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CHAPTER
ONE

INTRODUCTION TO PETSC

1.1 About This Manual

This manual describes the use of the Portable, Extensible Toolkit for Scientific Computation (PETSc) and
the Toolkit for Advanced Optimization (TAO) for the numerical solution of partial differential equations and
related problems on high-performance computers. PETSc/TAO is a suite of data structures and routines
that provide the building blocks for the implementation of large-scale application codes on parallel (and
serial) computers. PETSc uses the MPI standard for all distributed memory communication.

PETSc/TAO includes a large suite of parallel linear solvers, nonlinear solvers, time integrators, and opti-
mization that may be used in application codes written in Fortran, C, C++, and Python (via petscdpy; see
Getting Started ). PETSc provides many of the mechanisms needed within parallel application codes, such
as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to
employ the level of abstraction that is most appropriate for a particular problem. By using techniques of
object-oriented programming, PETSc provides enormous flexibility for users.

PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning
curve than packages such as MATLAB or a simple subroutine library. In particular, for individuals without
some computer science background, experience programming in C, C++4, python, or Fortran and experience
using a debugger such as gdb or 11db, it may require a significant amount of time to take full advantage of
the features that enable efficient software use. However, the power of the PETSc design and the algorithms
it incorporates may make the efficient implementation of many application codes simpler than “rolling them”
yourself.

e For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the
classes of problems for which effective MATLAB code can be written.

o There are several packages (listed on https://petsc.org/), built on PETSc, that may satisfy your needs
without requiring directly using PETSc. We recommend reviewing these packages functionality before
starting to code directly with PETSc.

e PETSc can be used to provide a “MPI parallel linear solver” in an otherwise sequential, or OpenMP
parallel code. This approach cannot provide extremely large improvements in the application time by
utilizing large numbers of MPI processes but can still improve the performance. Certainly all parts
of a previously sequential code need not be parallelized but the matrix generation portion must be
parallelized to expect true scalability to large numbers of MPI processes. See PCMPI for details on
how to utilize the PETSc MPI linear solver server.

Since PETSc is under continued development, small changes in usage and calling sequences of routines will
occur. PETSc has been supported for twenty-five years; see mailing list information on our website for
information on contacting support.
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1.2 Getting Started

PETSc consists of a collection of classes, which are discussed in detail in later parts of the manual (The
Solvers in PETSc/TAO and Additional Information). The important PETSc classes include

o index sets (IS), for indexing into vectors, renumbering, permuting, etc;

« vectors (Vec); Vectors and Parallel Data

o matrices (Mat) (generally sparse); Matrices

o Krylov subspace methods (KSP); KSP: Linear System Solvers

o preconditioners, including multigrid, block solvers, patch solvers, and sparse direct solvers (PC);
« nonlinear solvers (SNES); SNES: Nonlinear Solvers

o timesteppers for solving time-dependent (nonlinear) PDEs, including support for differential algebraic
equations, and the computation of adjoints (sensitivities/gradients of the solutions) (TS); T'S: Scalable
ODE and DAE Solvers

¢ scalable optimization algorithms including a rich set of gradient-based optimizers, Newton-based opti-
mizers and optimization with constraints (Tao). TAO: Optimization Solvers

 code for managing interactions between mesh data structures and vectors, matrices, and solvers (DM);
DM Basics

Each class consist of an abstract interface (simply a set of calling sequences; an abstract base class in C++)
and an implementation for each algorithm and data structure. This design enables easy comparison and use of
different algorithms (for example, to experiment with different Krylov subspace methods, preconditioners, or
truncated Newton methods). Hence, PETSc provides a rich environment for modeling scientific applications
as well as for rapid algorithm design and prototyping.

The classes enable easy customization and extension of both algorithms and implementations. This approach
promotes code reuse and flexibility, and also separates the issues of parallelism from the choice of algorithms.
The PETSc infrastructure creates a foundation for building large-scale applications.

It is useful to consider the interrelationships among different pieces of PETSc. Numerical Libraries in
PETSc is a diagram of some of these pieces. The figure illustrates the library’s hierarchical organization,
which enables users to employ the solvers that are most appropriate for a particular problem.

1.2.1 Suggested Reading

The manual is divided into four parts:
e Introduction to PETSc
e The Solvers in PETSc/TAO
e DM: Interfacing Between Solvers and Models/Discretizations
o Additional Information

Introduction to PETSc describes the basic procedure for using the PETSc library and presents simple ex-
amples of solving linear systems with PETSc. This section conveys the typical style used throughout the
library and enables the application programmer to begin using the software immediately.

The Solvers in PETSc/TAO explains in detail the use of the various PETSc algebraic objects, such as
vectors, matrices, index sets and the PETSc solvers including linear and nonlinear solvers, time integra-
tors, and optimization support. DM: Interfacing Between Solvers and Models/Discretizations details how a
user’s models and discretizations can easily be interfaced with the solvers by using the DM construct. The

2 Chapter 1. Introduction to PETSc
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Application Codes ‘ ‘ Higher-Level Libraries ‘ ‘ e ‘
PETSc
TS (Time Steppers) DM (Domain Management)
Backward Rosenbrock- Distributed Plex (Un-
Euler Euler RK | BDF | SSP | ARKIMEX W e Array structured)
SNES (Nonlinear Solvers) TAO (Optimization)

ine| Newton Trust Levenber-
Newton Line  Newton 'rust | eas | NGMRES | NASM | ASPIN | --- Newton mven s
Search Region Marquardt

KSP (Krylov Subspace Methods)

GMRES | Richardson CG | CGS | Bi-CGStab | TFQMR | MINRES | GCR | Chebyshev |Pipelined CG

PC (Preconditioners)

Increasing Level of Abstraction

Additive | Block ) b | icc ILU LU | SOR | MG | AMG | BDDC | Shell
Schwarz Jacobi
Mat (Operators) ‘

Compressed Block Symmetric .
Sparse Row CSR Block CSR Dense | CUSPARSE | ViennaCL | FFT Shell

Vec (Vectors) ‘ IS (Index Sets)
Standard CUDA ViennaCL e General Block Stride

BLAS/LAPACK ‘ ‘ MPI \ \

Fig. 1.1: Numerical Libraries in PETSc
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Additional Information describes a variety of useful information, including profiling, the options database,
viewers, error handling, and some details of PETSc design.

PETSc has evolved to become quite a comprehensive package, and therefore this manual can be rather
intimidating for new users. Bear in mind that PETSc can be used efficiently before one understands all
of the material presented here. Furthermore, the definitive reference for any PETSc function is always the
online manual page. Manual pages for all PETSc functions can be accessed here. The manual pages provide
hyperlinked indices (organized by both concept and routine name) to the tutorial examples and enable easy
movement among related topics.

Visual Studio Code, Eclipse, Emacs, and Vim users may find their development environment’s options for
searching in the source code are useful for exploring the PETSc source code. Details of these feature are
provided in Developer Environments.

The complete PETSc distribution, manual pages, and additional information are available via the PETSc
home page. The PETSc home page also contains details regarding installation, new features and changes in
recent versions of PETSc, machines that we currently support, and a frequently asked questions (FAQ) list.

Note to Fortran Programmers: In most of the manual, the examples and calling sequences are given for
the C/C++ family of programming languages. However, Fortran programmers can use all of the functionality
of PETSc from Fortran, with only minor differences in the user interface. PETSc for Fortran Users provides
a discussion of the differences between using PETSc from Fortran and C, as well as several complete Fortran
examples.

Note to Python Programmers: To program with PETSc in Python you need to enable Python bindings
(i.e petscdpy) with the configure option - -with-petsc4py=1. See the PETSc installation guide for more
details.

1.2.2 Running PETSc Programs

Before using PETSc, the user must first set the environmental variable $PETSC DIR, indicating the full
path of the PETSc home directory. For example, under the Unix bash shell a command of the form

$ export PETSC DIR=$HOME/petsc

can be placed in the user’s .bashrc or other startup file. In addition, the user may need to set the
environment variable $PETSC _ARCH to specify a particular configuration of the PETSc libraries. Note that
$PETSC_ARCH is just a name selected by the installer to refer to the libraries compiled for a particular
set of compiler options and machine type. Using different values of $PETSC_ARCH allows one to switch
between several different sets (say debug and optimized) of libraries easily. To determine if you need to set
$PETSC_ARCH, look in the directory indicated by $PETSC_DIR, if there are subdirectories beginning with
arch then those subdirectories give the possible values for $PETSC_ARCH.

See handson to immediately jump in and run PETSc code.

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing communication
[For94]. Thus, to execute PETSc programs, users must know the procedure for beginning MPI jobs on their
selected computer system(s). For instance, when using the MPICH implementation of MPI and many others,
the following command initiates a program that uses eight processors:

$ mpiexec -n 8 ./petsc program_name petsc options

PETSc also comes with a script that automatically uses the correct mpiexec for your configuration.

$ $PETSC DIR/1lib/petsc/bin/petscmpiexec -n 8 ./petsc _program name petsc _options

All PETSc-compliant programs support the use of the -help option as well as the -version option.

4 Chapter 1. Introduction to PETSc
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Certain options are supported by all PETSc programs. We list a few particularly useful ones below; a
complete list can be obtained by running any PETSc program with the option -help.

e -log view - summarize the program’s performance (see Profiling)
o -fp_trap - stop on floating-point exceptions; for example divide by zero

o -malloc_dump - enable memory tracing; dump list of unfreed memory at conclusion of the run, see
Detecting Memory Allocation Problems and Memory Usage,

« -malloc_debug - enable memory debugging (by default this is activated for the debugging version
of PETSc), see Detecting Memory Allocation Problems and Memory Usage,

o -start in debugger [noxterm,gdb,lldb] [-display name] - start all processes in debug-
ger. See Debugging, for more information on debugging PETSc programs.

e -on_error_attach debugger [noxterm,gdb,1ldb] [-display name] - start debugger only
on encountering an error

e -info - print a great deal of information about what the program is doing as it runs

1.2.3 Writing PETSc Programs

Most PETSc programs begin with a call to

PetscInitialize(int *argc,char ***argv,char *file,char *help);

which initializes PETSc and MPI. The arguments argc and argv are the command line arguments delivered
in all C and C++ programs. The argument file optionally indicates an alternative name for the PETSc
options file, .petscrc, which resides by default in the user’s home directory. Runtime Options provides
details regarding this file and the PETSc options database, which can be used for runtime customization.
The final argument, hellp, is an optional character string that will be printed if the program is run with the
-help option. In Fortran the initialization command has the form

call PetscInitialize(character(*) file,integer ierr)

Where the file argument is optional. PetscInitialize() automatically calls MPI Init() if MPI has
not been not previously initialized. In certain circumstances in which MPI needs to be initialized directly
(or is initialized by some other library), the user can first call MPI_Init() (or have the other library
do it), and then call PetscInitialize(). By default, PetscInitialize() sets the PETSc “world”
communicator PETSC_COMM_WORLD to MPI COMM WORLD.

For those not familiar with MPI, a communicator is a way of indicating a collection of processes that will
be involved together in a calculation or communication. Communicators have the variable type MPT_Comm.
In most cases users can employ the communicator PETSC_COMM_WORLD to indicate all processes in a given
run and PETSC_COMM_SELF to indicate a single process.

MPI provides routines for generating new communicators consisting of subsets of processors, though most
users rarely need to use these. The book Using MPI, by Lusk, Gropp, and Skjellum [GLS94] provides an
excellent introduction to the concepts in MPI. See also the MPI homepage. Note that PETSc users need
not program much message passing directly with MPI, but they must be familiar with the basic concepts of
message passing and distributed memory computing.

All PETSc programs should call PetscFinalize() as their final (or nearly final) statement. This routine
handles options to be called at the conclusion of the program, and calls MPI_Finalize() if PetscIni-
tialize() began MPIL. If MPI was initiated externally from PETSc (by either the user or another software
package), the user is responsible for calling MPI Finalize().

1.2. Getting Started 5



https://www.mcs.anl.gov/research/projects/mpi/

PETSc/TAO Users Manual, Release 3.20.1

Error Checking

Most PETSc functions return a PetscErrorCode, which is an integer indicating whether an error has
occurred during the call. The error code is set to be nonzero if an error has been detected; otherwise, it is
zero. For the C/C++ interface, the error variable is the routine’s return value, while for the Fortran version,
each PETSc routine has as its final argument an integer error variable.

One should always check these routine values as given below in the C/C++ and Fortran formats, respectively:

PetscCall(PetscFunction(Args));

or

! within the main program
PetscCallA(PetscFunction(Args,ierr))

! within any subroutine
PetscCall(PetscFunction(Args,ierr))

These macros check the returned error code and if it is nonzero they call the PETSc error handler and then
return from the function with the error code. PetscCallA() calls abort after calling the error handler
because it is not possible to return from a Fortran main program. The above macros should be used in
all subroutines to enable a complete error traceback. See Error Checking for more details on PETSc error
handling.

1.2.4 Simple PETSc Examples

To help the user start using PETSc immediately, we begin with a simple uniprocessor example that solves
the one-dimensional Laplacian problem with finite differences. This sequential code, which can be found
in $PETSC DIR/src/ksp/ksp/tutorials/exl.c, illustrates the solution of a linear system with KSP,
the interface to the preconditioners, Krylov subspace methods, and direct linear solvers of PETSc. Following
the code we highlight a few of the most important parts of this example.

Listing: KSP Tutorial src/ksp/ksp/tutorials/ex1.c

static char help[] = "Solves a tridiagonal linear system with KSP.\n\n";

/*
Include "petscksp.h" so that we can use KSP solvers. Note that this file
automatically includes:

petscsys.h - base PETSc routines  petscvec.h - vectors
petscmat.h - matrices petscpc.h - preconditioners
petscis.h - 1ndex sets

petscviewer.h - viewers
Note: The corresponding parallel example is ex23.c
*/
#include <petscksp.h>

int main(int argc, char **args)

{
Vec x, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
KSP ksp; /* linear solver context */
PC pc; /* preconditioner context */

(continues on next page)
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(continued from previous page)

PetscReal norm; /* norm of solution error */
PetscInt i, n =10, col[3], its;

PetscMPIInt size;

PetscScalar value[3];

PetscFunctionBeginUser;

PetscCall(PetscInitialize(&argc, &args, (char *)0, help));

PetscCallMPI(MPI Comm size(PETSC COMM WORLD, &size));

PetscCheck(size == 1, PETSC _COMM WORLD, PETSC ERR WRONG MPI SIZE, "This is a,
—uniprocessor example only!");

PetscCall(PetscOptionsGetInt (NULL, NULL, "-n", &n, NULL));

Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.

/*
Create vectors. Note that we form 1 vector from scratch and
then duplicate as needed.

*/

PetscCall

PetscCall

PetscCall

PetscCall

PetscCall

PetscCall

VecCreate(PETSC COMM SELF, &x))
PetscObjectSetName( (PetscObject
VecSetSizes(x, PETSC DECIDE, n)
VecSetFromOptions(x));

Sx, "Solution"));
) .

’

VecDuplicate(x, &b))
VecDuplicate(x, &u))

PRy

/*
Create matrix. When using MatCreate(), the matrix format can
be specified at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. See the matrix chapter of the users manual for details.
*/
PetscCall(MatCreate(PETSC COMM SELF, &A));
PetscCall(MatSetSizes(A, PETSC DECIDE, PETSC DECIDE, n, n));
PetscCall(MatSetFromOptions(A));
PetscCall(MatSetUp(A));

/*
Assemble matrix
*/
value[0] = -1.0;
value[l] = 2.0;
value[2] = -1.0;
for (i =1; 1 <n - 1; i++) {
col[0] =1 - 1;
col[l] = i;
col[2] =1 + 1;
PetscCall(MatSetValues(A, 1, &i, 3, col, value, INSERT VALUES));
}
i n - 1;

(continues on next page)
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col[l] = n - 1;

PetscCall(MatSetValues(A, 1, &i, 2, col, value, INSERT VALUES));
i = 0;
col[0] = 0;
col[1l] =1;
value[0] = 2.0;
value[l] = -1.0;
PetscCall(MatSetValues(A, 1, &i, 2, col, value, INSERT VALUES));
PetscCall(MatAssemblyBegin(A, MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd (A, MAT FINAL ASSEMBLY));
/*
Set exact solution; then compute right-hand-side vector.
*/

PetscCall(VecSet(u, 1.0));
PetscCall(MatMult (A, u, b));

PetscCall(KSPCreate(PETSC COMM SELF, &ksp));

/*
Set operators. Here the matrix that defines the linear system
also serves as the matrix that defines the preconditioner.

