

ANL/NSE-23/13

Software Quality Assurance Plan

Argonne Reactor Code Software

Nuclear Science and Engineering Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The
Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free at OSTI.GOV
(http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and
Technical Information.

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):
 U.S. Department of Commerce
 National Technical Information Service 5301 Shawnee Rd
 Alexandria, VA 22312
 www.ntis.gov
 Phone: (800) 553-NTIS (6847) or (703) 605-6000
 Fax: (703) 605-6900
 Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors
from the Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne

National Laboratory, or UChicago Argonne, LLC.

Prepared by:

Kalin Kiesling and M. A. Smith

Nuclear Engineering Division, Argonne National Laboratory

March 01 2023

ANL/NSE-23/13

Software Quality Assurance Plan

Argonne Reactor Code Software

Prepared by: Date:

Kalin Kiesling

Software Development Team Member

Reviewed by: Date:

John Woodford

NSE QAR

Approved by: Date:

Micheal A Smith

Software Manager

3/30/2023

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

Page iv

TABLE OF CONTENTS

1 Introduction ... 1
1.1 Project Background ... 1
1.2 Purpose and Scope .. 3
1.3 Assumptions and Constraints ... 4
1.4 Deviation Policy .. 4

2 References ... 6

3 Definitions and Acronyms .. 7
3.1 Definitions ... 7
3.2 Acronyms .. 10

4 Management .. 11
4.2 External Interfaces .. 12

5 Documentation .. 14
5.1 Standard Documentation .. 14
5.2 Development Documentation .. 14

6 Reviews .. 15
6.1 Documentation Reviews ... 15
6.2 Software Reviews ... 15

6.2.1 Design Verification Review .. 15
6.3 Release Review .. 15

7 Configuration Management .. 16
7.1 Identifying Configuration Items ... 16
7.2 Managing Configuration Items .. 16
7.3 Naming Configuration Items.. 16
7.4 Software Change Control .. 17
7.5 Software Configuration Status Accounting.. 17
7.6 Software Configuration Audits... 17

8 Software Acquisition ... 18

9 Software Engineering Method .. 19
9.1 Project Initiation .. 19

9.1.1 Work Activities and Schedule Allocation ... 19
9.1.2 Resource Allocation .. 19
9.1.3 Budget Allocation .. 19

9.2 Software Requirements .. 19
9.2.1 Requirements Traceability ... 19

9.3 Software Design .. 20
9.4 Software Implementation .. 20

9.4.1 Independent Review .. 20
9.5 Software Verification, Validation, and Testing ... 20

9.5.1 Software Test Plan .. 21
9.5.2 Software Test Execution ... 21
9.5.3 Test Results .. 22

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

Page v

9.5.4 Test Results Evaluation ... 22
9.6 Product Release ... 23

9.6.1 Release Candidate Identification and Control ... 23
9.6.2 Release Review .. 23
9.6.3 Release Approval .. 23

9.7 Product Acceptance .. 24
9.8 Operations and Maintenance .. 24

9.8.1 Problem Reporting and Corrective Action ... 24
9.8.2 Software Change Control .. 25
9.8.3 Communication ... 28

9.9 Software Retirement ... 28

10 Standards, Practices, Conventions, and Metrics ... 29
10.1 Software Coding Standards .. 29
10.2 Methods, Techniques, and Tools .. 29

11 Support Software .. 30
11.1 GitLab Repository ... 30
11.2 System Software ... 30

12 Records Collection, Maintenance, and Retention .. 31
12.1 Records Authentication ... 31

13 Training .. 32

LIST OF TABLES

Table 4.1: Roles and Responsibilities ... 11
Table 9.1 Summary of testing and reviews that occur during the change control process. 22

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 1 of 36

1 Introduction

1.1 Project Background
The Argonne Reactor Code (ARC) software package consists of 13 primary and many secondary
pieces of software that are connected through interface files. The ARC software suite supports users
in their fast reactor design goals by providing neutronic, thermal-hydraulic, and structural analysis
capabilities. Specifically, the major software components of ARC that are in scope for this Software
Quality Assurance Plan (SQAP) are: DIF3D [2], REBUS [3], RCT [6], PERSENT [4], VARI3D [4],
GAMSOR [5], SE2ANL [7], SE2RCT [7], NUBOW-3D [8], DIF3D-K [9] and DASSH [10]. Figure
1.1 shows the typical design process workflow for the fuel cycle analysis portion where the cited
codes are named in orange boxes. Figure 1.2 shows the connected software that is typically used for
the thermal-hydraulics, mechanics, and safety analysis portion of the design process. Note that in
Figure 1.1 and Figure 1.2, ETOE [1], MC2-3 [1], and SAS4A [11] are listed as connected
components. They are included in other software quality assurance (SQA) programs and thus not
covered as part of this SQA program.

Figure 1.1: ARC Software Connections for Fast Spectrum Fuel Cycle Analysis

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 2 of 36

Figure 1.2: ARC Software Connections for Thermal, Mechanics, and Safety Analysis

The ETOE, MC2-3, DIF3D, and REBUS software all have their origins in the 1960s with many of
the other components added over the following 60 years of continuous development. With the
exception of SUPERENERGY-2 [7], a PNNL software and common component of SE2ANL and
SE2RCT, all of these programs are original creations by Argonne National Laboratory staff. A high-
level summary of the capabilities of individual components of the ARC package is provided in Table
1.1 (gray indicates that the software is covered under a different SQAP).

