drum, air hole and 
dummy meshes with a given pattern, using PatternedHexMeshGenerator (Figure 4-10 (F)). 

7. Removal of the dummy meshes using BlockDeletionGenerator (Figure 4-10 (G)). 

8. Addition of the outer shield zone using PeripheralRingMeshGenerator (Figure 4-10 (H)) 

9. Extrusion of the 2D HPMR core mesh to 3D mesh using FancyExtruderGenerator (Figure 4-10 
(I)) 

10. Definition of upper and lower reflector regions using ParsedSubdomainMeshGenerator (Figure 
4-10 (J)); herein, the 3D HPMR full core mesh is completed. 

11. Slice of 1/6 core mesh from the full core mesh using PlaneDeletionGenerator (Figure 4-10 (K)); 
the 1/6 core mesh was used in Multiphysics simulation (Stauff, et al., 2021), which saved 
significant amount computation resource compared to the simulation using the full core mesh. 

Griffin standalone neutronic calculations were performed based on the 1/6 full core mesh and 
showed reasonable agreements with the Monte Carlo Serpent calculations: depends on the SN 
transport solver and numbers of the polar and azimuthal angles with SN, the difference in keff 
ranges from ~10 to ~500 pcm (Stauff, Personal Communication, 2022). 

4.3.3 KRUSTY Heat-Pipe Microreactor Mesh 
MOOSE-based mesh generation using the newly available tools was also performed for KRUSTY, 
a prototypic nuclear-powered test of a fission space reactor (Poston, Gibson, Godfroy, & McClure, 
2020). The reactor was fueled with U8Mo (the actual weight fraction of Mo was 7.65% to produce 
1 kW electric power). The heat generated in the core was carried to the Stirling converters using 
heat pipes for electric power generation.  
Generation of a full core mesh was performed in preparation for multiphysics (neutronics, thermo-
mechanics, and heat pipe analysis) simulation of KRUSTY using the MultiApp System of MOOSE 
(Gaston, et al., 2015). Due to the geometrical complexity of KRUSTY, the core model was 
simplified and initially meshed with Cubit by Los Alamos National Laboratory (Wilkerson, B., et. 
al., 2021) for multiphysics simulation. Due to high demand for computation resource, a half 
symmetric core was meshed as shown in Figure 4-11 (a-b). The LANL model was rebuilt using the 
MOOSE meshgenerators as shown in Figure 4-11 (c-d). Unlike the examples of HPMR and GCMR, 
the process to build the KRUSTY core is not hierarchical. Construction of the KRUSTY mesh 
relies on the FillBetweenPointVectorsGenerator and FillBetweenSidesetsGenerator objects 
(described in Section VII.A) to generate transition layers to connect vectors/boundaries to form 
irregular geometries like the fuel zones with heat pipes. The completed mesh is 1/16 angular 
symmetric and could be divided into half, quarter, 1/8, & 1/16 meshes using 
PlaneDeletionGenerator. Figure 4-12 shows the examples of full core, quarter and 1/16 meshes, all 
of which have been utilized in multiphysics computation. Leveraging symmetry to reduce the mesh 
size significantly decreases computational resource requirements for performing the physics 
simulation, which is particularly useful in the code testing stages and the steady-state simulation. 
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Figure 4-11. KRUSTY meshes: (a) half-core Cubit mesh; (b) cross-section of Cubit mesh near the 
fuel zone (core center); (c) full core mesh MOOSE mesh (a quarter of core was removed to show 
the internal structures); and (d) cross-section of MOOSE mesh near the fuel zone (core center). 

 

 
Figure 4-12. KRUSTY meshes generated using MOOSE: (a) full core, (b) quarter core, and (c) 

1/16 core meshes 
 

 

4.4 3D Gas-Cooled Microreactor Model 
In addition to heat pipe-cooled designs, gas-cooled designs have also been adopted by 
microreactor developers. HolosGen LLC is developing a gas-cooled microreactor (GCMR) that 
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can provide safe, mobile and low-cost nuclear energy (htt2). A GCMR assembly model was 
developed at ANL (Stauff, et al., 2021) to evaluate the performance of NEAMS tools (including 
BISON, Griffin and Sockeye). The 3D GCMR assembly model was employed to test and verify 
the performance of MOOSE meshgenerators. 

The procedure to construct the 3D GCMR assembly mesh is show below and demonstrated in 
Figure 4: 

1. Generation of unit hexagonal mesh (yttrium hydride (YH), fuel, poison, coolant hole, and control 
rod pin cells) using PolygonConcentricCircleMeshGenerator (Figure 4(A)); note that two different 
fuel and coolant hole meshes are generated: the meshes on the assembly boundary use triangular 
elements in the center to facilitate the trimming (see step 3 below), while the meshes not on the 
assembly boundary use quadrilateral elements. 