*/

PetscCall(KSPSetOperators(ksp, A, A));

/*

Set linear solver defaults for this problem (optional).

- By extracting the KSP and PC contexts from the KSP context,
we can then directly call any KSP and PC routines to set
various options.

- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
KSPSetFromOptions();

*/

PetscCall(KSPGetPC(ksp, &pc));

PetscCall(PCSetType(pc, PCJACOBI));

PetscCall(KSPSetTolerances(ksp, 1.e-5, PETSC DEFAULT, PETSC DEFAULT, PETSC
—DEFAULT) ) ;

/*

Set runtime options, e.g.,
-ksp_type <type> -pc_type <type> -ksp monitor -ksp rtol <rtol>

These options will override those specified above as long as
KSPSetFromOptions() is called after any other customization
routines.

*/

PetscCall(KSPSetFromOptions(ksp));

PetscCall(KSPSolve(ksp, b, x));

(continues on next page)
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PetscCall(VecAXPY(x, -1.0, u));

PetscCall(VecNorm(x, NORM 2, &norm));

PetscCall(KSPGetIterationNumber(ksp, &its));

PetscCall(PetscPrintf(PETSC COMM SELF, "Norm of error %g, Iterations %" PetscInt
~FMT "\n", (double)norm, its));

/* check that KSP automatically handles the fact that the the new non-zero values,
—1in the matrix are propagated to the KSP solver */

PetscCall(MatShift(A, 2.0));

PetscCall(KSPSolve(ksp, b, x));

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/

PetscCall(KSPDestroy(&ksp));

/* test if prefixes properly propagate to PCMPI objects */

if (PCMPIServerActive) {
PetscCall(KSPCreate(PETSC COMM SELF, &ksp));
PetscCall(KSPSetOptionsPrefix(ksp, "prefix test "));
PetscCall(MatSetOptionsPrefix (A, "prefix test "));
PetscCall(KSPSetOperators(ksp, A, A));
PetscCall(KSPSetFromOptions(ksp));
PetscCall(KSPSolve(ksp, b, x));
PetscCall(KSPDestroy(&ksp));

}

PetscCall(VecDestroy(&x));
PetscCall(VecDestroy(&u));
PetscCall(VecDestroy(&b));
PetscCall(MatDestroy(&A));

/*
Always call PetscFinalize() before exiting a program. This routine
- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime
options are chosen (e.g., -log view).
*/
PetscCall(PetscFinalize());
return 0;
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Include Files

The C/C++ include files for PETSc should be used via statements such as

#include <petscksp.h>

where petscksp.h is the include file for the linear solver library. Each PETSc program must specify an
include file that corresponds to the highest level PETSc objects needed within the program; all of the required
lower level include files are automatically included within the higher level files. For example, petscksp.
h includes petscmat.h (matrices), petscvec.h (vectors), and petscsys.h (base PETSc file). The
PETSc include files are located in the directory $PETSC_DIR/include. See Modules and Include Files for
a discussion of PETSc include files in Fortran programs.

The Options Database

As shown in Simple PETSc Exzamples, the user can input control data at run time using the options database.
In this example the command PetscOptionsGetInt (NULL,NULL,"-n",&n,&flg); checks whether
the user has provided a command line option to set the value of n, the problem dimension. If so, the variable
N is set accordingly; otherwise, N remains unchanged. A complete description of the options database may
be found in Runtime Options.

Vectors

One creates a new parallel or sequential vector, X, of global dimension M with the commands

VecCreate(MPI_Comm comm,Vec *X);
VecSetSizes(Vec x, PetscInt m, PetscInt M);

where comm denotes the MPI communicator and m is the optional local size which may be PETSC_DECIDE.
The type of storage for the vector may be set with either calls to VecSetType() or VecSetFromOp-
tions (). Additional vectors of the same type can be formed with

VecDuplicate(Vec old,Vec *new);

The commands

VecSet(Vec x,PetscScalar value);
VecSetValues(Vec x,PetscInt n,PetscInt *indices,PetscScalar *values,INSERT VALUES);

respectively set all the components of a vector to a particular scalar value and assign a different value
to each component. More detailed information about PETSc vectors, including their basic operations,
scattering/gathering, index sets, and distributed arrays, is discussed in Chapter Vectors and Parallel Data.

Note the use of the PETSc variable type PetscScalar in this example. The PetscScalar is simply
defined to be double in C/C++ (or correspondingly double precision in Fortran) for versions of
PETSc that have not been compiled for use with complex numbers. The PetscScalar data type enables
identical code to be used when the PETSc libraries have been compiled for use with complex numbers.
Numbers discusses the use of complex numbers in PETSc programs.
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Matrices

Usage of PETSc matrices and vectors is similar. The user can create a new parallel or sequential matrix, A,
which has M global rows and N global columns, with the routines

MatCreate(MPI_Comm comm,Mat *A);
MatSetSizes(Mat A,PETSC DECIDE,PETSC DECIDE,PetscInt M,PetscInt N);

where the matrix format can be specified at runtime via the options database. The user could alternatively
specify each processes’ number of local rows and columns using m and n.

MatSetSizes(Mat A,PetscInt m,PetscInt n,PETSC DETERMINE,PETSC DETERMINE);

Generally one then sets the “type” of the matrix, with, for example,

MatSetType(A,MATAID);

This causes the matrix A to used the compressed sparse row storage format to store the matrix entries. See
MatType for a list of all matrix types. Values can then be set with the command

MatSetValues(Mat A,PetscInt m,PetscInt *im,PetscInt n,PetscInt *in,PetscScalar,
—*values,INSERT VALUES);

After all elements have been inserted into the matrix, it must be processed with the pair of commands

MatAssemblyBegin(A,MAT FINAL ASSEMBLY);
MatAssemblyEnd (A,MAT FINAL ASSEMBLY);

Matrices discusses various matrix formats as well as the details of some basic matrix manipulation routines.

Linear Solvers

After creating the matrix and vectors that define a linear system, AX = b, the user can then use KSP to
solve the system with the following sequence of commands:

KSPCreate(MPI_Comm comm,KSP *ksp);
KSPSetOperators(KSP ksp,Mat Amat,Mat Pmat);
KSPSetFromOptions (KSP ksp);

KSPSolve(KSP ksp,Vec b,Vec x);

KSPDestroy (KSP ksp);

The user first creates the KSP context and sets the operators associated with the system (matrix that defines
the linear system, Amat and matrix from which the preconditioner is constructed, Pmat). The user then sets
various options for customized solution, solves the linear system, and finally destroys the KSP context. We
emphasize the command KSPSetFromOptions (), which enables the user to customize the linear solution
method at runtime by using the options database, which is discussed in Runtime Options. Through this
database, the user not only can select an iterative method and preconditioner, but also can prescribe the
convergence tolerance, set various monitoring routines, etc. (see, e.g., Profiling Programs).

KSP: Linear System Solvers describes in detail the KSP package, including the PC and KSP packages for
preconditioners and Krylov subspace methods.
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Nonlinear Solvers

Most PDE problems of interest are inherently nonlinear. PETSc provides an interface to tackle the nonlinear
problems directly called SNES. SNES: Nonlinear Solvers describes the nonlinear solvers in detail. We highly
recommend most PETSc users work directly with SNES, rather than using PETSc for the linear problem
and writing their own nonlinear solver.

Error Checking

As noted above PETSc functions return a PetscErrorCode, which is an integer indicating whether an
error has occurred during the call. Below, we indicate a traceback generated by error detection within a
sample PETSc program. The error occurred on line 3618 of the file $PETSC_DIR/src/mat/impls/aij/
seq/aij.c and was caused by trying to allocate too large an array in memory. The routine was called
in the program ex3.C on line 66. See Error Checking for details regarding error checking when using the
PETSc Fortran interface.

$ cd $PETSC DIR/src/ksp/ksp/tutorials

$ make ex3

$ mpiexec -n 1 ./ex3 -m 100000

[O]JPETSC ERROR: ----------mmmmmaa oo - Error Message -----------mmmmmi oo
[0]PETSC ERROR: Out of memory. This could be due to allocating

[@]PETSC ERROR: too large an object or bleeding by not properly

[0]PETSC ERROR: destroying unneeded objects.

[O@]PETSC ERROR: Memory allocated 11282182704 Memory used by process 7075897344
[@]PETSC ERROR: Try running with -malloc_dump or -malloc view for info.

[O]PETSC ERROR: Memory requested 18446744072169447424

[O]PETSC ERROR: Petsc Development GIT revision: v3.7.1-224-9g9c9a9c5 GIT Date: 2016-
—05-18 22:43:00 -0500

[O]PETSC ERROR: ./ex3 on a arch-darwin-double-debug named Patricks-MacBook-Pro-2.
—.local by patrick Mon Jun 27 18:04:03 2016

[@]PETSC ERROR: Configure options PETSC DIR=/Users/patrick/petsc PETSC_ARCH=arch-
—darwin-double-debug --download-mpich --download-f2cblaslapack --with-cc=clang --
—with-cxx=clang++ --with-fc=gfortran --with-debugging=1 --with-precision=double --
—with-scalar-type=real --with-viennacl=0 --download-c2html -download-sowing
[0]PETSC ERROR: #1 MatSegAIJSetPreallocation SegAIJ() line 3618 in /Users/patrick/
—petsc/src/mat/impls/aij/seq/aij.c

[O]PETSC ERROR: #2 PetscTrMallocDefault() line 188 in /Users/patrick/petsc/src/sys/
—memory/mtr.c

[O]PETSC ERROR: #3 MatSegAIJSetPreallocation SegAIJ() line 3618 in /Users/patrick/
—petsc/src/mat/impls/aij/seq/aij.c

[O]PETSC ERROR: #4 MatSegAIJSetPreallocation() line 3562 in /Users/patrick/petsc/src/
—mat/impls/aij/seq/aij.c

[O]PETSC ERROR: #5 main() line 66 in /Users/patrick/petsc/src/ksp/ksp/tutorials/ex3.c
[O]PETSC ERROR: PETSc Option Table entries:

[@]PETSC ERROR: -m 100000

[@]JPETSC ERROR: ---------------- End of Error Message ------- send entire error,
-,message to petsc-maint@mcs.anl.gov----------

When running the debug version of the PETSc libraries, it does a great deal of checking for memory cor-
ruption (writing outside of array bounds etc). The macro CHKMEMQ can be called anywhere in the code to
check the current status of the memory for corruption. By putting several (or many) of these macros into
your code you can usually easily track down in what small segment of your code the corruption has occurred.
One can also use Valgrind to track down memory errors; see the FAQ.

For complete error handling, calls to MPI functions should be made with Petsc-
CallMPI(MPI Function(Args)). In the main Fortran program the calls should be Petsc-
CallMPIA(MPI Function(Args)).
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PETSc has a small number of C/C++ only macros that do not explicitly return error codes. These are used
in the style

XXXBegin(Args);
other code
XXXEnd () ;

and include PetscOptionsBegin(), PetscOptionsEnd(), PetscObjectOptionsBegin(),
PetscOptionsHeadBegin(), PetscOptionsHeadEnd(), PetscDrawCollectiveBegin(),
PetscDrawCollectiveEnd(), MatPreallocateEnd(), and MatPreallocateBegin(). These
should not be checked for error codes. Another class of functions with the Begin() and End() paradigm
including PetscLogBegin(), PetscLogEnd(), MatAssemblyBegin(), and MatAssemblyEnd() do
return error codes that should be checked.

PETSc also has a set of C/C++ only macros that return an object, or NULL if an error
has been detected. These include PETSC VIEWER STDOUT WORLD, PETSC VIEWER DRAW WORLD,
PETSC VIEWER STDOUT (MPI Comm), and PETSC VIEWER DRAW (MPI Comm).

Finally PetscObjectComm( (PetscObject)x) returns the communicator associated with the object X
or MPI _COMM NULL if an error was detected.

1.3 Parallel and GPU Programming

Numerical computing today has multiple levels of parallelism (concurrency).

o Low-level, single instruction multiple data (SIMD) parallelism or, somewhat similar, on-GPU paral-
lelism,

o Medium-level, multiple instruction shared memory parallelism (thread parallelism), and
e High-level, distributed memory parallelism

Traditional CPUs support the lower two levels via, for example, Intel AVX-like instructions (CPU SIMD
parallelism) and Unix threads, often managed by using OpenMP pragmas (CPU OpenMP parallelism), (or
multiple processes). GPUs also support the lower two levels via kernel functions (GPU kernel parallelism)

and streams (GPU stream parallelism). Distributed memory parallelism is created by combining multiple
CPUs and/or GPUs and using MPI for communication (MPI Parallelism).

In addition there is also concurrency between computations (floating point operations) and data movement
(from memory to caches and registers and via MPI between distinct memory nodes).

PETSc provides support for all these levels of parallelism but its strongest support is for MPI-based dis-
tributed memory parallelism.

1.3.1 MPI Parallelism

Since PETSc uses the message-passing model for parallel programming and employs MPI for all interprocessor
communication, the user is free to employ MPI routines as needed throughout an application code. However,
by default the user is shielded from many of the details of message passing within PETSc, since these are
hidden within parallel objects, such as vectors, matrices, and solvers. In addition, PETSc provides tools
such as generalized vector scatters/gathers to assist in the management of parallel data.

Recall that the user must specify a communicator upon creation of any PETSc object (such as a vector,
matrix, or solver) to indicate the processors over which the object is to be distributed. For example, as
mentioned above, some commands for matrix, vector, and linear solver creation are:
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MatCreate(MPI_Comm comm,Mat *A);
VecCreate(MPI_Comm comm,Vec *x);
KSPCreate (MPI_Comm comm,KSP *ksp);

The creation routines are collective on all processes in the communicator; thus, all processors in the com-
municator must call the creation routine. In addition, if a sequence of collective routines is being used, they
must be called in the same order on each process.

The next example, given below, illustrates the solution of a linear system in parallel. This code, corresponding
to KSP Tutorial ex2, handles the two-dimensional Laplacian discretized with finite differences, where the
linear system is again solved with KSP. The code performs the same tasks as the sequential version within
Simple PETSc Ezamples. Note that the user interface for initiating the program, creating vectors and
matrices, and solving the linear system is ezactly the same for the uniprocessor and multiprocessor examples.
The primary difference between the examples in Simple PETSc Examples and here is that each processor
forms only its local part of the matrix and vectors in the parallel case.

Listing: KSP Tutorial src/ksp/ksp/tutorials/ex2.c

static char help[] = "Solves a linear system in parallel with KSP.\n\
Input parameters include:\n\

-view exact sol : write exact solution vector to stdout\n\
-m <mesh x> : number of mesh points in x-direction\n\
-n <mesh_y> : number of mesh points in y-direction\n\n";
/*
Include "petscksp.h" so that we can use KSP solvers.
*/

#include <petscksp.h>

int main(int argc, char **args)

{
Vec x, b, u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
KSP ksp; /* linear solver context */
PetscReal norm; /* norm of solution error */

PetscInt i, j, Ii, J, Istart, Iend, m =8, n =7, its;
PetscBool flg;
PetscScalar v;

PetscFunctionBeginUser;
PetscCall(PetscInitialize(&argc, &args, (char *)0, help));
PetscCall(PetscOptionsGetInt(NULL, NULL, "-m", &m, NULL)
PetscCall(PetscOptionsGetInt(NULL, NULL, "-n", &n, NULL));
/*____________________________
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.
__________________________________*/
/*
Create parallel matrix, specifying only its global dimensions.
When using MatCreate(), the matrix format can be specified at
runtime. Also, the parallel partitioning of the matrix is
determined by PETSc at runtime.

Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. See the matrix chapter of the users manual for details.

(continues on next page)
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*/

PetscCall(MatCreate(PETSC_COMM WORLD, &A));

PetscCall(MatSetSizes(A, PETSC DECIDE, PETSC DECIDE, m * n, m * n));
PetscCall(MatSetFromOptions(A));
PetscCall(MatMPIAIJSetPreallocation(A, 5, NULL, 5, NULL));
PetscCall(MatSeqAIJSetPreallocation(A, 5, NULL));
PetscCall(MatSeqSBAIJSetPreallocation(A, 1, 5, NULL));
PetscCall(MatMPISBAIJSetPreallocation(A, 1, 5, NULL, 5, NULL));
PetscCall(MatMPISELLSetPreallocation(A, 5, NULL, 5, NULL));
PetscCall(MatSeqSELLSetPreallocation(A, 5, NULL));

/*
Currently, all PETSc parallel matrix formats are partitioned by
contiguous chunks of rows across the processors. Determine which
rows of the matrix are locally owned.

*/

PetscCall(MatGetOwnershipRange (A, &Istart, &Iend));

/*
Set matrix elements for the 2-D, five-point stencil in parallel.
- Each processor needs to insert only elements that it owns
locally (but any non-local elements will be sent to the
appropriate processor during matrix assembly).
- Always specify global rows and columns of matrix entries.

Note: this uses the less common natural ordering that orders first

all the unknowns for x = h then for x = 2h etc; Hence you see J = Ii +- n
instead of J = I +- m as you might expect. The more standard ordering
would first do all variables for y = h, then y = 2h etc.

*/
for (Ii = Istart; Ii < Iend; Ii++) {
v=-1.0;
i=1i/ n;
j=1Ii-1*n;
if (i > 0) {
J=1Ii - n;
PetscCall(MatSetValues(A, 1, &Ii, 1, &J, &v, ADD VALUES));

}
if (i <m-1) {

J =1Ii+ n;

PetscCall(MatSetValues(A, 1, &Ii, 1, &3, &v, ADD VALUES));
}
if (j > 0) {

J=1Ii - 1;

PetscCall(MatSetValues(A, 1, &Ii, 1, &3, &v, ADD VALUES));
}
if (j <n - 1) {

J=1Ii+ 1;

PetscCall(MatSetValues(A, 1, &Ii, 1, &J, &v, ADD VALUES));
}
v = 4.0;
PetscCall(MatSetValues(A, 1, &Ii, 1, &Ii, &v, ADD VALUES));

/*

(continues on next page)
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Assemble matrix, using the 2-step process:
MatAssemblyBegin(), MatAssemblyEnd()
Computations can be done while messages are in transition
by placing code between these two statements.
*/
PetscCall(MatAssemblyBegin(A, MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd (A, MAT FINAL ASSEMBLY));

/* A 1Is symmetric. Set symmetric flag to enable ICC/Cholesky preconditioner */
PetscCall(MatSetOption(A, MAT SYMMETRIC, PETSC TRUE));

/*
Create parallel vectors.

- We form 1 vector from scratch and then duplicate as needed.

- When using VecCreate(), VecSetSizes and VecSetFromOptions()
in this example, we specify only the
vector's global dimension; the parallel partitioning is determined
at runtime.

- When solving a linear system, the vectors and matrices MUST
be partitioned accordingly. PETSc automatically generates
appropriately partitioned matrices and vectors when MatCreate()
and VecCreate() are used with the same communicator.

- The user can alternatively specify the local vector and matrix
dimensions when more sophisticated partitioning is needed
(replacing the PETSC DECIDE argument in the VecSetSizes() statement
below).

*/

PetscCall(VecCreate(PETSC_COMM WORLD, &u));
PetscCall(VecSetSizes(u, PETSC DECIDE, m * n));
PetscCall(VecSetFromOptions(u));
PetscCall(VecDuplicate(u, &b));
PetscCall(VecDuplicate(b, &x));

/*
Set exact solution; then compute right-hand-side vector.
By default we use an exact solution of a vector with all
elements of 1.0;

*/

PetscCall(VecSet(u, 1.0));

PetscCall(MatMult (A, u, b));

/*
View the exact solution vector if desired
*/
flg = PETSC_FALSE;
PetscCall(PetscOptionsGetBool (NULL, NULL, "-view exact sol", &flg, NULL));
if (flg) PetscCall(VecView(u, PETSC VIEWER STDOUT WORLD));

Create the linear solver and set various options
__________________ ______________*/

PetscCall(KSPCreate(PETSC COMM WORLD, &ksp));

/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.

(continues on next page)
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*/
PetscCall(KSPSetOperators(ksp, A, A));

/*

Set linear solver defaults for this problem (optional).

- By extracting the KSP and PC contexts from the KSP context,
we can then directly call any KSP and PC routines to set
various options.

- The following two statements are optional; all of these
parameters could alternatively be specified at runtime via
KSPSetFromOptions(). All of these defaults can be
overridden at runtime, as indicated below.

*/
PetscCall(KSPSetTolerances(ksp, 1.e-2 / ((m + 1) * (n + 1)), 1.e-50, PETSC DEFAULT, ,
—PETSC_DEFAULT));

/*
Set runtime options, e.g.,
-ksp_type <type> -pc_type <type> -ksp monitor -ksp rtol <rtol>
These options will override those specified above as long as
KSPSetFromOptions() is called _after_ any other customization

routines.

*/

PetscCall(KSPSetFromOptions(ksp));

/* _______________________ - - - - - - - - oo
Solve the linear system

____________________ ______________*/

PetscCall(KSPSolve(ksp, b, x));

/* _______________________ - - - - - - - oo
Check the solution and clean up

____________________ ______________*/

PetscCall(VecAXPY(x, -1.0, u));
PetscCall(VecNorm(x, NORM 2, &norm));
PetscCall(KSPGetIterationNumber(ksp, &its));

/*
Print convergence information. PetscPrintf() produces a single
print statement from all processes that share a communicator.
An alternative is PetscFPrintf(), which prints to a file.
*/
PetscCall(PetscPrintf(PETSC _COMM WORLD, "Norm of error %g iterations %" PetscInt
—FMT "\n", (double)norm, its));

/*
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

*/

PetscCall(KSPDestroy(&ksp));

PetscCall(VecDestroy(&u));

PetscCall(VecDestroy(&x));

PetscCall(VecDestroy(&b));

PetscCall(MatDestroy(&A));

(continues on next page)
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/*
Always call PetscFinalize() before exiting a program. This routine
- finalizes the PETSc libraries as well as MPI
- provides summary and diagnostic information if certain runtime
options are chosen (e.g., -log view).
*/
PetscCall(PetscFinalize());
return 0;

1.3.2 CPU SIMD parallelism

SIMD parallelism occurs most commonly in the Intel advanced vector extensions (AVX) Wikipedia
https://en.wikipedia.org/wiki/Advanced_ Vector__Extensions families of instructions. It may be automat-
ically used by the optimizing compiler, or in low-level libraries that PETSc uses such as BLAS (see
BLIS https://qgithub.com/flame/blis, or rarely, directly in PETSc C/C++ code, as in MatMult _SeqSELL
https://petsc.org/main/src/mat/impls/sell/seq/sell.c.html#MatMult _SeqSELL.

1.3.3 CPU OpenMP parallelism

OpenMP parallelism is thread parallelism. Multiple threads (independent streams of instructions) process
data and perform computations on different parts of memory that is shared (accessible) to all of the threads.
The OpenMP model is most-often based on inserting pragmas into code indicating that a series of instructions
(often within a loop) can be run in parallel. This is also called a fork-join model of parallelism, since much of
the code remains sequential and only the computationally expensive parts in the ‘parallel region’ are parallel.
OpenMP thus makes it relatively easy to add some degree of parallelism to a conventional sequential code
in a shared memory environment.

POSIX threads (pthreads) is a library that may be called from C/C++. The library contains routines
to create, join, and remove threads plus manage communications and synchronizations between threads.
Pthreads is rarely used directly in numerical libraries and applications. Sometimes OpenMP is implemented
on top of pthreads.

If one adds OpenMP parallelism to an MPI code one must make sure not to over-subscribe the hardware
resources. For example, if MPI already has one rank per hardware core then using four OpenMP threads
per MPI rank will slow the code down since now one core will need to switch back and forth between four
OpenMP threads. There are limited practical advantages to a combined MPI and OpenMP model in PETSc,
but it is possible.

For application codes that uses certain external packages including BLAS/LAPACK, SuperLU_DIST,
MUMPS, MKL, and SuiteSparse one can build PETSc and these packages to take advantage of OpenMP
by using the configure option - -with-openmp. The number of OpenMP threads used in the application
can be controlled with the PETSc¢ command line option -omp _num_threads <num> or the environmen-
tal variable OMP_NUM_ THREADS. Running a PETSc program with -omp_view will display the number of
threads being used. The default number is often absurdly high for the given hardware so we recommend
always setting it appropriately. Users can also put OpenMP pragmas into their own code. However since
standard PETSc is not thread-safe, they should not, in general, call PETSc routines from inside the parallel
regions.

PETSc’s MPI based linear solvers may be accessed from a sequential or non-MPI OpenMP program, see
Using PETSc’s MPI parallel linear solvers from a non-MPI program.
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There is an OpenMP thread-safe subset of PET'Sc that may be configured for using - -with-threadsafety
(often used along with - -with-openmp or - -download-concurrencykit). KSP Tutorial ex61f demon-
strates how this may be used with OpenMP. In this mode one may have individual OpenMP threads that
each manage their own (sequential) PETSc objects (each thread can interact only with its own objects). This
is useful when one has many small systems (or sets of ODEs) that must be integrated in an “embarrassingly
parallel” fashion on multicore systems.

See also:

Edward A. Lee, The Problem with Threads, Technical Report No. UCB/EECS-2006-1 January [DOI] 10,
2006

1.3.4 GPU kernel parallelism

GPUs offer at least two levels of clearly defined parallelism. Kernel level parallelism is much like SIMD
parallelism applied to loops; many different “iterations” of the loop index run on different hardware but
in “lock-step” at the same time. PETSc utilizes this parallelism with three similar, but slightly different
models:

e CUDA, which is provided by NVIDIA and runs on NVIDIA GPUs
e HIP, provided by AMD, which can, in theory, run on both AMD and NVIDIA GPUs

o and Kokkos, an open-source package that provides a slightly higher level programming model to utilize
GPU kernels.

To utilize this one configures PETSc with either —with-cuda or —with-hip and, if they plan to use Kokkos,
also —with-kokkos —with-kokkos-kernels.

In the GPU programming model that PETSc uses the GPU memory is distinct from the CPU memory.
This means that data that resides on the CPU memory must be copied to the GPU (often this copy is
done automatically by the libraries and the user does not need to manage it) if one wishes to use the GPU
computational power on it. This memory copy is slow compared to the GPU speed hence it is crucial to
minimize these copies. This often translates to trying to do almost all the computation on the GPU and not
constantly switching between computations on the CPU and the GPU on the same data.

PETSc utilizes GPUs by providing vector and matrix classes (Vec and Mat) that are specifically written to
run fast on the GPU. However, since it is difficult to write an entire PETSc code that runs only on the GPU
one can also access and work with (for example, put entries into) the vectors and matrices on the CPU.
The vector classes are VECCUDA, MATAIJCUSPARSE, VECKOKKOS, MATAIJKOKKOS, and VECHIP

(matrices are not yet supported from PETSc with HIP).
More details on using GPUs from PETSc will follow in this document.

1.3.5 GPU stream parallelism

Incomplete
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1.4 Compiling and Running Programs

The output below illustrates compiling and running a PETSc program using MPICH on a macOS laptop.
Note that different machines will have compilation commands as determined by the configuration process.
See Writing C/C++ or Fortran Applications for a discussion about how to compile your PETSc programs.
Users who are experiencing difficulties linking PETSc programs should refer to the FAQ.

$ cd $PETSC DIR/src/ksp/ksp/tutorials

$ make ex2

/Users/patrick/petsc/arch-darwin-double-debug/bin/mpicc -0 ex2.0 -c -g3 -I/Users/
—patrick/petsc/include -I/Users/patrick/petsc/arch-darwin-double-debug/include -I/
—opt/X1l/include -I/opt/local/include “pwd” /ex2.c
/Users/patrick/petsc/arch-darwin-double-debug/bin/mpicc -g3 -0 ex2 ex2.0 -Wl,-rpath,
—/Users/patrick/petsc/arch-darwin-double-debug/1lib -L/Users/patrick/petsc/arch-
—darwin-double-debug/lib -1lpetsc -1f2clapack -1f2cblas -lmpifort -lgfortran -lgcc_
—ext.10.5 -lquadmath -1m -lclang rt.osx -lmpicxx -lc++ -1dl -1mpi -1lpmpi -1System
/bin/rm -f ex2.o0

$ $PETSC DIR/lib/petsc/bin/petscmpiexec -n 1 ./ex2

Norm of error 0.000156044 iterations 6

$ $PETSC DIR/lib/petsc/bin/petscmpiexec -n 2 ./ex2

Norm of error 0.000411674 iterations 7

1.5 Profiling Programs

The option -10g view activates printing of a performance summary, including times, floating point op-
eration (flop) rates, and message-passing activity. Profiling provides details about profiling, including in-
terpretation of the output data below. This particular example involves the solution of a linear system on
one processor using GMRES and ILU. The low floating point operation (flop) rates in this example are due
to the fact that the code solved a tiny system. We include this example merely to demonstrate the ease of
extracting performance information.

$ $PETSC DIR/lib/petsc/bin/petscmpiexec -n 1 ./ex1l -n 1000 -pc_type ilu -ksp_type,
—gmres -ksp rtol 1l.e-7 -log view

P T I R

Event Count Time (sec) Flops ---
—Global --- --- Stage ---- Total
Max Ratio Max Ratio Max Ratio Mess AvglLen Reduct %T

—%F %M %L %R %T %F %M %L %R Mflop/s

VecMDot 1 1.0 3.2830e-06 1.0 2.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0
<5 06 0 0 06 5 06 0 0 609

VecNorm 3 1.0 4.4550e-06 1.0 6.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0,
~14 06 06 0 014 0 0 0 1346

VecScale 2 1.0 4.0110e-06 1.0 2.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0
<5 06 06 0 06 5 06 0 0 499

VecCopy 1 1.0 3.2280e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0
-0 06 06 0 0 0 0 0 0 0

VecSet 11 1.0 2.5537e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2
-0 06 06 0 2 0 0 0 0 0

VecAXPY 2 1.0 2.0930e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0

(continues on next page)

20 Chapter 1. Introduction to PETSc



https://petsc.org/release/faq/

PETSc/TAO Users Manual, Release 3.20.1

(continued from previous page)

10 0 0 0 010 0 0 1911
VecMAXPY 2 1.0 1.1280e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 0,
10 0 0 0 010 0 0 3546
VecNormalize 2 1.0 9.3970e-06 1.0 6.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~14 0 0 0 114 0 0 638
MatMult 2 1.0 1.1177e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~24 0 0 0 124 0O 0 894
MatSolve 2 1.0 1.9933e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~24 0 0 0 124 06 0 501
MatLUFactorNum 1 1.0 3.5081e-05 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 2,
-10 06 0 0 210 0 0 114
MatILUFactorSym 1 1.0 4.4259e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3
-0 06 06 0 3 0 0 0 0
MatAssemblyBegin 1 1.0 8.2015e-08 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0
-0 06 0 0 0 0 0 0 0
MatAssemblyEnd 1 1.0 3.3536e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2
-0 06 0 0 2 0 0 0 0
MatGetRowIJ] 1 1.0 1.5960e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0
-0 06 06 0 0 0 0 0 0
MatGetOrdering 1 1.0 3.9791e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 3
-0 06 0 0 3 0 0 0 0
MatView 2 1.0 6.7909e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 5
-0 06 0 0 5 0 0 0 0
KSPGMRESOrthog 11.0 7.5970e-06 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
-10 06 0 0 110 0O 0 526
KSPSetUp 1 1.0 3.4424e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2
-0 0 06 06 2 0 0 0 0
KSPSolve 1 1.0 2.7264e-04 1.0 3.30e+04 1.0 0.0e+00 0.0e+00 0.0e+00 19,
~79 0 0 0 19 79 06 0 121
PCSetUp 1 1.0 1.5234e-04 1.0 4.00e+03 1.0 0.0e+00 0.0e+00 0.0e+00 11,
-10 06 0 0 11 10 0 0 26
PCApply 2 1.0 2.1022e-05 1.0 9.99e+03 1.0 0.0e+00 0.0e+00 0.0e+00 1,
~24 0 0 0 124 0 0 475
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants' Menm.
Reports information only for process 0.
--- Event Stage 0: Main Stage
Vector 8 8 76224 0.
Matrix 2 2 134212 0.
Krylov Solver 1 1 18400 0.
Preconditioner 1 1 1032 0.
Index Set 3 3 10328 0.
Viewer 1 0 0 0.
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1.6 Writing C/C++ or Fortran Applications

The examples throughout the library demonstrate the software usage and can serve as templates for
developing custom applications. We suggest that new PETSc users examine programs in the direc-
tories $PETSC DIR/src/<library>/tutorials where <library> denotes any of the PETSc li-
braries (listed in the following section), such as SNES or KSP or TS. The manual pages located at
https://petsc.org/release/documentation/ provide links (organized by both routine names and concepts)
to the tutorial examples.