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 3 of 36

Table 1.1: Summary Description of ARC Software Connected Components
Software

Name
Purpose

Software
Name

Purpose

MC2-3

Generate an Equivalence
Theory Based Broad Group
Multigroup Cross Section

Library

ETOE
Process ENDF/B data into

MC2-3 libraries

DIF3D
Steady State Neutron Particle

Flux Distribution
GAMSOR

Coupled neutron-gamma
Flux Solution

REBUS Fuel Cycle Analysis RCT
Fuel Pin Level Fuel Cycle

Analysis Capability

SE2ANL
DIF3D-FD Based Steady
State Thermal-hydraulics

Capability
DASSH

DIF3D-VARIANT Based
Steady State Core Thermal-

hydraulics Capability

SE2RCT
DIF3D-Nodal Based Steady

State Assembly Thermal-
hydraulics Capability

NUBOW-3D
Thermal Mechanical

Behavior of Irradiated
System

PERSENT
DIF3D-VARIANT Based
Reactivity Coefficient and

Sensitivity Analysis
VARI3D

DIF3D-FD Based
Reactivity Coefficient and

Sensitivity Analysis

DIF3D-K

DIF3D-Nodal Based Reactor
Kinetics Capability that can
be Incorporated into SAS4A

for Dynamics Analysis

SAS4A
Liquid Metal Coolant

Reactor Safety Analysis
Software

1.2 Purpose and Scope
The ARC Software Quality Assurance Program provides the controls and processes necessary to
enable software improvement while meeting user and program sponsor requirements. This Software
QA Plan (SQAP) delineates the SQA Program framework for the ARC software by describing the
Program activities, organization, and documentation, and by clearly defining the interconnection of
all program items.

It should be noted that this SQAP is aligned with the current versions of the Argonne Quality
Assurance Program Plan [12] which was designed to implement the requirements of DOE O 414.1D
[13].

This SQAP addresses all stages of a conventional software life cycle, including:

 Requirements definition,
 Software design,
 Implementation/coding,
 Qualification testing,
 Acceptance,
 Operations and sustaining engineering, and

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 4 of 36

 Software retirement.

All ARC codes are maintained by a team of software engineers, referred to herein as the
development team. Software maintenance and operations, performed by the development team, is an
ongoing activity. The development team is required to use the SQAP as a reference for Program
requirements. This SQAP applies to all activities related to the software life cycle of the ARC codes
library and associated documentation. All ARC software and documentation maintenance and
modification activities must occur as per the SQAP. The application of ARC codes to end-user
needs with regard to suitability and quality is beyond the scope of this SQAP. Users are
responsible for ensuring that the software is sufficient for the specified task and that the
appropriate SQA measures required by their respective organizations are applied.

The ARC development team is responsible for implementing software quality assurance
requirements for the custom-developed software under its control. These requirements are necessary
for compliance with Department of Energy (DOE) Order 414.1D, “Quality Assurance” [13], and the
American Society for Mechanical Engineers (ASME) Nuclear Quality Assurance (NQA)-1-2008
with the 2009 addenda, “ASME Quality Assurance Requirements for Nuclear Facility Applications”
[14, 15]. Compliance with this SQAP is required throughout the software life cycle, including
planning, requirements, acquisition, design, implementation, acceptance testing, maintenance and
operations, and retirement.

1.3 Assumptions and Constraints
The following assumptions and constraints are applied to all of the software discussed in this
document.

 Argonne will manage the software with coordination with acquired software until the
software is retired.

 Software released in accordance with this plan requires additional end-use qualification
and/or dedication to be performed by the end user prior to being used in a safety or quality
setting.

 All software development will adhere to Argonne policies and procedures.
 Adequate funding, required hardware, and support software is available to complete any

planned activities.
 Roles and responsibilities cited in this plan can be reassigned as needed by division

management or the Software Manager.
 All changes to the software will be controlled by the development team. For release, the

Software Manager will adhere to Argonne policies and procedures.

1.4 Deviation Policy
All deviations from this plan require Software Manager approval. Whether planned or unplanned, if
any deviation from this plan is necessary, the following components will be determined:

 Identification of task affected.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 5 of 36

 Reasons for deviation defined.
 Effects on the quality of the project.
 Time and resource constraints affected.

A deviation report will be generated and authorized by the Software Manager. Deviations that violate
requirements must be documented within the relevant issue(s).

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 6 of 36

2 References

1. C. H. Lee and W. S. Yang, “Development of Multigroup Cross Section Generation Code
MC2-3 for Fast Reactor Analysis,” Proc. of Int. Conf. on Fast Reactors and Related Fuel
Cycles (FR09), Kyoto, Japan, Dec. 7-11 (2009).

2. K. L. Derstine, “DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite-
Difference Diffusion Theory Problems,” ANL-82-64, Argonne National Laboratory (1984).

3. W. S. Yang, M. A. Smith, “Theory Manual for the Fuel Cycle Analysis Code REBUS,”
ANL/NE-19/21 (2020).

4. M. A. Smith, C. Adams, W. S. Yang, and E. E. Lewis, “VARI3D & PERSENT: Perturbation
and Sensitivity Analysis,” ANL/NE-13/8 Rev. 4 (2022).

5. M. A. Smith, C. H. Lee, and R. N. Hill, "GAMSOR: Gamma Source Preparation and DIF3D
Flux Solution," ANL/NE-16/50 revision 2 (2022).

6. W. S. Yang and M. A. Smith, "RCT: REBUS Based Pin Power Reconstruction Using the
DIF3D-Nodal and DIF3D-VARIANT Options, ANL/NE-14/15 (2014).

7. K. L. Basehore, N. E. Todreas, "SUPERENERGY-2: A Multi-Assembly Steady-State
Computer Code for LMFBR Core Thermal-Hydraulic Analysis," PNL-3379 (1980).

8. J. Grudzinski, T. Moran, C. Grandy, "Supplement to the NUBOW-3D Manual," ANL/NE-
15/9 (2015).

9. T. A. Taiwo, “DIF3D-K: A Nodal Kinetics Code for Solving the Time-Dependent Diffusion
Equation in Hexagonal-Z Geometry,” ANL/NPR-92/17, Argonne National Laboratory,
October 1992.

10. Milos Atz, Micheal A. Smith, Florent Heidet, "Ducted Assembly Steady State Heat Transfer
Software (DASSH) - Theory Manual", ANL/NSE-21/33, Argonne National Laboratory,
(2021).

11. “The SAS4A/SASSYS-1 LMR Analysis Code System,” Argonne National Laboratory
Report, ANL-FRA-1996-3 (August 1996).