2. Construction of the unit assembly mesh by stitching the unit hexagonal meshes with a given 
pattern using PatternedHexMeshGenerator (Figure 4(B)). 

3. Trimming the assembly mesh into hexagonal shape with flat boundaries, by using 
PlaneDeletionGenerator to remove the meshes outside the white hexagon frame (Figure 4(C)). 

4. Extrusion of the 2D assembly mesh to 3D mesh using FancyExtruderGenerator; and finally, 
defining upper and lower reflector regions using ParsedSubdomainMeshGenerator (Figure 4(D)). 

 

 

Figure 4-13. Construction of 3D GCMR assembly mesh 
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Griffin standalone neutronic calculations were performed based on the 3D GCMR assembly mesh 
and showed reasonable agreements with the Monte Carlo Serpent calculations: depends on the SN 
transport solver and numbers of the polar and azimuthal angles with SN, the difference in keff 
ranges from ~40 to ~500 pcm (Stauff, Personal Communication, 2022).  
 

4.5 Molten-Salt Reactor Experiment 
The Molten-Salt Reactor Experiment (MSRE) is an 8MWth molten salt reactor developed at Oak 
Ridge National Laboratory (ORNL) and operated in 1960s (Haubenreich & Engel, 1970). The 
experiments conducted at the MSRE provides invaluable benchmark experimental data for 
modelling and simulation of molten salt reactors. Fuel depletion computation using MSRE data 
was conducted at Argonne based on MSRE lattice (Fei, Shahbazi, Fang, & Shaver, 2022) with 
plans to employ a full core model soon. Figure 4-14 shows the MSRE mesh generated by MOOSE 
mesh generators for fuel depletion computation. More details of the model can be found in (Fratoni, 
Shen, Ilas, & Powers, 2020). Except for the control rods, the full core mesh was built hierarchically 
from the MSRE unit lattice containing graphite and fuel. The control rod regions were built with 
the FillBetweenSidesetsGenerator object and stitched to other MSRE lattices to form the 2D mesh 
as shown in Figure 4-14(b). The 3D core mesh in Figure 4-14 (a) was completed by extruding the 
2D mesh using FancyExtruderGenerator (now named AdvancedExtruderGenerator). This example 
shows the type of complex geometry now capable through MOOSE. 
 

 
Figure 4-14. MOOSE-generated MSRE mesh: (a) 3D full core (about a quarter of core was 

removed to show the internal structures); and (b) cross-section near the fuel zone (core center) 
and view of control rod zone 
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5 Summary and Future Work 
Numerous capabilities have been added to the Reactor Module during FY22. Reactor Module 
capabilities continue to be tested using NEAMS tools for analysis of various reactor concepts. The 
aim of this module is to streamline the mesh generation process for NEAMS users analyzing reactor 
geometries. The capabilities implemented this year were primarily driven by stakeholder request 
and prioritized by broadest impact. Additional capabilities are planned to make the tools easier to 
use and more flexible to accommodate additional reactor types and geometries. Several areas of 
future work are proposed to continue enhancing MOOSE’s native meshing capability for NEAMS 
users. Some priorities are listed here, although this list is not exhaustive.  

• Development of a comprehensive tutorial and training 

• Incorporate depletion ID assignment in RGMB 

• Concisely define lattice similar assemblies while using different block or region names to 
permit different material assignments 

• Add functionality to RGMB (Cartesian ducts, ability to create a control drum object, 
enhanced sideset control, homogenized assemblies) 

• Refactor PeripheralTriangleMeshGenerator to use the upcoming Delaunay triangulation 
mesh generator to improve quality of triangulated triangles and/or extend outer boundary 
of to additional shapes besides circle, set of points (e.g., from external program), and/or 
boundary of existing mesh generator mesh (if core periphery is part of another mesh) 

• Enhanced sideset support (includes items like supporting internal “paired” sidesets needed 
for TH codes, permit sidesets to be constructed with combinatorial operations, construction 
of nodesets along axial duct corners / edges, develop robust numbering/naming scheme for 
sideset generation to avoid conflicts between mesh generators) 

• Upgrade PatternedMeshGenerator capabilities to streamline sideset definition for Cartesian 
geometries (started in FY22) 

• Evaluation of Rocstar Illinois meshing capabilities developed under SBIR for inclusion in 
MOOSE 

• Simplify meshing for MultiApps system (long term goal). For example, for a Griffin-
BISON Multiphysics simulation, a coarse and gap-free mesh can be generated for Griffin, 
and a finer mesh with more component details can be generated for BISON using a single 
mesh generator block. 

• Continued physics verification of new capabilities 
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