To develop an application program that uses PETSc, we suggest the following:
e Download and install PETSc.

e For completely new applications

1.
2.
3.

O.
6.

Make a directory for your source code: for example, mkdir $HOME/application
Change to that directory; for example, cd $HOME/application

Copy an example in the directory that corresponds to the problems of interest into your directory,
for example, cp $PETSC DIR/src/snes/tutorials/ex19.c ex19.c

Select an application build process. The PETSC DIR (and PETSC ARCH if the
--prefix=directoryname option was not used when configuring PETSc) environmental vari-
able(s) must be set for any of these approaches.

— make  (recommended). Copy  $PETSC_DIR/share/petsc/Makefile.user  or
$PETSC_DIR/share/petsc/Makefile.basic.user to your directory, for example, cp
$PETSC DIR/share/petsc/Makefile.user makefile

Examine the comments in your makefile
Makefile.user uses the pkg-config tool and is the recommended approach.
Use make ex19 to compile your program

— CMake. Copy $PETSC_DIR/share/petsc/CMakeLists.txt to your directory, for example, Cp
$PETSC DIR/share/petsc/CMakeLists.txt CMakeLists.txt

Edit CMakeLists.txt, read the comments on usage and change the name of application from
ex1 to your application executable name.

Run the program, for example, ./ex19

Start to modify the program for developing your application.

e For adding PETSc to an existing application

1.
2.

Start with a working version of your code that you build and run to confirm that it works.

Upgrade your build process. The PETSC DIR (and PETSC ARCH if the
--prefix=directoryname option was not used when configuring PETSc) environmen-
tal variable(s) must be set for any of these approaches.

— Using make. Update the application makefile to add the appropriate PETSc include directo-
ries and libraries.

* Recommended approach. Examine the comments in
$PETSC_ DIR/share/petsc/Makefile.user and transfer selected portions of that file
to your makefile.

x Minimalist. Add the line
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include ${PETSC DIR}/1lib/petsc/conf/variables

to the bottom of your makefile. This will provide a set of PETSc specific
make variables you may use in your makefile.  See the comments in the file
$PETSC_DIR/share/petsc/Makefile.basic.user for details on the usage.

x Simple, but hands the build process over to PETSc’s control. Add the lines

include ${PETSC DIR}/lib/petsc/conf/variables
include ${PETSC DIR}/1lib/petsc/conf/rules

to the Dbottom of your makefile. See the comments in the file
$PETSC_DIR/share/petsc/Makefile.basic.user for details on the usage. Since PETSc’s
rules now control the build process you will likely need to simplify and remove much of
your makefile.

* Not recommended since you must change your makefile for each new configura-
tion/computing system. This approach does not require that the environmental variable
PETSC DIR be set when building your application since the information will be hard-
wired in your makefile. Run the following command in the PETSc root directory to get
the information needed by your makefile:

$ make getlinklibs getincludedirs getcflags getcxxflags,,
—getfortranflags getccompiler getfortrancompiler getcxxcompiler

All the libraries listed need to be linked into your executable and the include directories
and flags need to be passed to the compiler(s). Usually this is done by setting LD-
FLAGS=<list of library flags and libraries> and CFLAGS=<list of -I
and other flags> and FFLAGS=<list of -I and other flags> etc in your
makefile.

— Using CMake. Update the application CMakeLists.txt by examining the code and comments
in $PETSC_ DIR /share/petsc/CMakeLists.txt

3. Rebuild your application and ensure it still runs correctly.

4. Add a PetscInitialize() near the beginning of your code and PetscFinalize() near the
end with appropriate include commands (and use commands in Fortran)

5. Rebuild your application and ensure it still runs correctly.

6. Slowly start utilizing PETSc functionality in your code, ensure that your code continues to build
and run correctly.

1.7 PETSc’s Object-Oriented Design

Though PETSc has a large API, conceptually it’s rather simple. There are three abstract basic data objects
(classes): index sets, IS, vectors, Vec, and matrices, Mat. Plus a larger number of abstract algorithm
objects (classes) starting with: preconditioners, PC, Krylov solvers, KSP, and so forth.

Let Object represent any of these objects. Objects are created with

Object obj;
ObjectCreate(MPI_Comm, &obj);
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The object is empty and little can be done with it. A particular implementation of the class is associated
with the object by setting the object’s “type”, where type is merely a string name of an implementation
class using

Object obj;
ObjectSetType(obj, "Name");

Some objects support subclasses which are specializations of the type. These are set with

Object obj;
ObjectNameSetType(obj, "SubName");

For example, within TS one may do

TS obj;
TSCreate(PETSC_COMM_WORLD, &obj);
TSSetType(obj, TSARKIMEX) ;
TSARKIMEXSetType (obj, TSARKIMEX3) ;

The abstract class TS can embody any ODE/DAE integrator scheme. This example creates an additive
Runge-Kutta ODE/DAE IMEX integrator, whose type name is TSARKIMEX, using a 3-order scheme with
an L-stable implicit part, whose subtype name is TSARKIMEX3.

In order to allow PETSc objects to be runtime configurable, PETSc objects provide a universal way of
selecting types (classes) and subtypes at runtime, from what is referred to as the “options database” The
code above can be replaced with

TS obj;
TSCreate(PETSC_COMM_WORLD, &obj);
TSSetFromOptions(obj);

now both the type and subtype can be conveniently set from the command line

$ ./app -ts_type arkimex -ts_arkimex_ type 3

The object’s type (implementation class) or subclass can also be changed at any time simply by calling
TSSetType() again (though in order to override command line options the call to TSSetType () must be
made _after_ TSSetFromOptions()). For example:

// (if set) command line options "override" TSSetType()
TSSetType(ts, TSGLLE);
TSSetFromOptions(ts);

// TSSetType() overrides command line options
TSSetFromOptions(ts);
TSSetType(ts, TSGLLE);

Since the later call always overrides the earlier call the second form shown is rarely — if ever — used, as it is
less flexible than configuring command line settings.

The standard methods on an object are of the general form

ObjectSetXXX(obj,...);
ObjectGetXXX(obj,...);
ObjectYYY(obj,...);

For example
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TSSetRHSFunction(obj,...)

Particular types and subtypes of objects may have their own methods, which are given in the form

ObjectNameSetXXX(obj,...);
ObjectNameGetXXX(obj,...);
ObjectNameYYY (obj,...);

and

ObjectNameSubNameSetXXX(obj,...);
ObjectNameSubNameGetXXX(obj,...);
ObjectNameSubNameYYY (obj,...);

where Name and SubName are the type and subtype names (for example, as above TSARKIMEX and 3. Most
“set” operations have options database versions with the same names in lower case, separated by underscores
and with the set remove. For example,

KSPGMRESSetRestart(obj,30); // ignored if the type is not KSPGMRES

can be set at the command line with

$ ./app -ksp_gmres restart 30

There are a special subset of type-specific methods that are ignored if the type does not match the function
name. These are usually setter functions that control some aspect specific to the subtype. For example,

KSPGMRESSetRestart (obj,30); // ignored if the type is not KSPGMRES

These allow cleaner code since it does not have a multitude of if statements to avoid inactive methods. That
is one does not need to write code like

if (type == KSPGMRES) { // unneeded clutter
KSPGMRESSetRestart (obj,30);
}

There are many “get” routines that give one temporary access to the internal data of an object. They are
used in the style

XXX XXX
ObjectGetXXX(obj,&xxx) ;

// use xxx
ObjectRestoreXXX(obj, &xxx);

Objects obtained with a “get” routine should be returned with a “restore” routine, generally within the same
function. Objects obtained with a “create” routine should be freed with a “destroy” routine.

There may be variants of the “get” routines that give more limited access to the obtained object. For
example,

const PetscScalar *x;

// specialized variant of VecGetArray()
VecGetArrayRead(vec, &x);

// one can read but not write with x[]
PetscReal y = 2*x[0];

(continues on next page)
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// don't forget to restore x after you are done with it
VecRestoreArrayRead(vec, &x);

Objects can be displayed (in a large number of ways) with

ObjectView(obj,PetscViewer viewer);
ObjectViewFromOptions(obj,...);

Where PetscViewer is an abstract object that can represent standard output, an ASCII or binary file, a
graphical window, etc. The second variant allows the user to delay until runtime the decision of what viewer
and format to use to view the object or if to view the object at all.

Objects are destroyed with

ObjectDestroy(&obj)

1.7.1 User Callbacks

In many situations the user may also wish to override or provide custom functionality. This is handled via
callbacks which the library will call at the appropriate time. The most general callback is provided by

PetscObjecSetCallback(obj,callbackfunction(), void *ctx, callbackdestroy(void *ctx));

where callbackfunction() is what is used by the library, CtX is an optional data-structure (array,
struct, PETSc object) that is used by callbackfunction() and callbackdestroy(void *ctx) is
an optional function that will be called when 0bj is destroyed. The use of the callbackdestroy() allows
users to “set and forget” data structures that will not be needed elsewhere but still need to be cleaned up
when no longer needed. Here is an example of the use of a full-fledged callback

TS ts;
TSMonitorLGCtx *ctx;

TSMonitorLGCtxCreate(..., &ctx)

TSMonitorSet(ts, TSMonitorLGTimeStep, ctx, (PetscErrorCode(*)(void,
—**))TSMonitorLGCtxDestroy);

TSSolve(ts);

Occasionally routines to set callback functions take additional data objects that will be used by the object
but are not context data for the function. For example,

SNES obj;
Vec r;
void *ctx;

SNESSetFunction(snes, r, UserApplyFunction(SNES,Vec,Vec,void *ctx), ctx);

The r vector is an optional argument provided by the user which will be used as work-space by SNES. Note
that this callback does not provide a way for the user to have the CtX destroyed when the SNES object is
destroyed, the users must ensure that they free it at an appropriate time. There is no logic to the various
ways PETSc accepts callback functions in different places in the code.

See Tao use of PETSc and callbacks for a cartoon on the use of callbacks in Tao.
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ObjectCreate ()
Allocate basic data structure
ObjectSetType () )

Set the type of the al-
gorithm/data structure

l

ObjectSetXXX ()
Set data and options

l

ObjectSetFromOptions ()
Set data and options
from command line

l

ObjectSetUp()
Allocate specific data structures
Lock in behavior

l

[Ubj ectView() (optional)]

l

[ObjectUse ()]

ObjectDestroy()
Clean up allocated memory

Fig. 1.2: Sample lifetime of a PETSc object
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1.8 Directory Structure

We conclude this introduction with an overview of the organization of the PETSc software. The root
directory of PETSc contains the following directories:

doc (only in the tarball distribution of PETSc; not the git repository) - All documentation for PETSc.
The files manual.pdf contains the hyperlinked users manual, suitable for printing or on-screen view-
ering. Includes the subdirectory - manualpages (on-line manual pages).

lib/petsc/conf - Base PETSc configuration files that define the standard make variables and rules
used by PETSc

include - All include files for PETSc that are visible to the user.
include/petsc/finclude - PETSc Fortran include files.

include/petsc/private - Private PETSc include files that should not need to be used by appli-
cation programmers.

share - Some small test matrices in data files
src - The source code for all PETSc libraries, which currently includes
— Vec - vectors,
* 1S - index sets,
— mat - matrices,
— KSp - complete linear equations solvers,
* Kksp - Krylov subspace accelerators,

* PC - preconditioners,

snes - nonlinear solvers

ts - ODE solvers and timestepping,

dm - data management between meshes and solvers, vectors, and matrices,

SYS - general system-related routines,
* 1Logging - PETSc logging and profiling routines,
x classes - low-level classes
draw - simple graphics,
viewer - mechanism for printing and visualizing PETSc objects,
bag - mechanism for saving and loading from disk user data stored in C structs.

random - random number generators.

Each PETSc source code library directory has the following subdirectories:

tutorials - Programs designed to teach users about PETSc.
These codes can serve as templates for the design of custom applications.

tests - Programs designed for thorough testing of PETSc. As
such, these codes are not intended for examination by users.

interface - Provides the abstract base classes for the objects. Code here does not know about
particular implementations and does not actually perform operations on the underlying numerical
data.
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e impls - Source code for one or more implementations of the class for particular data structures or
algorithms.

o utils - Utility routines. Source here may know about the implementations, but ideally will not know
about implementations for other components.
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CHAPTER
TWO

THE SOLVERS IN PETSC/TAO

2.1 Vectors and Parallel Data

Vectors (denoted by Vec) are used to store discrete PDE solutions, right-hand sides for linear systems, etc.
Users can create and manipulate entries in vectors directly with a basic, low-level interface or they can use
the PETSc DM objects to connect actions on vectors to the type of discretization and grid that they are
working with. These higher level interfaces handle much of the details of the interactions with vectors and
hence are preferred in most situations. This chapter is organized as follows:

e Creating Vectors
— User managed
— DMDA - Creating vectors for structured grids
— DMStag - Creating vectors for staggered grids

DMPLEX - Creating vectors for unstructured grids
DMNETWORK - Creating vectors for networks

e Setting vector values

— For generic vectors

DMDA - Setting vector values

— DMSTAG - Setting vector values

— DMPLEX - Setting vector values

— DMNETWORK - Setting vector values

e Basic Vector Operations

Local/global vectors and communicating between vectors

Low-level Vector Communication

— Local to global mappings
— Global Vectors with locations for ghost values

o Application Orderings
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2.1.1 Creating Vectors

PETSc provides many ways to create vectors. The most basic, where the user is responsible for managing
the parallel distribution of the vector entries, and a variety of higher-level approaches, based on DM, for
classes of problems such as structured grids, staggered grids, unstructured grids, networks, and particles.

The most basic way to create a vector with a local size of m and a global size of M, is using the commands

VecCreate(MPI_Comm comm,Vec *v);
VecSetSizes(Vec v, PetscInt m, PetscInt M);
VecSetFromOptions(Vec v);

which automatically generates the appropriate vector type (sequential or parallel) over all processes in comm.
The option -vec type <type> can be used in conjunction with VecSetFromOptions() to specify the
use of a particular type of vector. For example, for NVIDIA GPU CUDA use cuda. The GPU based vectors
allow one to set values on either the CPU or GPU but do their computations on the GPU.

We emphasize that all processes in comm must call the vector creation routines, since these routines are
collective on all processes in the communicator. If you are not familiar with MPI communicators, see the
discussion in Writing PETSc Programs on page . In addition, if a sequence of creation routines is used, they
must be called in the same order on each process in the communicator.