12. Argonne National Laboratory, "Quality Assurance Program Plan," ANL QAPP, Current
Version.

13. U.S. Department of Energy, "Quality Assurance," DOE O 414.1D, 2011.
14. American Society of Mechanical Engineers, "Quality Assurance Requirements for Nuclear

Facility Applications," ASME NQA-1-2008 (2008).
15. American Society of Mechanical Engineers, "Addenda to ASME NQA-1-2008: Quality

Assurance Requirements for Nuclear Facility Applications," NQA-1a-2009 (2009).

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 7 of 36

3 Definitions and Acronyms
This section provides definitions of the terms and acronyms required to understand this plan.

3.1 Definitions
Definitions commonly used in this plan are provided below.

acceptance testing: the process of exercising or evaluating a system or system component by manual
or automated means to ensure that it satisfies the specified requirements and to identify differences
between expected and actual results in the operating environment.

baseline: A specification or product (e.g., project plan, maintenance and operations (M&O) plan,
requirements, or design) that has been formally reviewed and agreed upon, that thereafter serves as
the basis for use and further development, and that can be changed only by using an approved
change control process. [ASME NQA-1-2008 with the NQA-1a-2009 addenda edited]

change control: An element of configuration management, consisting of the evaluation,
coordination, approval or disapproval, and implementation of changes to configuration items after
formal establishment of their configuration identification. [ISO/IEC/IEEE 24765:2010(E)]

change request: A proposed change to a configuration item, including a configuration item stored in
the repository or elsewhere. A change request that proposes a change to a configuration item stored
in the repository (e.g., to report a defect or request an enhancement) is equivalent to a merge request.

configuration identification: An element of configuration management, consisting of selecting the
configuration items for a system and recording their functional and physical characteristics in
technical documentation.

configuration item: An item or aggregation of hardware or software (including documentation) or
both that is designed to be managed as a single entity (ISO/IEC/IEEE 24765:2010(E) edited).

configuration management: A discipline applying technical and administrative direction and
surveillance to identify and document the functional and physical characteristics of a configuration
item, control changes to those characteristics, record and report change processing and
implementation status, and verify compliance with specified requirements
(ISO/IEC/IEEE 24765:2010[E]).

corrective action: measures taken to rectify conditions adverse to quality and prevent recurrence.

defect: Anything observed in the documentation or operation that deviates from expectations based
on previously verified software products or reference documents.

development documentation: Documentation of the change control process and release of custom-
developed software.

development team: Personnel who contribute to the development of the software.

feature: A suggested improvement or enhancement to the software not associated with a defect.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 8 of 36

GitLab: A web-based revision control hosting service for software development and code sharing.

independent reviewer: A person who reviews proposed changes to the repository in a change
request and evaluates the technical adequacy of the design approach and assures internal
completeness, consistency, clarity, and correctness of the software requirements and design. They
must not be the individual who initiated the change request content.

issue: A means of reporting a defect or proposed enhancement of software via GitLab.

merge requests: Mechanism for a contributor to propose a change to a configuration item using
GitLab. Note that in this context, a merge request is equivalent to a change request.

nonrecord: Material that does not meet the statutory definition of a record (44 U.S. Code 3301) or
that has been excluded from coverage by the definition. Excluded materials are extra copies of
documents kept only for reference, stocks of publications and processed documents, blank forms and
library or museum materials intended solely for reference or exhibit.

qualified supplier: A supplier that has been verified by the acquiring organization as having
developed the software for an intended end use under a program consistent with the American
Society of Mechanical Engineers (ASME) Nuclear Quality Assurance (NQA-1) requirements.

record: Information in any form—including electronic files, created or received by an agency that
falls under the legal control of the federal government—that documents an organization’s functions,
policies, decisions, procedures, and essential transactions; adds value to the agency; illustrates
compliance with requirements; or is needed for administrative purposes or to establish quality (e.g.,
training qualifications).

release: A named version of software that has been developed according to this plan, has been
subjected to verification and validation through a release review, and includes a release log.

release log: Document associated with a release that provides the baseline for all configuration
items and associated reviewer information as specified in this plan.

release review: Verification and validation of all configuration items and test results for a release.

repository: A collection of configuration items that is under version control for custom-developed
software and managed using GitLab.

revision. A stable snapshot of the software that has been managed according to this plan but has not
undergone the process for a release.

software: Computer programs, associated documentation and data pertaining to the operation of a
computer system, including:

 Acquired software: Software supplied through procurement, two-party agreement, or other
contractual arrangements. Downloadable software that is available at no cost to the user
(referred to as freeware) is also considered acquired software.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 9 of 36

 Custom-developed software: Software built for the DOE to meet a specific set of functional
requirements.

 Software library: A collection of computer program units, data, and related documentation
that may be used in software development, use, or maintenance to provide functionality.
These may include configuration data, help data, message templates, classes, function,
subroutines and data values or type specifications.

 Support software: A computer program used in development, analysis, testing, or
documenting software, including the following.

o system software: Software designed to facilitate operation and maintenance of a
computer system and its associated programs (e.g., operating systems).

o software tool: A computer program used in development, testing, analysis, or
maintenance of a program or its documentation. (e.g., compilers).

software life cycle: The activities that comprise evolution of software from conception to retirement.
The software life cycle typically includes the activities associated with requirements, design,
implementation, test, installation, operation, maintenance, and retirement.

software quality assurance: All actions that provide adequate confidence that software quality is
achieved.

system testing: Testing conducted on a complete, integrated system to evaluate the system’s
compliance with its specified requirements.

test case: A set of test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a specific
requirement. It includes documentation specifying inputs, expected results, and a set of execution
conditions for a test item.

test-driven development: A method of software development in which testing is repeatedly
conducted on source code. After each test, refactoring is done and the same or a similar test is
repeatedly conducted on the source code. The process is iterated until the unit functions in
accordance with the specifications.

test plan: a document that describes the approach to be followed for testing a system or component.

test results: A complete set of results obtained by executing the test cases.

user documentation: Instructions for use describing the capabilities and intended use of the software
within specified limits. May also include a theory manual, when relevant.

validation: Confirmation, through the provision of objective evidence (e.g., acceptance test), that the
requirements for a specific intended use or application have been fulfilled.
[ISO/IEC/IEEE 24765:2010(E) edited]

verification: (1) The process of evaluating a system or component to determine whether the products
of a given development phase satisfy the conditions imposed at the start of that phase. (2) Formal

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 10 of 36

proof of program correctness (e.g., requirements, design, implementation reviews, system tests).
[ISO/IEC/IEEE 24765:2010(E) edited]

3.2 Acronyms

ANL Argonne National Laboratory

ASME American Society for Mechanical Engineers

DOE U.S. Department of Energy

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISMS Integrated Safety Management System

ISO International Organization for Standardization

NQA Nuclear Quality Assurance

QA Quality Assurance

QL Quality Level

SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

TMS Training Management System

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 11 of 36

4 Management
4.1 Roles and Responsibilities

Details on SQA Program roles are provided in Table 4.1. The organizational structure and interface
of the SQA Program personnel with Argonne and Divisional resources is provided in Figure
4-1.Program personnel have access to the NSE Division QA Representative (QAR), who has
informal oversight of the SQA Program.

Figure 4-1 SQA Program Organization Structure

Table 4.1: Roles and Responsibilities

Role Tasks and Responsibilities
Software Manager Reassign role and responsibility in this plan, as needed.

 Schedule work activities as needed.
 Assign resources as needed.
 Manage budget as needed.
 Establish schedule for change request as needed.
 Identify members of the software development team who will

serve as software developers and technical reviewers for
development and defect related change request work.

 Manage schedule and scope.
 Coordinate and manage software releases.
 Establish timeline for completion of change request, as needed.
 Assess adequacy of change control process, as needed.
 Document and control technical requirements/design per this plan.
 Acquire IT materials and services in accordance with ESHQ-QA-

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 12 of 36

7.3 and the AMOS workflow; for software acquisitions, ensure
that procurement documents identify the mechanism for supplier
reporting of software errors to the purchaser, and the purchases
reporting of software errors to the supplier.

 Document and control test procedures and instructions for user per
this plan.

 Manage and resolve problems per this plan.
 Build, configure, and test IT assets per this plan.
 Place software under version control.
 Perform acceptance test, document review and approval of test

results in accordance with this plan.
 Disposition and maintain all records per this plan.
 Ensure the implementation of the required SQA training for

members of the software development team.
 Document and maintain this plan (SQAP).
 Authenticate records.

Software Development
Team Members

 Manage configuration items within the repository and software
libraries.

 Manage modifications to the software.
 Oversee problem reporting.
 Act as independent reviewer.
 Coordinate with an independent reviewer to perform and

document a review that evaluates the technical adequacy of the
design approach and assures internal completeness, consistency,
clarity, and correctness of the software requirement/design.

 Approve the technical requirements/design.
 Manage technical requirements/design in accordance with this

plan
 Close change requests.
 Document change requests including change descriptions.
 Approve or disapprove change request and inform requestor.
 If change impacts technical requirements/design, approve revised

 technical requirements/design.

4.2 External Interfaces
In order to support collaboration, two external interfaces to the SQA program are in place
which include external software developers and external software users.

For external users and developers, access to the repository and the digital resources are
limited to those that have been granted privileged access. As defined in this plan, all issues
and change requests must go through an independent review by a member of the software
development team. Therefore, an individual with the role of external software developer is

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 13 of 36

not required to undergo the training defined in Section 13 of this plan. It is the
responsibility of the software manager to ensure that the correct procedure is followed for
software development and that all aspects of an issue and/or change request are compliant
with this plan.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 14 of 36

5 Documentation
Two classes of documentation are defined: standard documentation and development documentation.
At a minimum, the documentation listed in the following sections are required. From this point
forward, the term “documentation” alone shall refer to standard documentation only.

5.1 Standard Documentation
Standard documentation is managed and maintained within the repository in accordance with
Section 12. Where appropriate, documentation is generated using Argonne templates.

 Software Quality Assurance Plan (SQAP; this plan), which includes the configuration
management plan, software verification and validation plan

 User documentation (e.g. user and/or theory manual)
 Software requirement specification
 Software design description
 Software test plan
 Failure analysis report
 Communication and contact information
 Software coding standards
 Software Library List

5.2 Development Documentation
The following documents shall be maintained to document the change control process leading to a
release. Development documentation is managed as records in accordance with Section 12.

 Change Request(s)
 Release log(s)
 Issues

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 15 of 36

6 Reviews
At a minimum, the following reviews shall be conducted.

6.1 Documentation Reviews
Documentation reviews are performed following processes dictated by the configuration
management system as detailed in Section 7.2.

6.2 Software Reviews

6.2.1 Design Verification Review

A review shall be conducted by an independent reviewer. The reviewer may rely on assistance from
any individual, but the final approval or disapproval is the sole responsibility of the independent
reviewer. All review comments are retained in the GitLab system.

All reviews and approvals will be recorded within the change request using the integrated approval
system of GitLab. This includes identification of the independent reviewer prior to acceptance of the
proposed modification. Any proposed changes to the repository trigger automated testing. A
summary of the automated testing results is retained in the GitLab system.

An independent reviewer shall conduct a design review for all change requests and shall evaluate the
technical adequacy of the design approach and ensure internal completeness, consistency, clarity,
and correctness of the software design and demonstrate that software design is traceable to the
software requirements. This review will be conducted as specified in Section 9.4.1. Review of test
results are considered to be within the scope of the design verification review.

6.3 Release Review
A release requires an additional release review, as specified in Section 9.6.2, to ensure compliance
with the approved software requirements. Review of test results are considered to be within the
scope of the release review.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 16 of 36

7 Configuration Management
Software configuration management activities, including configuration identification, change
control , status accounting, and software configuration reviews, are established during the planning
phase of the software life cycle and implemented through operations and maintenance until the
software is retired.