Instead of, or before calling VecSetFromOptions (), one can call

VecSetType(Vec v,VecType <VECCUDA, VECHIP, VECKOKKOS etc>)

One can create vectors whose entries are stored on GPUs using, the short-hand helper routine,

VecCreateMPICUDA(MPI_Comm comm,PetscInt m,PetscInt M,Vec *x);

There are short hand creation routines for almost all vector types; we recommend using the more verbose
form because it allows selecting CPU or GPU simulations at runtime.

For applications running in parallel that involve multi-dimensional structured grids, unstructured grids,
networks, etc it is cumbersome and complicated for users to explicitly manage the needed local and global
sizes of the vectors. Hence PETSc provides a powerful abstract object called the DM to help manage the
vectors and matrices needed for such applications. Parallel vectors can be created easily with

DMCreateGlobalVector (DM dm,Vec *v)

The DM object, see DMDA - Creating vectors for structured grids, DMStag - Creating vectors for staggered
grids, and DMPlex: Unstructured Grids for more details on DM for structured grids, staggered structured
grids and for unstructured grids, manages creating the correctly sized parallel vectors efficiently. One controls
the type of vector that DM creates by calling

DMSetVecType (DM dm,VecType vt)

or by calling DMSetFromOptions (DM dm) and using the option -dm vec type <standard or cuda
or kokkos etc>
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DMDA - Creating vectors for structured grids

Each DM type is suitable for a family of problems. The first of these DMDA are intended for use with logically
structured rectangular grids when communication of nonlocal data is needed before certain local computations
can occur. PETSc distributed arrays are designed only for the case in which data can be thought of as being
stored in a standard multidimensional array; thus, DMDAs are not intended for parallelizing unstructured
grid problems, etc.

For example, a typical situation one encounters in solving PDEs in parallel is that, to evaluate a local function,
T (X), each process requires its local portion of the vector X as well as its ghost points (the bordering portions
of the vector that are owned by neighboring processes). Figure Ghost Points for Two Stencil Types on the
Seventh Process illustrates the ghost points for the seventh process of a two-dimensional, structured parallel
grid. Each box represents a process; the ghost points for the seventh process’s local part of a parallel array
are shown in gray.

Proc 6 Proc 6

ProcO| Proc 1 ProcO| Proc 1

Box-type stencil Sar-type stencil
Fig. 2.1: Ghost Points for Two Stencil Types on the Seventh Process

The DMDA object contains parallel data layout information and communication information and is used to
create vectors and matrices with the proper layout.

One creates a distributed array communication data structure in two dimensions with the command

DMDACreate2d (MPI_Comm comm,DMBoundaryType xperiod,DMBoundaryType yperiod,
—DMDAStencilType st,PetscInt M, PetscInt N,PetscInt m,PetscInt n,PetscInt dof,
—PetscInt s,PetscInt *1x,PetscInt *ly,DM *da);

The arguments M and N indicate the global numbers of grid points in each direction, while m and n denote
the process partition in each direction; m*n must equal the number of processes in the MPI communicator,
comm. Instead of specifying the process layout, one may use PETSC_DECIDE for m and n so that PETSc
will select the partition. The type of periodicity of the array is specified by xperiod and yperiod,
which can be DM_BOUNDARY_NONE (no periodicity), DM_BOUNDARY PERIODIC (periodic in that direction),
DM BOUNDARY_ TWIST (periodic in that direction, but identified in reverse order), DM_BOUNDARY GHOSTED
, or DM_BOUNDARY_ MIRROR. The argument dof indicates the number of degrees of freedom at each array
point, and S is the stencil width (i.e., the width of the ghost point region). The optional arrays 1X and ly
may contain the number of nodes along the x and y axis for each cell, i.e. the dimension of 1X is m and the
dimension of ly is n; alternately, NULL may be passed in.

Two types of distributed array communication data structures can be created, as specified by
st. Star-type stencils that radiate outward only in the coordinate directions are indicated by
DMDA STENCIL STAR, while box-type stencils are specified by DMDA STENCIL BOX. For example, for
the two-dimensional case, DMDA STENCIL STAR with width 1 corresponds to the standard 5-point stencil,
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while DMDA STENCIL BOX with width 1 denotes the standard 9-point stencil. In both instances the ghost
points are identical, the only difference being that with star-type stencils certain ghost points are ignored,
decreasing substantially the number of messages sent. Note that the DMDA STENCIL STAR stencils can
save interprocess communication in two and three dimensions.

These DMDA stencils have nothing directly to do with a specific finite difference stencil one might chose to
use for a discretization; they only ensure that the correct values are in place for application of a user-defined
finite difference stencil (or any other discretization technique).

The commands for creating distributed array communication data structures in one and three dimensions
are analogous:

DMDACreateld (MPI_Comm comm,DMBoundaryType xperiod,PetscInt M,PetscInt w,PetscInt s,
—~PetscInt *1c,DM *inra);

DMDACreate3d(MPI_Comm comm,DMBoundaryType xperiod,DMBoundaryType yperiod,
—DMBoundaryType zperiod, DMDAStencilType stencil type,PetscInt M,PetscInt N,PetscInt,
—P,PetscInt m,PetscInt n,PetscInt p,PetscInt w,PetscInt s,PetscInt *1x,PetscInt *1ly,
—PetscInt *1z,DM *inra);

The routines to create distributed arrays are collective, so that all processes in the communicator comm must
call the same creation routines in the same order.

DMStag - Creating vectors for staggered grids
For structured grids with staggered data (living on elements, faces, edges, and/or vertices), the DMSTAG

object is available. It behaves much like DMDA. See DMSTAG: Staggered, Structured Grid for discussion of
creating vectors with DMSTAG.

DMPLEX - Creating vectors for unstructured grids

See DMPlex: Unstructured Grids for discussion of creating vectors with DMPLEX.

DMNETWORK - Creating vectors for networks

See Networks for discussion of creating vectors with DMNETWORK.

One can examine (print out) a vector with the command

VecView(Vec x,PetscViewer v);

To print the vector to the screen, one can use the viewer PETSC_VIEWER STDOUT WORLD, which ensures
that parallel vectors are printed correctly to stdout. To display the vector in an X-window, one can use
the default X-windows viewer PETSC_VIEWER DRAW WORLD, or one can create a viewer with the routine
PetscViewerDrawOpenX(). A variety of viewers are discussed further in Viewers: Looking at PETSc
Objects.

To create a new vector of the same format as an existing vector, one uses

VecDuplicate(Vec old,Vec *new);

To create several new vectors of the same format as an existing vector, one uses

VecDuplicateVecs(Vec old,PetscInt n,Vec **new);
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This routine creates an array of pointers to vectors. The two routines are very useful because they allow
one to write library code that does not depend on the particular format of the vectors being used. Instead,
the subroutines can automatically correctly create work vectors based on the specified existing vector. As
discussed in Duplicating Multiple Vectors, the Fortran interface for VecDuplicateVecs () differs slightly.

When a vector is no longer needed, it should be destroyed with the command

VecDestroy(Vec *x);

To destroy an array of vectors, use the command

VecDestroyVecs(PetscInt n,Vec **vecs);

Note that the Fortran interface for VecDestroyVecs () differs slightly, as described in Duplicating Multiple
Vectors.

It is also possible to create vectors that use an array provided by the user, rather than having PETSc
internally allocate the array space. Such vectors can be created with the routines such as

VecCreateSegWithArray (PETSC _COMM SELF,PetscInt bs,PetscInt n,PetscScalar *array,Vec,
<~*V);

VecCreateMPIWithArray(MPI Comm comm,PetscInt bs,PetscInt n,PetscInt N,PetscScalar,
—*array,Vec *vv);

VecCreateMPICUDAWithArray (MPI _Comm comm,PetscInt bs,PetscInt n,PetscInt N,PetscScalar,
—*array,Vec *vv);

For GPU vectors the array pointer should be a GPU memory location.

Note that here one must provide the value n; it cannot be PETSC_DECIDE and the user is responsible for
providing enough space in the array; n*sizeof (PetscScalar).

2.1.2 Assembling (putting values in) vectors

One can assign a single value to all components of a vector with the command

VecSet(Vec x,PetscScalar value);

Assigning values to individual components of the vector is more complicated, in order to make it possible to
write efficient parallel code. Assigning a set of components on a CPU is a two-step process: one first calls

VecSetValues(Vec x,PetscInt n,PetscInt *indices,PetscScalar *values,INSERT VALUES);

any number of times on any or all of the processes. The argument n gives the number of components
being set in this insertion. The integer array indices contains the global component indices, and values
is the array of values to be inserted. Any process can set any components of the vector; PETSc ensures
that they are automatically stored in the correct location. Once all of the values have been inserted with
VecSetValues (), one must call

VecAssemblyBegin(Vec x);

followed by

VecAssemblyEnd(Vec x);

to perform any needed message passing of nonlocal components. In order to allow the overlap of communi-
cation and calculation, the user’s code can perform any series of other actions between these two calls while
the messages are in transition.
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Example usage of VecSetValues() may be found in src/vec/vec/tutorials/ex2.c  or
sre/vec/vec/tutorials/ex2f. F90.

Often, rather than inserting elements in a vector, one may wish to add values. This process is also done
with the command

VecSetValues(Vec x,PetscInt n,PetscInt *indices, PetscScalar *values,ADD VALUES);

Again one must call the assembly routines VecAssemblyBegin() and VecAssemblyEnd () after all of
the values have been added. Note that addition and insertion calls to VecSetValues() cannot be mixed.
Instead, one must add and insert vector elements in phases, with intervening calls to the assembly routines.
This phased assembly procedure overcomes the nondeterministic behavior that would occur if two different
processes generated values for the same location, with one process adding while the other is inserting its value.
(In this case the addition and insertion actions could be performed in either order, thus resulting in different
values at the particular location. Since PETSc does not allow the simultaneous use of INSERT VALUES
and ADD_VALUES this nondeterministic behavior will not occur in PETSc.)

You can call VecGetValues () to pull local values from a vector (but not off-process values).

For vectors obtained with DMCreateGlobalVector() on can use VecSetValuesLocal() to set values
into a global vector but using the local (ghosted) vector indexing of the vector entries.

It is also possible to interact directly with the arrays that the vector values are stored in. The routine
VecGetArray() returns a pointer to the elements local to the process:

VecGetArray(Vec v,PetscScalar **array);

When access to the array is no longer needed, the user should call

VecRestoreArray(Vec v, PetscScalar **array);

If the values do not need to be modified, the routines

VecGetArrayRead(Vec v, const PetscScalar **array);
VecRestoreArrayRead(Vec v, const PetscScalar **array);

should be used instead.

Listing: SNES Tutorial src/snes/tutorials/ex1.c

PetscErrorCode FormFunctionl(SNES snes, Vec x, Vec f, void *ctx)
{
const PetscScalar *xx;
PetscScalar *ff;

PetscFunctionBeginUser;
/*
Get pointers to vector data.
- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.
- You MUST call VecRestoreArray() when you no longer need access to
the array.
*/
PetscCall(VecGetArrayRead(x, &xx));
PetscCall(VecGetArray(f, &ff));

/* Compute function */

(continues on next page)

36 Chapter 2. The Solvers in PETSc/TAO



PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/vec/vec/tutorials/ex2.c.html
PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/vec/vec/tutorials/ex2f.F90.html

PETSc/TAO Users Manual, Release 3.20.1

(continued from previous page)

ff[o]
ff[1]

xx[0] * xx[0] + xx[0] * xx[1] - 3.0;
xX[0] * xx[1] + xx[1] * xx[1] - 6.0;

/* Restore vectors */
PetscCall(VecRestoreArrayRead(x, &xx));
PetscCall(VecRestoreArray(f, &ff));
PetscFunctionReturn(PETSC_SUCCESS);

Minor differences exist in the Fortran interface for VecGetArray() and VecRestoreArray(), as dis-
cussed in Routines that Return Fortran Allocatable Arrays. It is important to note that VecGetArray ()
and VecRestoreArray() do not copy the vector elements; they merely give users direct access to the
vector elements. Thus, these routines require essentially no time to call and can be used efficiently.

For GPU vectors one can access either the values on the CPU as described above or one can call, for example,

VecCUDAGetArray(Vec v, PetscScalar **array);

Listing: SNES Tutorial src/snes/tutorials/ex47cu.cu

PetscCall(VecCUDAGetArrayRead(xlocal, &xarray));
PetscCall(VecCUDAGetArrayWrite(f, &farray));

if (rank) xstartshift = 1;

else xstartshift = 0;

if (rank != size - 1) xendshift = 1;

else xendshift = 0;

PetscCall(VecGetOwnershipRange(f, &fstart, NULL));

PetscCall(VecGetLocalSize(x, &lsize));
// clang-format off
try {
thrust::for each(
thrust::make zip iterator(
thrust::make tuple(
thrust::device ptr<PetscScalar>(farray),

thrust::device ptr<const PetscScalar>(xarray + xstartshift),

thrust::device ptr<const PetscScalar>(xarray + xstartshift + 1),

thrust::device ptr<const PetscScalar>(xarray + xstartshift - 1),
)

thrust::counting iterator<int>(fstart),
thrust::constant iterator<int>(Mx),

thrust::constant iterator<PetscScalar>(hx))),

thrust::make zip iterator(
thrust::make tuple(

thrust::device ptr<PetscScalar>(farray + lsize),

thrust::device ptr<const PetscScalar>(xarray + lsize - xendshift),
thrust::device ptr<const PetscScalar>(xarray + lsize - xendshift + 1),

(
thrust::device ptr<const PetscScalar>(xarray + lsize
) + lsize,

thrust::counting iterator<int>(fstart
thrust::constant iterator<int>(Mx),

thrust::constant iterator<PetscScalar>(hx))),

ApplyStencil());

- xendshift - 1),

or

2.
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VecGetArrayAndMemType(Vec v, PetscScalar **array,PetscMemType *mtype);

which, in the first case, returns a GPU memory address and in the second case returns either a CPU or GPU
memory address depending on the type of the vector. For usage with GPUs one then can launch a GPU
kernel function that access the vector’s memory. When computing on GPUs VecSetValues () is not used!
One always accesses the vector’s arrays and passes them to the GPU code.

It can also be convenient to treat the vectors entries as a Kokkos view. One first creates Kokkos vectors and
then calls

VecGetKokkosView(Vec v, Kokkos::View<const PetscScalar*,MemorySpace> *kv)

to set or access the vectors entries.

Of course in order to provide the correct values to a vector one must know what parts of the vector are owned
by each MPI rank. For parallel vectors, either CPU or GPU based, it is possible to determine a process’s
local range with the routine

VecGetOwnershipRange(Vec vec,PetscInt *start,PetscInt *end);

The argument start indicates the first component owned by the local process, while end specifies one
more than the last owned by the local process. This command is useful, for instance, in assembling parallel
vectors.