7.1 Identifying Configuration Items
The configuration items include:

 Documentation as defined in Section 5.1
 The configuration items within the repository include the code necessary to satisfy the

software requirements as well as the repository documentation. The identification of
configuration items within the repository is inherent to the change control process and is the
responsibility of the independent reviewer.

 Support software and Software Libraries as defined in Section 11.

The software baseline is the latest release unless otherwise specified within a change request.

7.2 Managing Configuration Items
Documentation shall be managed by the software manager as follows:

 The SQAP (this plan) shall be reviewed at a minimum of every three years. Modifications to
the SQAP (this plan) require an approval from the software development team and the
relevant QA representatives. This plan is retained as a record in the SQA repository.

The configuration item within the repository will be managed by the software development team and
adhere to the change control process detailed in Section 9.8.2 and maintained under configuration
management until the software is retired.

Software libraries will be managed by the software development team and adhere to the change
control process detailed in Section 9.8.2. Any external software libraries required shall be listed in
the Software Library List.

7.3 Naming Configuration Items
Any new documentation shall follow the naming convention “XYZ-Title-Revision Number”, where
XYZ is the associated software (e.g. DIF3D, REBUS, etc...), “Title” is a descriptive title of the
document, and N is the revision number. Documentation will be recorded in the release log during
the release process as detailed in Section 9.6.

The configuration items included in the repository are uniquely identifiable for all revisions or
releases by the inherent capabilities of the GitLab configuration management system.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 17 of 36

Support software and external software libraries will be named and versioned as defined by the
supplier of the software and will be recorded in the release log during the release process as detailed
in Section 9.6.

All releases shall be identified by a tag based on the date of release. The format shall be “YYYY-
MM-DD”, where YYYY is the four-digit year, MM is the two-digit month, and DD is the two-digit
day of the month. If a release is altered via a correction action, that tag for the patched version shall
include a patch number as YYYY-MM-DD-pN, where “N” is the patch number.

7.4 Software Change Control
Changes to the software baseline will be managed in accordance with Section 9.8.2.

7.5 Software Configuration Status Accounting
Configuration status accounting activities record and report the status of a change request. A change
request remains in proposed status until it has been approved by an independent reviewer or closed.
All change requests are tracked for the full duration of their lifetimes, irrespective of status, using
the GitLab system.

A change request can have one of the following statuses:

 Proposed: A change request that is under development by a contributor and reviewed by an
independent reviewer. Within GitLab, all change requests that are “open” have this status.

 Approved: A change request that has been reviewed as detailed in Section 9.4.1 and
approved by an independent reviewer using GitLab approval system. The changes may be
merged by any member of the software development team after approval.

 Completed: An approved change request that has been merged.
 Disapproved: A change request that no longer has a proposed status and has not been

merged. Within GitLab all change requests that are “closed” and have not been merged have
this status.

7.6 Software Configuration Audits
Surveillance of the repository is completed regularly to verify compliance with this Configuration
Management Plan.

For each release, functional configuration audits are achieved through the performance of the
required reviews and approvals specified in this plan. Physical configuration audits are the
responsibility of the end user.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 18 of 36

8 Software Acquisition
Software or software services acquired to support the software will be procured with support from
the ANL procurement office in accordance with LMS-MNL-23. Acquired software will be managed
upon receipt, and, as such, will be considered a configuration item as defined in Section 7.1.

Procurement documents associated with acquisitions from a qualified supplier shall identify
requirements for supplier’s reporting of software errors to the team and, as appropriate, the teams’
reporting of software errors to the supplier. For software acquisitions where there is no relationship
with the supplier, the project lead shall determine the correct approach for obtaining error
information from a supplier (e.g., periodic monitoring of a supplier’s website).

Maintenance and support agreements will be put in place with suppliers, as applicable, for software
updates and revisions available from a supplier.

When acquiring software (including upgrades and software libraries), the following will be
incorporated into the life-cycle documentation:

 Requirements describing capabilities, limitations, and intended use;
 A test plan and corresponding test cases that will be used to verify requirements of the

acquired software are met; and
 Instructions for use of the acquired software.

The resulting documentation and associated software will become part of the current baseline and
managed in accordance with the change control process detailed in Section 9.8.2.

Any software library required shall be listed in the Software Library List.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 19 of 36

9 Software Engineering Method
All development and maintenance of the software uses test-driven development. The testing process
ensures all contributions are fully tested before being integrated into the main branch of the
repository. Only a revision, or series of revisions, that follows the release process (see Section 9.6)
will become a new baseline for the software.

All revisions and releases are stored using GitLab and are available for download from this location
at any time.

The tasks delineated in the following subsections encompass SQA activities performed throughout
the software life cycle.

9.1 Project Initiation

9.1.1 Work Activities and Schedule Allocation

Work activities will be coordinated with the software development team and formally defined by the
software manager as a general work activity/schedule with high-level milestones for the fiscal year.
Detailed planning will be conducted at a frequency deemed appropriate by the software manager.

9.1.2 Resource Allocation

The software manager will ensure adequate resources are available to the software development team
for the work described in Section 4.

9.1.3 Budget Allocation

The development budget is based on year-to-year customer needs and funding granted by research
and development activities. The current year budget is managed and can be obtained by contacting
the software manager.

9.2 Software Requirements
The requirements for the software should align with the work activities (see Section 9.1.1). The
requirements shall be recorded within the repository, defined within test cases, and available in a
software requirements specification document.

The software requirements shall identify operating systems, functions, interfaces, performance
requirements, installation considerations, design inputs, and any design constraints of the computer
program.

9.2.1 Requirements Traceability

The satisfaction of the software requirements will be documented in the software verification and
validation reports. Each test case identified in the software verification report should specifically
reference the requirement that is being tested. With this, the set of test cases ensures the software

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 20 of 36

continuously meets the requirements laid out for the software. The complete set of test results shall
be accessible through the software verification and validation reports.

9.3 Software Design
The software design shall consider the software's operating environment. Measures to mitigate the
consequences of problems, as identified through analysis, shall be an integral part of the design.
These potential problems include external and internal abnormal conditions and events that can
affect the software. The software design shall define the computational sequence necessary to meet
the software requirements and include, as applicable, numerical methods, mathematical models,
physical models, control flow, control logic, data flow, process flow, data structures, process
structures, and the applicable relationships between data structures and process structures.

Design documents shall be stored within the repository.

9.4 Software Implementation
Contributors utilize the software design to implement the relevant features for the software
applications. The code standards referenced in Section 10.1 must be followed for all code developed
or modified as part of a change request.

The software development team can accept contributed code from members outside of Argonne
provided that the code meets all coding standards, is independently reviewed, and provides adequate
test cases that include adequate design and requirements.

9.4.1 Independent Review

Independence is achieved through a variety of measures that are integrated in the development and
change control process. Each change request must be peer reviewed by an independent reviewer.
The test results act as an independent indicator of the software performance from the perspectives of
expected results, expected errors, and other factors deemed necessary by the reviewer.

This review includes evaluation of the test results as detailed in Section 9.5.4. The review shall
ensure that requirements, design, and implementation phase activities have been satisfactorily
completed and the software is approved to follow the release process. However, a release will only
be performed if deemed necessary by the software manager. The review documentation is
maintained on GitLab.

9.5 Software Verification, Validation, and Testing
Software verification, validation, and testing activities are performed to ensure compliance with
software engineering requirements and adequacy of the software design. All verification, validation,
and testing activities are expected to be performed by the automated testing apparatus and any
additional testing done by the independent reviewer should be documented as part of the review
process.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 21 of 36

9.5.1 Software Test Plan

9.5.1.1 Test Cases

As part of a change request, contributors are expected to identify or add at least one test case that
covers the implemented code changes. An independent reviewer must approve a change request and
ensure that the change request includes documentation of the software changes, documentation on
any changes to the software requirements, and adequate testing of the software. The process for
handling change requests that modify requirements is defined in Section 9.8.2.

Tests cases specify what a test should do, the inputs, and the post-conditions for determining test
success or failure and assuring that the software produces expected results. Test cases shall ensure
that the software application properly handles abnormal conditions and credible software application
failures. Additionally, test cases shall ensure the software application does not perform adverse
untended functions nor degrade other software application running in the operating environment.

Each test case will:

 Define the requirement that the test satisfies
 Reference one or more design documents
 Reference at least one of the following:

o An issue that motivated the associated test case.
o The change request that implemented the test case.

Acceptance criteria for each test are defined in the test case definition.

9.5.2 Software Test Execution

Testing is performed automatically as part of the change control process when a contributor creates
a change request. Table 9.1 summarizes the various levels of testing that occur during the change
control process.

Automated testing will indicate successful execution of existing test cases. This ensures that the
software demonstrates adherence to the documented requirements and that the software produces
correct results. A summary of the automated testing results is viewable in GitLab.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 22 of 36

Table 9.1 Summary of testing and reviews that occur during the change control process.
Step Description Who What

1 Change
Request Testing

Automated This testing is executed when a contributor submits a
change request through GitLab. The proposed change
is checked for adherence to coding standards,
compiled, and tested. The test results are viewable
for the change request within GitLab. See Section
9.8.2.3 for details.

2 Code Review Independent
reviewer

All code modifications to the repository go through a
review by an independent reviewer, as detailed in
Section 9.4.1. After approval the change request is
merged into the development branch of the
repository.

3 Development
Branch Testing

Automated This step re-evaluates test cases to ensure that
merged change requests are compatible. All tests
identified in the verification documentation for the
software should be executed at this time. The details
of the testing will be maintained as a record. If all
tests pass, the changes are automatically merged to
the stable branch. If not, a new change request must
be created to investigate and correct any identified
problems. The merge to the stable branch results in a
revision.

4 Documentation Developer The documentation for the new revision is made
available.

5 Release Software
Manager

As necessary, the release process will be followed to
establish a new baseline as described in Section
9.6.1.

9.5.3 Test Results

Test results are accessible within GitLab and are readily available to the independent reviewer
during the review process discussed in Section 9.4.1. Each test case defines the information that
shall be recorded in a test result. Test results for each release are managed as defined in Section 9.6.

9.5.4 Test Results Evaluation

Test result evaluation occurs during the evaluation of a change request and is performed by an
independent reviewer. The independent reviewer shall be responsible for verifying that the test cases
are sufficient for the change request such that each test case fulfills at least one requirement and all

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 23 of 36

requirements have at least one test case. If all test cases pass then all of the software requirements
have been satisfied.

9.6 Product Release
Software intended for use in a safety or quality setting must undergo the release process detailed in
this section. The software release is supported for at least the duration between one release and the
next.

Revisions present in the repository, as detailed in Table 9.1, are not intended to satisfy any quality
standards. The revision is provided “as-is,” and no guarantee of functionality or performance of a
revision is provided.

9.6.1 Release Candidate Identification and Control

Any revision can be selected as a candidate for release.

9.6.2 Release Review

The candidate revision undergoes a release review as detailed in this section. The software manager,
who shall be familiar with the design, verifies that all test cases have passed under all relevant
configurations defined in the software test plan, and reviews each of the documents identified in
Section 5 to verify that they are accurate and complete.

The software manager shall create a release log that includes what is relevant and important for
acceptability of the software product. The following information, which is not included in the test
results is included with the release during approval.

 Date of the test results.
 Person evaluating the test results.
 Evidence that any unexpected or unintended test results have been dispositioned.
 Any actions taken in connection with any deviations from this plan.
 A list of all configuration items, as defined in Section 7.1, with the following exception: (1)

configuration items in the repository and (2) software libraries. The ability to list the
configuration items in the exceptions is inherent to the version control system

o A list of the platforms/version and all the support software and libraries will be made
easily accessible on the main page.