The number of elements stored locally can be accessed with

VecGetLocalSize(Vec v,PetscInt *size);

The global vector length can be determined by

VecGetSize(Vec v,PetscInt *size);

DMDA - Setting vector values

PETSc provides an easy way to set values into the DMDA vectors and access them using the natural grid
indexing. This is done with the routines

DMDAVecGetArray (DM da,Vec 1,void *array);

. use the array indexing it with 1 or 2 or 3 dimensions
... depending on the dimension of the DMDA ...
DMDAVecRestoreArray (DM da,Vec 1,void *array);
DMDAVecGetArrayRead (DM da,Vec 1,void *array);

. use the array indexing it with 1 or 2 or 3 dimensions

. depending on the dimension of the DMDA ...
DMDAVecRestoreArrayRead (DM da,Vec 1,void *array);

where array is a multidimensional C array with the same dimension as da, and

DMDAVecGetArrayDOF (DM da,Vec 1,void *array);
. use the array indexing it with 2 or 3 or 4 dimensions
. depending on the dimension of the DMDA ...
DMDAVecRestoreArrayDOF (DM da,Vec 1,void *array);
DMDAVecGetArrayDOFRead (DM da,Vec 1,void *array);
. use the array indexing it with 2 or 3 or 4 dimensions
. depending on the dimension of the DMDA ...
DMDAVecRestoreArrayDOFRead (DM da,Vec 1,void *array);
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where array is a multidimensional C array with one more dimension than da. The vector 1 can be either
a global vector or a local vector. The array is accessed using the usual global indexing on the entire grid,
but the user may only refer to the local and ghost entries of this array as all other entries are undefined. For
example, for a scalar problem in two dimensions one could use

PetscScalar **f, **u;

DMDAVecGetArrayRead (DM da,Vec local,&u);
DMDAVecGetArray (DM da,Vec global,&f);

RG] = ulillg] -

DMDAVecRestoreArrayRead (DM da,Vec local,é&u);
DMDAVecRestoreArray (DM da,Vec global,&f);

Listing: SNES Tutorial src/snes/tutorials/ex3.c

PetscErrorCode FormFunction(SNES snes, Vec x, Vec f, void *ctx)

{
ApplicationCtx *user = (ApplicationCtx *)ctx;
DM da = user->da;
PetscScalar *f, d;
const PetscScalar *xx, *FF;
PetscInt i, M, xs, xm;
Vec xlocal;

PetscFunctionBeginUser;
PetscCall(DMGetLocalVector(da, &xlocal));
/*
Scatter ghost points to local vector, using the 2-step process
DMGlobalToLocalBegin(), DMGlobalTolLocalEnd().
By placing code between these two statements, computations can
be done while messages are in transition.
*/
PetscCall(DMGlobalToLocalBegin(da, x, INSERT VALUES, xlocal));
PetscCall(DMGlobalToLocalEnd(da, x, INSERT VALUES, xlocal));

/*
Get pointers to vector data.
- The vector xlocal includes ghost point; the vectors x and f do
NOT include ghost points.

- Using DMDAVecGetArray() allows accessing the values using global ordering
*/
PetscCall(DMDAVecGetArrayRead(da, xlocal, (void *)&xx));
PetscCall(DMDAVecGetArray(da, f, &ff));
PetscCall(DMDAVecGetArrayRead(da, user->F, (void *)&FF));

/*
Get local grid boundaries (for 1-dimensional DMDA):
Xs, xm - starting grid index, width of local grid (no ghost points)
*/
PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));
PetscCall(DMDAGetInfo(da, NULL, &M, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,,
—NULL, NULL, NULL));

/*
Set function values for boundary points; define local interior grid point range:

(continues on next page)
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(continued from previous page)

xsi - starting interior grid index
xel - ending interior grid index

*/

if (xs == 0) { /* left boundary */
ff[0] = xx[0];
XS++;
Xm- - ;

}

if (xs + xm == M) { /* right boundary */
fflxs + xm - 1] = xx[xs + xm - 1] - 1.0;
Xm- - ;

}

/*
Compute function over locally owned part of the grid (interior points only)
*/
d=1.0 / (user->h * user->h);
for (i = xs; 1 < xs + xm; i++) ff[i] =d * (xx[1i - 1] - 2.0 * xx[1i] + xx[i + 1]) +,
oxx[1] * xx[1i] - FF[i];

/*

Restore vectors
*/
PetscCall(DMDAVecRestoreArrayRead(da, xlocal, (void *)&xx));
PetscCall(DMDAVecRestoreArray(da, f, &ff));
PetscCall(DMDAVecRestoreArrayRead(da, user->F, (void *)&FF));
PetscCall(DMRestoreLocalVector(da, &xlocal));
PetscFunctionReturn(PETSC_SUCCESS);

The recommended approach for multi-component PDEs is to declare a Struct representing the fields defined
at each node of the grid, e.g.

typedef struct {
PetscScalar u,v,omega,temperature;
} Node;

and write the residual evaluation using

Node **f,**u;
DMDAVecGetArray (DM da,Vec local,é&u);
DMDAVecGetArray (DM da,Vec global,&f);

-.f[i][j].omega = ...

DMDAVecRestoreArray (DM da,Vec local,é&u);
DMDAVecRestoreArray (DM da,Vec global,&f);

The DMDAVecGetArray routines are also provided for GPU access with CUDA, HIP, and Kokkos. For
example,

DMDAVecGetKokkosOffsetView(DM da,Vec vec,Kokkos::View<const PetscScalar*XxX*,
—MemorySpace> *ov)

where *XX* can contain any number of *. This allows one to write very natural Kokkos multi-dimensional
parallel for kernels that act on the local portion of DMDA vectors.
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Listing: SNES Tutorial src/snes/tutorials/ex3k.kokkos.cxx

PetscErrorCode KokkosFunction(SNES snes, Vec x, Vec r, void *ctx)

{

ApplicationCtx *user = (ApplicationCtx *)ctx;
DM da = user->da;

PetscScalar d;

PetscInt M;

Vec x1;
PetscScalarKokkosOffsetView R;

ConstPetscScalarKokkosOffsetView X, F;

PetscFunctionBeginUser;

PetscCall(DMGetLocalVector(da, &x1));

PetscCall(DMGlobalToLocal(da, x, INSERT VALUES, x1));

d=1.0 / (user->h * user->h);

PetscCall(DMDAGetInfo(da, NULL, &M, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,,
—NULL, NULL, NULL));

PetscCall(DMDAVecGetKokkosOffsetView(da, x1, &X)); /* read only */

PetscCall(DMDAVecGetKokkosOffsetViewWrite(da, r, &R)); /* write only */

PetscCall(DMDAVecGetKokkosOffsetView(da, user->F, &F)); /* read only */

Kokkos: :parallel for(

Kokkos: :RangePolicy<>(R.begin(0), R.end(0)), KOKKOS LAMBDA(int i) {

if (1 == 0) R(0) = X(0); /*.
—left boundary */
else if (i == M - 1) R(i) = X(i) - 1.0; /%,

—right boundary */
else R(i) =d * (X(i - 1) - 2.0 * X(i) + X(i + 1)) + X(i) * X(i) - F(i); /*,
—interior */
1)

PetscCall(DMDAVecRestoreKokkosOffsetView(da, x1, &X));

PetscCall(DMDAVecRestoreKokkosOffsetViewWrite(da, r, &R));

PetscCall (DMDAVecRestoreKokkosOffsetView(da, user->F, &F));

PetscCall(DMRestoreLocalVector(da, &xl));

PetscFunctionReturn(PETSC_SUCCESS);

The global indices of the lower left corner of the local portion of vectors obtained from DMDA as well as the
local array size can be obtained with the commands

DMDAGetCorners (DM da,PetscInt *x,PetscInt *y,PetscInt *z,PetscInt *m,PetscInt *n,
—PetscInt *p);

DMDAGetGhostCorners (DM da,PetscInt *x,PetscInt *y,PetscInt *z,PetscInt *m,PetscInt *n,
—PetscInt *p);

These values can then be used as loop bounds for local function evaluations as demonstrated in the function
examples above.

The first version excludes any ghost points, while the second version includes them. The routine DMDAGet -
GhostCorners() deals with the fact that subarrays along boundaries of the problem domain have ghost
points only on their interior edges, but not on their boundary edges.

When either type of stencil is used, DMDA_ STENCIL STAR or DMDA STENCIL BOX, the local vec-
tors (with the ghost points) represent rectangular arrays, including the extra corner elements in the
DMDA STENCIL STAR case. This configuration provides simple access to the elements by employing two- (or
three-) dimensional indexing. The only difference between the two cases is that when DMDA_ STENCIL STAR
is used, the extra corner components are not scattered between the processes and thus contain undefined
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values that should not be used.

DMSTAG - Setting vector values

For structured grids with staggered data (living on elements, faces, edges, and/or vertices), the DMStag
object is available. It behaves much like DMDA; see the DMSTAG manual page for more information.

Listing: SNES Tutorial src/dm/impls/stag/tutorials/ex6.c

static PetscErrorCode UpdateVelocity 2d(const Ctx *ctx, Vec velocity, Vec stress, Vec,
—buoyancy)

{

Vec velocity local, stress local, buoyancy local;

PetscInt ex, ey, startx, starty, nx, ny;

PetscInt slot _coord next, slot coord element, slot coord prev;

PetscInt slot vx left, slot vy down, slot buoyancy down, slot buoyancy
~left;

PetscInt slot txx, slot tyy, slot txy downleft, slot txy downright, ,

—slot_txy upleft;
const PetscScalar **arr _coord x, **arr _coord y;
const PetscScalar ***arr_stress, ***arr_buoyancy;
PetscScalar ***arr_velocity;

PetscFunctionBeginUser;

/* Prepare direct access to buoyancy data */

PetscCall(DMStagGetLocationSlot(ctx->dm buoyancy, DMSTAG LEFT, 0, &slot buoyancy
~left));

PetscCall(DMStagGetLocationSlot(ctx->dm buoyancy, DMSTAG DOWN, 0, &slot buoyancy
—down));

PetscCall(DMGetLocalVector(ctx->dm buoyancy, &buoyancy local));

PetscCall(DMGlobalToLocal(ctx->dm buoyancy, buoyancy, INSERT VALUES, buoyancy
—local));

PetscCall(DMStagVecGetArrayRead(ctx->dm buoyancy, buoyancy local, (void *)&arr_
—buoyancy));

/* Prepare read-only access to stress data */

PetscCall(DMStagGetLocationSlot(ctx->dm stress, DMSTAG ELEMENT, 0, &slot txx));

PetscCall(DMStagGetLocationSlot(ctx->dm stress, DMSTAG_ELEMENT, 1, &slot tyy));

PetscCall(DMStagGetLocationSlot(ctx->dm stress, DMSTAG UP LEFT, 0, &slot txy
—upleft));

PetscCall(DMStagGetLocationSlot(ctx->dm stress, DMSTAG DOWN LEFT, 0, &slot txy
—downleft));

PetscCall(DMStagGetLocationSlot(ctx->dm stress, DMSTAG DOWN RIGHT, 0, &slot txy
—downright));

PetscCall(DMGetLocalVector(ctx->dm stress, &stress local));

PetscCall(DMGlobalToLocal(ctx->dm stress, stress, INSERT VALUES, stress local));

PetscCall(DMStagVecGetArrayRead(ctx->dm stress, stress local, (void *)&arr_stress));

/* Prepare read-write access to velocity data */

PetscCall(DMStagGetLocationSlot(ctx->dm velocity, DMSTAG LEFT, 0, &slot vx left));

PetscCall(DMStagGetLocationSlot(ctx->dm velocity, DMSTAG DOWN, 0, &slot vy down));

PetscCall(DMGetLocalVector(ctx->dm velocity, &velocity local));

PetscCall(DMGlobalToLocal(ctx->dm velocity, velocity, INSERT VALUES, velocity
—local));

PetscCall(DMStagVecGetArray(ctx->dm velocity, velocity local, &arr_velocity));

(continues on next page)
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/* Prepare read-only access to coordinate data */

PetscCall(DMStagGetProductCoordinateLocationSlot(ctx->dm velocity, DMSTAG LEFT, &
—slot _coord prev));

PetscCall(DMStagGetProductCoordinatelLocationSlot(ctx->dm velocity, DMSTAG RIGHT, &
—slot coord next));

PetscCall(DMStagGetProductCoordinateLocationSlot(ctx->dm velocity, DMSTAG ELEMENT, &
—slot coord element));

PetscCall(DMStagGetProductCoordinateArrays(ctx->dm velocity, (void *)&arr coord x,
—(void *)&arr _coord y, NULL));

/* Iterate over interior of the domain, updating the velocities */
PetscCall(DMStagGetCorners(ctx->dm velocity, &startx, &starty, NULL, &nx, &ny, NULL,
— NULL, NULL, NULL));
for (ey = starty; ey < starty + ny; ++ey) {
for (ex = startx; ex < startx + nx; ++ex) {
/* Update y-velocity */
if (ey > 0) {
const PetscScalar dx = arr_coord x[ex][slot coord next] - arr_coord
—x[ex][slot coord prev];
const PetscScalar dy
—1][slot_coord element];
const PetscScalar B = arr_buoyancy[ey][ex][slot buoyancy down];

arr_coord _y[eyl[slot coord element] - arr _coord y[ey -,

arr_velocity[ey][ex][slot vy down] += B * ctx->dt * ((arr_stress[ey][ex][slot
—txy downright] - arr_stress[ey][ex][slot txy downleft]) / dx + (arr_
—stress[eyl[ex][slot tyy]l - arr_stress[ey - 1l]l[ex][slot tyyl) / dy);
}

/* Update x-velocity */

DMPLEX - Setting vector values

See DMPlex: Unstructured Grids for discussion on setting vector values with DMPLEX.

DMNETWORK - Setting vector values

See Networks for discussion on setting vector values with DMNETWORK.
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2.1.3 Basic Vector Operations

Table 2.1: PETSc Vector Operations

Function Name Operation
VecAXPY (Vec y,PetscScalar a,Vec x); y=y+ax*z
VecAYPX(Vec y,PetscScalar a,Vec x); y=r+axy
VecWAXPY (Vec w,PetscScalar a,Vec x,Vec y); w=a*x+y
VecAXPBY (Vec y,PetscScalar a,PetscScalar b,Vec x); y=a*x+bxy
VecAXPBYPCZ(Vec z,PetscScalar a,PetscScalar b, PetscScalar c, | z = axz+bxy+cxz
Vec x,Vec y);

VecScale(Vec x, PetscScalar a); T=a*x
VecDot(Vec x, Vec y, PetscScalar *r); r=2z xy
VecTDot(Vec x, Vec y, PetscScalar *r); r=x'xy
VecNorm(Vec x, NormType type, PetscReal *r); r = ||z||type
VecSum(Vec x, PetscScalar *r); r=>
VecCopy(Vec x, Vec y); y=ux
VecSwap(Vec x, Vec y); y=x whilex =y
VecPointwiseMult(Vec w,Vec x,Vec y); w; = T; % Y;
VecPointwiseDivide(Vec w,Vec x,Vec y); wi = /Y
VecMDot (Vec x,PetscInt n,Vec y[],PetscScalar *r); rli] = 27  y[i]
VecMTDot (Vec x,PetscInt n,Vec y[],PetscScalar *r); r[i] = 2T * y[i]
VecMAXPY (Vec y,PetscInt n, PetscScalar *a, Vec x[]); y=y+ . a;*xx[i]
VecMax(Vec x, PetscInt *idx, PetscReal *r); r = max;
VecMin(Vec x, PetscInt *idx, PetscReal *r); r = min x;
VecAbs (Vec x); T = |xy
VecReciprocal(Vec x); x; =1/z;
VecShift(Vec x,PetscScalar s); T =85+ x;
VecSet(Vec x,PetscScalar alpha); T =«

As listed in the table, we have chosen certain basic vector operations to support within the PETSc vector
library. These operations were selected because they often arise in application codes. The NormType
argument to VecNorm() is one of NORM_1, NORM_2, or NORM_INFINITY. The I-norm is ), |z;|, the
2-norm is (3°; 22)*/? and the infinity norm is max; |z;|.

In addition to VecDot () and VecMDot () and VecNorm(), PETSc provides split phase versions of these
that allow several independent inner products and/or norms to share the same communication (thus im-
proving parallel efficiency). For example, one may have code such as

VecDot(Vec x,Vec y,PetscScalar *dot);

VecMDot (Vec x,PetscInt nv, Vec y[],PetscScalar *dot);
VecNorm(Vec x,NormType NORM 2,PetscReal *norm2);
VecNorm(Vec x,NormType NORM 1,PetscReal *norml);

This code works fine, but it performs four separate parallel communication operations. Instead, one can
write

VecDotBegin(Vec x,Vec y,PetscScalar *dot);
VecMDotBegin(Vec x, PetscInt nv,Vec y[],PetscScalar *dot);
VecNormBegin(Vec x,NormType NORM 2,PetscReal *norm2);
VecNormBegin(Vec x,NormType NORM 1,PetscReal *norml);
VecDotEnd(Vec x,Vec y,PetscScalar *dot);

VecMDotEnd(Vec x, PetscInt nv,Vec y[],PetscScalar *dot);

(continues on next page)
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VecNormEnd (Vec x,NormType NORM 2,PetscReal *norm2);
VecNormEnd (Vec x,NormType NORM 1,PetscReal *norml);

With this code, the communication is delayed until the first call to VeCXXXEnd () at which a single MPI
reduction is used to communicate all the required values. It is required that the calls to the VecxxxEnd ()
are performed in the same order as the calls to the VecxxxBegin(); however, if you mistakenly make the
calls in the wrong order, PETSc will generate an error informing you of this. There are additional routines

VecTDotBegin() and VecTDotEnd(), VecMTDotBegin(), VecMTDotEnd ().