 Evidence that all software quality documentation listed in Section 5 has been reviewed for
completeness and consistency.

 Acceptability.

9.6.3 Release Approval

Following the successful completion of testing, the software manager approves the release by:

 Creating a new labeled branch from the revision. The creation of this branch prohibits further
development or modification of the release.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 24 of 36

 Adding the release log to the labeled branch.
 Adding the associated test results to the labeled branch.
 The branch is tagged with the unique identifier for the release in accordance with Section 7.3

Completion of these operations establishes a release and represents the approval of the release. Each
release is added to the controlled baseline. Based on the inherent capabilities of the repository and
the release log, the configuration items for a specific release are accessible given a unique tag.

Upon release approval, a copy of the repository documentation for the release may be made
available. Note, this is a copy of the content that exists in the release and is added for convenience.

Releases may receive patches to resolve defects but may not receive new enhancements. Patches are
managed in accordance with Section 9.8.2 and named as detailed in Section 7.3.

9.7 Product Acceptance
It is incumbent upon any external organization using this software to conduct final acceptance
testing for their specific end-use prior to implementing any release in their software environment.

9.8 Operations and Maintenance
After release, the software shall be controlled in accordance with the user organization’s approved
procedures and instructions.

9.8.1 Problem Reporting and Corrective Action

Any individual can report a problem. A problem should be reported in one of three ways as detailed
in the communication and contact information list (see Section 9.8.3):

 Direct communication
 Creation of an issue
 Creation of a merge request

A problem is evaluated by a member of the software development team as either a defect, an
enhancement, or a problem that was reported by mistake (a user mistake). The categorization is
reported to the user as detailed in Section 9.8.3.

If a problem is determined to be a defect, an issue will be created by a member of the software
development team (if it was not reported via that mechanism). The change control process defined in
Section 9.8.2 will be followed.

If a problem is determined to be an enhancement, and is approved as a desirable part of the software
design by the software manager, an issue will be created by a member of the software development
team (if it was not reported via that mechanism). The change control process defined in Section
9.8.2 will be followed.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 25 of 36

Communication regarding a defect and corrective action shall be performed as detailed in Section
9.8.3.

The corrective actions within the scope are tracked using the change control process, as defined in
Section 9.8.2. Defect resolution may be tracked via the original change request related to the
modification that led to the defect.

9.8.2 Software Change Control

All configuration items defined in Section 7.1 are under change control. The change control process
varies based on the configuration item, as defined in Section 7.2. This section details the process for
a change request, also known as a merge request, which is the change control process for support
libraries and configuration items within the repository.

A change can be initiated because of a defect that must be corrected, or an enhancement due to:

 External or regulatory changes that result in new software requirements
 Internal changes that result in new software requirements or design
 Upgrades for performance, adaptability, etc.
 New technologies that need to be incorporated
 Software refactoring
 Vulnerability patches
 Changes in the operating environment

Ideally, external contributors will communicate with the software manager to work on existing
approved issues that are viewable on GitLab. However, the process is defined to support
development efforts that begin outside of a traditional change control process. This presents a risk
that an external contributor will propose changes that include complete code implementations and
are rejected after they have expended significant effort. Instructions for external developers to
contribute software changes shall be included in the communication and contact information list.
Contributors are encouraged to reach out to the software manager prior to implementation.

9.8.2.1 Initiating Changes

The process for initiating a change is flexible.

Initiation occurs in one of two ways. Note that either of the following two initiation mechanisms
requires a template to be completed with the required information for an enhancement or a defect
(see “Enhancements” and “Defects” below):

 Opening an issue.
 Creating a merge request.

All issues and merge requests shall be evaluated by a member of the software development team and
determined to be a defect, an enhancement, or closed if the initiation was created as result of a user
mistake. Both shall include:

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 26 of 36

 Unique identifying number generated by GitLab.
 The identity of the creator and the creation date.
 Optional comment thread is available to provide feedback and engage in discourse with the

issue submitter.

A member of the software development team shall ensure that the required information is added to
the issue or merge request. Templates for issues and merge requests will be present in the GitLab
repository to help ensure this required information is provided.

Enhancements

An enhancement shall include the following and shall be recorded in an issue or merge request:

 The reason for the change.
 A concise description of the desired change.
 The impact of the change on existing configuration items.

Defects

All defects are captured by creating an issue if it was not previously created, either by the user or a
member of the software development team. Each issue shall capture the following information
regarding a defect:

 A concise description of the defect.
 The steps necessary to reproduce the defect.
 The impact of the change on existing configuration items.

A member of the software development team will evaluate the impact of a defect. If possible, other
unique and/or significant information about the defect that will aid in the evaluation will be included:
for example, limitations and capability difference between versions or anticipated new versions. The
issue shall be tagged as a “bug” within GitLab.

A member of the software development team will determine the level of the defect as defined below.

 Critical. An issue that affects the accuracy of the results, past and/or present, and requires
immediate attention.

 Normal. Issues affecting the operation or execution of the code, with a low possibility of
significantly affecting the results.

 Minor. Issues that do not affect the accuracy of the results.

If the defect is critical, users will be notified and provided the relevant information, including the
impact of the defect, information on how to avoid the defect, corrective actions, and when corrective
actions will be implemented.

The defect resolution will be contained within a merge request and be associated with the issue.

9.8.2.2 Implementing Changes

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 27 of 36

The merge request process is followed for all change requests. This process includes requirements,
design, implementation, testing, and independent review.

Any contributor can choose to work on a particular issue by associating the issue with a change
request in GitLab. A listing of all issues is available through GitLab.

If the change request requires software changes, the independent reviewer will ensure appropriate
test cases, requirements, design documentation, and appropriate cross-referencing are all included
within the change request. The tests performed by the automated testing as defined in the software
test plan enforce the inclusion of each of these components.

The software manager may require a schedule to be established for a change request that includes
planning for project funding, labor, and evaluation of impacts to work activities.