For GPU vectors (like CUDA), the numerical computations will, by default, run on the GPU. Any scalar
output, like the result of a VecDot () are placed in CPU memory.

2.1.4 Local/global vectors and communicating between vectors

Many PDE problems require the use of ghost (or halo) values in each MPI rank or even more general parallel
communication of vector values. These values are needed in order to perform function evaluation on that
rank. The exact structure of the ghost values needed depends on the type of grid being used. DM provides a
uniform APT for communicating the needed values. We introduce the concept in detail for DMDA.

Each DM object defines the layout of two vectors: a distributed global vector and a local vector that includes
room for the appropriate ghost points. The DM object provides information about the size and layout of
these vectors, but does not internally allocate any associated storage space for field values. Instead, the user
can create vector objects that use the DM layout information with the routines

DMCreateGlobalVector(DM da,Vec *g);
DMCreatelLocalVector(DM da,Vec *1);

These vectors will generally serve as the building blocks for local and global PDE solutions, etc. If additional
vectors with such layout information are needed in a code, they can be obtained by duplicating 1 or g via
VecDuplicate() or VecDuplicateVecs().

We emphasize that a distributed array provides the information needed to communicate the ghost value
information between processes. In most cases, several different vectors can share the same communication
information (or, in other words, can share a given DM). The design of the DM object makes this easy, as each
DM operation may operate on vectors of the appropriate size, as obtained via DMCreateLocalVector()
and DMCreateGlobalVector() or as produced by VecDuplicate().

At certain stages of many applications, there is a need to work on a local portion of the vector that includes
the ghost points. This may be done by scattering a global vector into its local parts by using the two-stage
commands

DMGlobalToLocalBegin(DM da,Vec g,InsertMode iora,Vec 1);
DMGlobalToLocalEnd(DM da,Vec g,InsertMode iora,Vec 1);

which allow the overlap of communication and computation. Since the global and local vectors, given by
g and 1, respectively, must be compatible with the distributed array, da, they should be generated by
DMCreateGlobalVector() and DMCreateLocalVector() (or be duplicates of such a vector obtained
via VecDuplicate()). The InsertMode can be either ADD_ VALUES or INSERT VALUES.

One can scatter the local vectors into the distributed global vector with the command

DMLocalToGlobal(DM da,Vec 1,InsertMode mode,Vec g);

or the commands
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DMLocalToGlobalBegin(DM da,Vec 1,InsertMode mode,Vec g);
/* (Computation to overlap with communication) */
DMLocalToGlobalEnd (DM da,Vec 1,InsertMode mode,Vec g);

In general this is used with an InsertMode of ADD VALUES, because if one wishes to insert values into
the global vector they should just access the global vector directly and put in the values.

A third type of distributed array scatter is from a local vector (including ghost points that contain irrelevant
values) to a local vector with correct ghost point values. This scatter may be done with the commands

DMLocalToLocalBegin(DM da,Vec 11,InsertMode iora,Vec 12);
DMLocalToLocalEnd(DM da,Vec 11,InsertMode iora,Vec 12);

Since both local vectors, 11 and 12, must be compatible with the distributed array, da, they should be gen-
erated by DMCreateLocalVector() (or be duplicates of such vectors obtained via VecDuplicate()).
The InsertMode can be either ADD VALUES or INSERT VALUES.

In most applications the local ghosted vectors are only needed during user “function evaluations”. PETSc
provides an easy, light-weight (requiring essentially no CPU time) way to obtain these work vectors and
return them when they are no longer needed. This is done with the routines

DMGetLocalVector (DM da,Vec *1);
. use the local vector 1 ...
DMRestorelLocalVector (DM da,Vec *1);

2.1.5 Low-level Vector Communication

Most users of PETSc, who can utilize a DM will not need to utilize the lower-level routines discussed in the
rest of this section and should skip ahead to Matrices.

To facilitate creating general vector scatters and gathers used, for example, in updating ghost points for prob-
lems for which no DM currently exists PETSc employs the concept of an index set, via the IS class. An index
set, which is a generalization of a set of integer indices, is used to define scatters, gathers, and similar oper-
ations on vectors and matrices. In fact, much of the underlying code that implements DMGlobalToLocal
communication are built on the infrastructure discussed below.

The following command creates an index set based on a list of integers:

ISCreateGeneral (MPI_Comm comm,PetscInt n,PetscInt *indices,PetscCopyMode mode, IS,
~*18);

When mode is PETSC_COPY_VALUES, this routine copies the n indices passed to it by the integer array
indices. Thus, the user should be sure to free the integer array indices when it is no longer needed,
perhaps directly after the call to ISCreateGeneral(). The communicator, comm, should consist of all
processes that will be using the IS.

Another standard index set is defined by a starting point (first) and a stride (step), and can be created
with the command

ISCreateStride(MPI_Comm comm,PetscInt n,PetscInt first,PetscInt step,IS *is);

Index sets can be destroyed with the command

ISDestroy (IS &is);

On rare occasions the user may need to access information directly from an index set. Several commands
assist in this process:
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ISGetSize (IS is,PetscInt *size);
ISStrideGetInfo(IS is,PetscInt *first,PetscInt *stride);
ISGetIndices (IS is,PetscInt **indices);

The function ISGetIndices () returns a pointer to a list of the indices in the index set. For certain index
sets, this may be a temporary array of indices created specifically for a given routine. Thus, once the user
finishes using the array of indices, the routine

ISRestoreIndices(IS is, PetscInt **indices);

should be called to ensure that the system can free the space it may have used to generate the list of indices.

A blocked version of the index sets can be created with the command

ISCreateBlock(MPI_Comm comm,PetscInt bs,PetscInt n,PetscInt *indices,PetscCopyMode,,
—mode, IS *is);

This version is used for defining operations in which each element of the index set refers to a block of
bs vector entries. Related routines analogous to those described above exist as well, including ISBlock-
GetIndices(), ISBlockGetSize(), ISBlockGetLocalSize(), ISGetBlockSize(). See the man

pages for details.

Most PETSc applications use a particular DM object to manage the details of the communication needed for
their grids. In some rare cases however codes need to directly setup their required communication patterns.
This is done using PETSc’s VecScatter and PetscSF (for more general data than vectors). One can select
any subset of the components of a vector to insert or add to any subset of the components of another vector.
We refer to these operations as generalized scatters, though they are actually a combination of scatters and
gathers.

To copy selected components from one vector to another, one uses the following set of commands:

VecScatterCreate(Vec x,IS ix,Vec y,IS iy,VecScatter *ctx);
VecScatterBegin(VecScatter ctx,Vec x,Vec y,INSERT VALUES,SCATTER FORWARD) ;
VecScatterEnd(VecScatter ctx,Vec x,Vec y,INSERT VALUES,SCATTER FORWARD) ;
VecScatterDestroy(VecScatter *ctx);

Here 1X denotes the index set of the first vector, while 1y indicates the index set of the destination vector.
The vectors can be parallel or sequential. The only requirements are that the number of entries in the
index set of the first vector, iX, equals the number in the destination index set, 1y, and that the vectors
be long enough to contain all the indices referred to in the index sets. If both X and y are parallel,
their communicator must have the same set of processes, but their process order can be different. The
argument INSERT VALUES specifies that the vector elements will be inserted into the specified locations
of the destination vector, overwriting any existing values. To add the components, rather than insert them,
the user should select the option ADD_VALUES instead of INSERT VALUES. One can also use MAX_VALUES
or MIN VALUES to replace destination with the maximal or minimal of its current value and the scattered
values.

To perform a conventional gather operation, the user simply makes the destination index set, 1y, be a stride
index set with a stride of one. Similarly, a conventional scatter can be done with an initial (sending) index
set consisting of a stride. The scatter routines are collective operations (i.e. all processes that own a parallel
vector must call the scatter routines). When scattering from a parallel vector to sequential vectors, each
process has its own sequential vector that receives values from locations as indicated in its own index set.
Similarly, in scattering from sequential vectors to a parallel vector, each process has its own sequential vector
that makes contributions to the parallel vector.

Caution: When INSERT VALUES is used, if two different processes contribute different values to the same
component in a parallel vector, either value may end up being inserted. When ADD VALUES is used, the
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correct sum is added to the correct location.

In some cases one may wish to “undo” a scatter, that is perform the scatter backwards, switching the roles
of the sender and receiver. This is done by using

VecScatterBegin(VecScatter ctx,Vec y,Vec x,INSERT VALUES,SCATTER REVERSE);
VecScatterEnd(VecScatter ctx,Vec y,Vec x,INSERT VALUES,SCATTER REVERSE);

Note that the roles of the first two arguments to these routines must be swapped whenever the SCAT -

TER_REVERSE option is used.

Once a VecScatter object has been created it may be used with any vectors that have the appropriate
parallel data layout. That is, one can call VecScatterBegin() and VecScatterEnd() with different
vectors than used in the call to VecScatterCreate() aslong as they have the same parallel layout (number
of elements on each process are the same). Usually, these “different” vectors would have been obtained via
calls to VecDuplicate() from the original vectors used in the call to VecScatterCreate().

VecGetValues() can only access local values from the vector. To get off-process values, the user should
create a new vector where the components are to be stored, and then perform the appropriate vector scatter.
For example, if one desires to obtain the values of the 100th and 200th entries of a parallel vector, p, one
could use a code such as that below. In this example, the values of the 100th and 200th components are
placed in the array values. In this example each process now has the 100th and 200th component, but
obviously each process could gather any elements it needed, or none by creating an index set with no entries.

Vec p, X; /* initial vector, destination vector */
VecScatter scatter; /* scatter context */
IS from, to; /* index sets that define the scatter */

PetscScalar *values;
PetscInt idx_from[] = {100,200}, idx to[] = {0,1};

VecCreateSeq(PETSC COMM SELF,2,&x);

ISCreateGeneral (PETSC_COMM_SELF,2,idx_from,PETSC_COPY_VALUES,&from);
ISCreateGeneral (PETSC COMM SELF,2,idx_to,PETSC_COPY_ VALUES,&to);
VecScatterCreate(p, from,x,to,&scatter);
VecScatterBegin(scatter,p,x, INSERT VALUES,SCATTER FORWARD);
VecScatterEnd(scatter,p,x, INSERT VALUES,SCATTER FORWARD) ;
VecGetArray(x,&values);

ISDestroy(&from);

ISDestroy(&to);

VecScatterDestroy(&scatter);

The scatter comprises two stages, in order to allow overlap of communication and computation. The intro-
duction of the VecScatter context allows the communication patterns for the scatter to be computed once
and then reused repeatedly. Generally, even setting up the communication for a scatter requires communi-
cation; hence, it is best to reuse such information when possible.

Generalized scatters provide a very general method for managing the communication of required ghost
values for unstructured grid computations. One scatters the global vector into a local “ghosted” work
vector, performs the computation on the local work vectors, and then scatters back into the global solution
vector. In the simplest case this may be written as

VecScatterBegin(VecScatter scatter,Vec globalin,Vec localin,InsertMode INSERT VALUES, ,
—ScatterMode SCATTER FORWARD) ;

VecScatterEnd(VecScatter scatter,Vec globalin,Vec localin,InsertMode INSERT VALUES,
—ScatterMode SCATTER FORWARD) ;

/* For example, do local calculations from localin to localout */

VecScatterBegin(VecScatter scatter,Vec localout,Vec globalout,InsertMode ADD VALUES,

(continues on next page)
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—ScatterMode SCATTER REVERSE);
VecScatterEnd(VecScatter scatter,Vec localout,Vec globalout,InsertMode ADD VALUES,
—ScatterMode SCATTER REVERSE);

Local to global mappings

When working with a global representation of a vector (usually on a vector obtained with DMCreateGlob-
alVector()) and a local representation of the same vector that includes ghost points required for local
computation (obtained with DMCreateLocalVector()). PETSc provides routines to help map indices
from a local numbering scheme to the PETSc global numbering scheme. This is done via the following
routines

ISLocalToGlobalMappingCreate(MPI_Comm comm,PetscInt bs,PetscInt N,PetscInt* globalnum,
—PetscCopyMode mode,ISLocalToGlobalMapping* ctx);
ISLocalToGlobalMappingApply(ISLocalToGlobalMapping ctx,PetscInt n,PetscInt *in,
—PetscInt *out);

ISLocalToGlobalMappingApplyIS(ISLocalToGlobalMapping ctx,IS isin,IS* isout);
ISLocalToGlobalMappingDestroy(ISLocalToGlobalMapping *ctx);

Here N denotes the number of local indices, globalnum contains the global number of each local num-
ber, and ISLocalToGlobalMapping is the resulting PETSc object that contains the information needed
to apply the mapping with either ISLocalToGlobalMappingApply() or ISLocalToGlobalMappin-
gAPPLYIS().

Note that the ISLocalToGlobalMapping routines serve a different purpose than the AO routines. In the
former case they provide a mapping from a local numbering scheme (including ghost points) to a global
numbering scheme, while in the latter they provide a mapping between two global numbering schemes. In
fact, many applications may use both AQ and ISLocalToGlobalMapping routines. The AO routines are
first used to map from an application global ordering (that has no relationship to parallel processing etc.) to
the PETSc ordering scheme (where each process has a contiguous set of indices in the numbering). Then in
order to perform function or Jacobian evaluations locally on each process, one works with a local numbering
scheme that includes ghost points. The mapping from this local numbering scheme back to the global PETSc
numbering can be handled with the ISLocalToGlobalMapping routines.

If one is given a list of block indices in a global numbering, the routine

ISGlobalToLocalMappingApplyBlock(ISLocalToGlobalMapping ctx,
—ISGlobalToLocalMappingMode type,PetscInt nin,PetscInt idxin[],PetscInt *nout,
—PetscInt idxout[]);

will provide a new list of indices in the local numbering. Again, negative values in idxin are left unmapped.
But, in addition, if type is set to IS GTOLM MASK , then nout is set to nin and all global values in
idxin that are not represented in the local to global mapping are replaced by -1. When type is set to
IS GTOLM DROP, the values in idxin that are not represented locally in the mapping are not included
in idxout, so that potentially nout is smaller than nin. One must pass in an array long enough to
hold all the indices. One can call ISGlobalToLocalMappingApplyBlock() with idxout equal to
NULL to determine the required length (returned in nout) and then allocate the required space and call
ISGlobalToLocalMappingApplyBlock() a second time to set the values.

Often it is convenient to set elements into a vector using the local node numbering rather than the global
node numbering (e.g., each process may maintain its own sublist of vertices and elements and number them
locally). To set values into a vector with the local numbering, one must first call
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VecSetLocalToGlobalMapping(Vec v,ISLocalToGlobalMapping ctx);

and then call

VecSetValuesLocal(Vec x,PetscInt n,const PetscInt indices[],const PetscScalar,
—values[],INSERT VALUES);

Now the indices use the local numbering, rather than the global, meaning the entries lie in [0,n) where
n is the local size of the vector. Global vectors obtained from DM™ *s already have the global to
local mapping provided by the " "DM.

To assemble global stiffness matrices, one can use these global indices with MatSetValues() or MatSet-
ValuesStencil(). Alternately, the global node number of each local node, including the ghost nodes,
can be obtained by calling

DMGetLocalToGlobalMapping (DM da,ISLocalToGlobalMapping *map);

followed by

VecSetLocalToGlobalMapping(Vec v,ISLocalToGlobalMapping map);
MatSetLocalToGlobalMapping(Mat A,ISLocalToGlobalMapping rmapping,
—ISLocalToGlobalMapping cmapping);

Now entries may be added to the vector and matrix using the local numbering and VecSetValuesLocal()
and MatSetValueslLocal().