9.8.2.3 Cursory Evaluation

Once the change request is initiated, automated testing begins the process of running checks on the
proposed changes. Namely, to the extent possible, the coding standards are enforced, including
proper issue refencing, spacing, size checks, etc. as defined in the software test plan. These are
performed to provide prompt feedback to the contributor. This process simplifies the job of the
independent reviewer because evaluation of changes is generally deferred until testing is completed.

Table 9.1 provides a depiction of the testing and reviews associated with the change control process
for a change request. It is important to note that every approved change request does not result in a
release. The change request process in Steps 1-4 in Table 9.1will occur many times prior to a
release (Step 5).

9.8.2.4 Evaluating Changes

Deferring the evaluation until testing is complete provides assurance to the reviewer that impacts are
indeed within the expected scope for a particular change request.

The independent reviewer controls and is responsible for the evaluation and disposition of proposed
changes for all configuration items within the repository. The independent reviewer will consider the
impact of the proposed change and assign actions appropriate to the level of impact. If the proposed
change is disapproved, the decision will be noted on the change request. If additional information is
needed, it will be noted and returned to the contributor for completion. The contributor is then
responsible for editing the content as requested by the independent reviewer.

It is the responsibility of the contributor to monitor the change request for communications.

There is no established time for review of the change requests; however, consideration should be
given to the priority established by the software development team.

9.8.2.5 Approving or Disapproving Changes

After a change request is reviewed, the independent reviewer will determine if the proposed change
will be approved or disapproved, or if additional work will be requested. The decision (following the

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 28 of 36

definitions in Section 7.5), the name of the software development team member giving the final
disposition, and the date of the disposition shall be recorded (this is automatic within GitLab).

If approved, the proposed changes associated with the change request are merged into the
development branch. The resulting modification will follow the process shown in Table 9.1 and
become part of a revision. The change will be included in the next release, as detailed in Section 9.6.

9.8.3 Communication

Methods of communication with contributors and users shall be specified in a communication and
contact information list.

The communication and contact information list shall include:

 Instruction for reporting a problem and monitoring corrective actions (see Section 9.8.1)
 Instruction for contributing to the software, see Section 9.8.2.

9.9 Software Retirement
Users shall be responsible for the retirement of software for their intended use using their internal
procedures.

The software manager shall determine when software support shall be discontinued. At that time, a
retirement plan shall be documented and approved to describe how the following activities will be
completed, as applicable:

 This plan and any associated controlled documents will be updated to reflect the change in
disposition. If all software within the scope of this plan is retired, this plan and all associated
controlled documents will be managed in accordance with the records disposition schedule.

 Access to the software will be terminated.
 The retired software will be archived within the GitLab infrastructure.
 All affected websites and links to the retired software shall be updated to reflect the status of

the software.
 Support will be discontinued, and notifications sent to all affected users.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 29 of 36

10 Standards, Practices, Conventions, and Metrics

10.1 Software Coding Standards
Any new software changes and developments shall follow the same software coding standard as the
original source code. The software technical reviewer shall ensure that the applicable software
coding standard has been followed before the proposed change(s) are merged.

10.2 Methods, Techniques, and Tools
It is necessary to use modern software-development tools, methodologies, and techniques to
maintain the usefulness of the software to the user community. Methods, techniques, and tools are
identified below.

A test-driven development process is used through merge requests. Within this process, various
techniques – including code coverage analysis; acceptance testing; peer reviews; and automated
builds – enable contributors to perform rapid, incremental changes to meet project milestones. The
process is enabled by modern tools such as the Git version control system, GitLab repository
services, and a range of Python-based tools for testing and documentation.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 30 of 36

11 Support Software
The use of support software shall be limited to the items identified in this section.

11.1 GitLab Repository
The GitLab service provides online distributed development using Git-based repositories. Services
include issue tracking, testing integration, push notifications for events, permissions, and backup.

11.2 System Software
System software is identified by the software manager and documented within the results associated
with a release, as detailed in Section 9.6.2.

Any changes to associated system software will be tested with the automated testing capability.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 31 of 36

12 Records Collection, Maintenance, and Retention
The standard documentation and development quality records identified in Section 5 will be held
within protected branches in GitLab repositories.

The git repositories housed on the git-nse server located within the enterprise data center in building
338. The git-nse server is incrementally backed up daily using an IBM Tivoli/Storeserver Backup
appliance, or an equivalent tool. Backup are exported to tapes weekly and stored within a vault in a
separate building.

The quality records shall be maintained for 25 years after the retirement of the software in
accordance with the schedule outlined in DOE R&D Records Schedule N1-434-08-2, N1-434-96-9,
and N1-434-07-01.

12.1 Records Authentication
Quality records are authenticated by the software manager by verifying that all documents identified
in Section 5 are accurate and complete in accordance with Section 9.6.3. For records retained in
GitLab, the change request process described in Section 9.8.2 includes the approval cycle and the
control points where approval signatures are captured.

ARC Software Quality Assurance Plan
ANL/NSE-23/13
Effective Date: 03/01/2023

The current version of this document can be obtained by emailing nera-software@anl.gov. Printed or
electronically downloaded copies may be obsolete. Before using such a copy for work direction, employees
must verify that it is current by comparing its revision number to that provided by the software manager.

Page 32 of 36

13 Training
The software manager is responsible to ensure that all members of the software development team
are qualified and trained in accordance with LMS-PROC-16 “Mandatory Training,” and that their
training is recorded in Argonne’s Training Management System (TMS). Each role identified in
Table 4.1 in this plan shall complete the EQO203 “Quality Assurance Program Plan General
Training” course.

Software development team members must complete training prior to beginning work. Other roles
may conduct work prior to all training being completed under supervision of an individual with
equivalent training.

A list of personnel who are assigned a specific role will be maintained and controlled by the
software manager. This list shall be reviewed and updated with at least each release, or as deemed
necessary by the software manager.

Nuclear Science & Engineering Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 208
Argonne, IL 60439-4842

www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

		2023-03-31T14:09:37-0500
	John B. Woodford

		2023-04-19T11:44:04-0500
	MICHEAL SMITH (Affiliate)