The example SNES Tutorial ex5 illustrates the use of a distributed array in the solution of a nonlinear
problem. The analogous Fortran program is SNES Tutorial ex5f90; see SNES: Nonlinear Solvers for a
discussion of the nonlinear solvers.

Global Vectors with locations for ghost values

There are two minor drawbacks to the basic approach described above for unstructured grids:

o the extra memory requirement for the local work vector, Localin, which duplicates the memory in
globalin, and

 the extra time required to copy the local values from localin to globalin.

An alternative approach is to allocate global vectors with space preallocated for the ghost values; at the
local level vector interfaces this may be done with either

VecCreateGhost (MPI_Comm comm,PetscInt n,PetscInt N,PetscInt nghost,PetscInt *ghosts,
—Vec *vv)

or

VecCreateGhostWithArray (MPI_Comm comm,PetscInt n,PetscInt N,PetscInt nghost,PetscInt,
—*ghosts,PetscScalar *array,Vec *vv)

Here n is the number of local vector entries, N is the number of global entries (or NULL) and nghost is
the number of ghost entries. The array ghosts is of size nghost and contains the global vector location
for each local ghost location. Using VecDuplicate() or VecDuplicateVecs () on a ghosted vector will
generate additional ghosted vectors.

In many ways, a ghosted vector behaves just like any other MPI vector created by VecCreateMPI(). The
difference is that the ghosted vector has an additional “local” representation that allows one to access the
ghost locations. This is done through the call to
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VecGhostGetLocalForm(Vec g,Vec *1);

The vector 1 is a sequential representation of the parallel vector g that shares the same array space (and
hence numerical values); but allows one to access the “ghost” values past “the end of the” array. Note that
one access the entries in 1 using the local numbering of elements and ghosts, while they are accessed in g
using the global numbering.

A common usage of a ghosted vector is given by

VecGhostUpdateBegin(Vec globalin,InsertMode INSERT VALUES, ScatterMode SCATTER
—.FORWARD) ;
VecGhostUpdateEnd(Vec globalin,InsertMode INSERT VALUES, ScatterMode SCATTER FORWARD);
VecGhostGetLocalForm(Vec globalin,Vec *localin);
VecGhostGetLocalForm(Vec globalout,Vec *localout);

Do local calculations from localin to localout ...
VecGhostRestoreLocalForm(Vec globalin,Vec *localin);
VecGhostRestoreLocalForm(Vec globalout,Vec *localout);
VecGhostUpdateBegin(Vec globalout,InsertMode ADD VALUES, ScatterMode SCATTER REVERSE);
VecGhostUpdateEnd(Vec globalout,InsertMode ADD VALUES, ScatterMode SCATTER REVERSE);

The routines VecGhostUpdateBegin() and VecGhostUpdateEnd() are equivalent to the routines
VecScatterBegin() and VecScatterEnd() above except that since they are scattering into the ghost
locations, they do not need to copy the local vector values, which are already in place. In addition, the
user does not have to allocate the local work vector, since the ghosted vector already has allocated slots to
contain the ghost values.

The input arguments INSERT VALUES and SCATTER FORWARD cause the ghost values to be correctly
updated from the appropriate process. The arguments ADD VALUES and SCATTER REVERSE update the
“local” portions of the vector from all the other processes’ ghost values. This would be appropriate, for
example, when performing a finite element assembly of a load vector. One can also use MAX VALUES or

MIN VALUES with SCATTER REVERSE.

DMPLEX does not yet have support for ghosted vectors sharing memory with the global representation. This
is work in progress, if you have interest in this feature please contact the PETSc community members.

Partitioning discusses the important topic of partitioning an unstructured grid.

2.1.6 Application Orderings

When writing parallel PDE codes, there is extra complexity caused by having multiple ways of indexing
(numbering) and ordering objects such as vertices and degrees of freedom. For example, a grid generator or
partitioner may renumber the nodes, requiring adjustment of the other data structures that refer to these
objects; see Figure Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes).
PETSc provides a variety of tools to help to manage the mapping amongst the various numbering systems.
The most basic are the AO (application ordering), which enables mapping between different global (cross-
process) numbering schemes.

In many applications it is desirable to work with one or more “orderings” (or numberings) of degrees of
freedom, cells, nodes, etc. Doing so in a parallel environment is complicated by the fact that each process
cannot keep complete lists of the mappings between different orderings. In addition, the orderings used in
the PETSc linear algebra routines (often contiguous ranges) may not correspond to the “natural” orderings
for the application.

PETSc provides certain utility routines that allow one to deal cleanly and efficiently with the various order-
ings. To define a new application ordering (called an AO in PETSc), one can call the routine
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AOCreateBasic(MPI_Comm comm,PetscInt n,const PetscInt apordering[],const PetscInt,
—.petscordering[],A0 *ao);

The arrays apordering and petscordering, respectively, contain a list of integers in the application
ordering and their corresponding mapped values in the PETSc ordering. Each process can provide whatever
subset of the ordering it chooses, but multiple processes should never contribute duplicate values. The
argument N indicates the number of local contributed values.

For example, consider a vector of length 5, where node 0 in the application ordering corresponds to node 3
in the PETSc ordering. In addition, nodes 1, 2, 3, and 4 of the application ordering correspond, respectively,
to nodes 2, 1, 4, and 0 of the PETSc ordering. We can write this correspondence as

{0,1,2,3,4} — {3,2,1,4,0}.

The user can create the PETSc A0 mappings in a number of ways. For example, if using two processes, one
could call

AOCreateBasic(PETSC COMM WORLD,2,{0,3},{3,4},&a0);

on the first process and

AOCreateBasic(PETSC COMM WORLD,3,{1,2,4},{2,1,0},&a0);

on the other process.

Once the application ordering has been created, it can be used with either of the commands

AOPetscToApplication(AO0 ao,PetscInt n,PetscInt *indices);
AOApplicationToPetsc(AO ao,PetscInt n,PetscInt *indices);

Upon input, the n-dimensional array indices specifies the indices to be mapped, while upon output,
indices contains the mapped values. Since we, in general, employ a parallel database for the AO mappings,
it is crucial that all processes that called AOCreateBasic () also call these routines; these routines cannot be
called by just a subset of processes in the MPI communicator that was used in the call to AOCreateBasic().

An alternative routine to create the application ordering, AO, is

AOCreateBasicIS(IS apordering,IS petscordering,A0 *ao);

where index sets are used instead of integer arrays.

The mapping routines

AOPetscToApplicationIS(AO ao,IS indices);
AOApplicationToPetscIS(AO ao,IS indices);

will map index sets (IS objects) between orderings. Both the AOXXXToYyy() and AOXxxToYyyIS()
routines can be used regardless of whether the AQ was created with a AOCreateBasic() or AOCreate-
BasicIS().

The AO context should be destroyed with AODestroy (A0 *ao) and viewed with AOView(AO ao,
PetscViewer viewer).

Although we refer to the two orderings as “PETSc” and “application” orderings, the user is free to use them
both for application orderings and to maintain relationships among a variety of orderings by employing
several AQ contexts.

The AOXXToxX () routines allow negative entries in the input integer array. These entries are not mapped;
they simply remain unchanged. This functionality enables, for example, mapping neighbor lists that use
negative numbers to indicate nonexistent neighbors due to boundary conditions, etc.
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Since the global ordering that PETSc uses to manage its parallel vectors (and matrices) does not usually
correspond to the “natural” ordering of a two- or three-dimensional array, the DMDA structure provides an
application ordering AQ (see Application Orderings) that maps between the natural ordering on a rectangular
grid and the ordering PETSc uses to parallelize. This ordering context can be obtained with the command

DMDAGetAO (DM da,A0 *ao);

In Figure Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes) we indicate
the orderings for a two-dimensional distributed array, divided among four processes.

Processor 2 Processor 3 Processor 2 Processor 3
26 27 28 29 30 22 23 24 29 30
21 22 23 24 25 19 20 21 27 28
16 17 18 19 20 16 17 18 25 26
11 12 13 14 15 7 8 9 14 15

6 7 8 9 10 4 5 6 12 13

1 2 3 4 5 1 2 3 10 11
Processor O Processor 1 Processor O Processor 1

Natural Ordering PETSc Ordering

Fig. 2.2: Natural Ordering and PETSc Ordering for a 2D Distributed Array (Four Processes)

2.2 Matrices

PETSc provides a variety of matrix implementations because no single matrix format is appropriate for all
problems. Currently, we support dense storage and compressed sparse row storage (both sequential and
parallel versions) for CPU and GPU based matrices, as well as several specialized formats. Additional
specialized formats can be easily added.

This chapter describes the basics of using PETSc matrices in general (regardless of the particular format
chosen) and discusses tips for efficient use of the several simple uniprocess and parallel matrix types. The
use of PETSc matrices involves the following actions: create a particular type of matrix, insert values into it,
process the matrix, use the matrix for various computations, and finally destroy the matrix. The application
code does not need to know or care about the particular storage formats of the matrices.
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2.2.1 Creating matrices

As with vectors, PETSc has APIs that allow the user to specify the exact details of the matrix creation
process but also DM based creation routines that handle most of the details automatically for specific families
of applications. This is done with

‘ DMCreateMatrix (DM dm,Mat *A)

The type of matrix created can be controlled with either

‘DMSetMatType(DM dm,MatType <MATAIJ or MATBAIJ or MATAIJCUSPARSE etc>)

or with

DMSetFromOptions (DM dm)

and the options database option -dm mat type <aij or baij or aijcusparse etc> Matrices can
be created for CPU usage, for GPU usage and for usage on both the CPUs and GPUs.

The creation of DM objects is discussed in DMDA - Creating vectors for structured grids, DMPLEX - Creating
vectors for unstructured grids, DMNETWORK - Creating vectors for networks.

2.2.2 Low-level matrix creation routines

When using a DM is not practical for a particular application one can create matrices directly using

MatCreate(MPI_Comm comm,Mat *A)
MatSetSizes(Mat A,PetscInt m,PetscInt n,PetscInt M,PetscInt N)

This routine generates a sequential matrix when running one process and a parallel matrix for two or more
processes; the particular matrix format is set by the user via options database commands. The user specifies
either the global matrix dimensions, given by M and N or the local dimensions, given by m and n while PETSc
completely controls memory allocation. This routine facilitates switching among various matrix types, for
example, to determine the format that is most efficient for a certain application. By default, MatCreate()
employs the sparse AlJ format, which is discussed in detail in Sparse Malrices. See the manual pages for
further information about available matrix formats.

2.2.3 Assembling (putting values into) matrices

To insert or add entries to a matrix on CPUs, one can call a variant of MatSetValues(), either

MatSetValues(Mat A,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],
—const PetscScalar values[],INSERT VALUES);

or

MatSetValues(Mat A,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],
—const PetscScalar values[],ADD VALUES);

This routine inserts or adds a logically dense subblock of dimension m*n into the matrix. The integer indices
idxmand idxn, respectively, indicate the global row and column numbers to be inserted. MatSetValues ()
uses the standard C convention, where the row and column matrix indices begin with zero regardless of the
programming language employed. The array values is logically two-dimensional, containing the values
that are to be inserted. By default the values are given in row major order, which is the opposite of the

54 Chapter 2. The Solvers in PETSc/TAO



PETSc/TAO Users Manual, Release 3.20.1

Fortran convention, meaning that the value to be put in row idxm[i] and column idxn[j] is located in
values[i*n+j]. To allow the insertion of values in column major order, one can call the command

MatSetOption(Mat A,MAT ROW ORIENTED,PETSC FALSE);

Warning: Several of the sparse implementations do not currently support the column-oriented option.

This notation should not be a mystery to anyone. For example, to insert one matrix into another when using
MATLAB, one uses the command A(im,in) = B; where im and in contain the indices for the rows and
columns. This action is identical to the calls above to MatSetValues().

When using the block compressed sparse row matrix format (MATSEQBAIJ or MATMPIBAIJ), one can
insert elements more efficiently using the block variant, MatSetValuesBlocked() or MatSetValues-
BlockedLocal().

The function MatSetOption() accepts several other inputs; see the manual page for details.

After the matrix elements have been inserted or added into the matrix, they must be processed (also called
“agsembled”) before they can be used. The routines for matrix processing are

MatAssemblyBegin(Mat A,MAT FINAL ASSEMBLY);
MatAssemblyEnd(Mat A,MAT FINAL ASSEMBLY);

By placing other code between these two calls, the user can perform computations while messages are in
transit. Calls to MatSetValues () with the INSERT VALUES and ADD VALUES options cannot be mixed
without intervening calls to the assembly routines. For such intermediate assembly calls the second routine
argument typically should be MAT FLUSH ASSEMBLY, which omits some of the work of the full assembly
process. MAT FINAL ASSEMBLY is required only in the last matrix assembly before a matrix is used.

Even though one may insert values into PETSc matrices without regard to which process eventually stores
them, for efficiency reasons we usually recommend generating most entries on the process where they are
destined to be stored. To help the application programmer with this task for matrices that are distributed
across the processes by ranges, the routine

MatGetOwnershipRange(Mat A,PetscInt *first row,PetscInt *last row);

informs the user that all rows from first row to last row-1 (since the value returned in last row is
one more than the global index of the last local row) will be stored on the local process.

In the sparse matrix implementations, once the assembly routines have been called, the matrices are com-
pressed and can be used for matrix-vector multiplication, etc. Any space for preallocated nonzeros that
was not filled by a call to MatSetValues() or a related routine is compressed out by assembling with
MAT FINAL ASSEMBLY. If you intend to use that extra space later, be sure to insert explicit zeros before
assembling with MAT FINAL ASSEMBLY so the space will not be compressed out. Once the matrix has been
assembled, inserting new values will be expensive since it will require copies and possible memory allocation.

One may repeatedly assemble matrices that retain the same nonzero pattern (such as within a nonlinear or
time-dependent problem). Where possible, data structures and communication information will be reused
(instead of regenerated) during successive steps, thereby increasing efficiency. See KSP Tutorial ex5 for a
simple example of solving two linear systems that use the same matrix data structure.

For matrices associated with DMDA there is a higher-level interface for providing the numerical values based
on the concept of stencils. See the manual page of MatSetValuesStencil() for usage.

For GPUs the routines MatSetPreallocationC00() and MatSetValuesC00O() should be used for
efficient matrix assembly instead of MatSetValues().

We now introduce the various families of PETSc matrices. DMCreateMatrix () manages the preallocation
process (introduced below) automatically so many users do not need to worry about the details of the
preallocation process.
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Matrix and Vector Layouts and Storage Locations

The layout of PETSc matrices across MPI ranks is defined by two things

o the layout of the two compatible vectors in the computation of the matrix-vector product y = A * x
and

e the memory where various parts of the matrix are stored across the MPI ranks.

PETSc vectors always have a contiguous range of vector entries stored on each MPI rank. The first rank
has entries from 0 to rendl - 1, the next rank has entries from rendl to rend2 - 1, etc. Thus the
ownership range on each rank is from rstart to rend, these values can be obtained with VecGetOwner -
shipRange(Vec x, PetscInt * rstart, PetscInt * rend). Each PETSc Vec has a PetscLayout
object that contains this information.

All PETSc matrices have two PetsclLayouts, they define the vector layouts for y and x in the product, y = A
* x. Their ownership range information can be obtained with MatGetOwnershipRange(), MatGetOwn-
ershipRangeColumn(), MatGetOwnershipRanges(), and MatGetOwnershipRangesColumn().
Note that MatCreateVecs () provides two vectors that have compatible layouts for the associated vector.

For most PETSc matrices, excluding MATELEMENTAL and MATSCALAPACK, the row ownership range ob-
tained with MatGetOwnershipRange() also defines where the matrix entries are stored; the matrix en-
tries for rows rstart to rend - 1 are stored on the corresponding MPI rank. For other matrices the
rank where each matrix entry is stored is more complicated; information about the storage locations can
be obtained with MatGetOwnershipIS(). Note that for most PETSc matrices the values returned by
MatGetOwnershipIS() are the same as those returned by MatGetOwnershipRange() and MatGe-
tOwnershipRangeColumn().

The PETSc object PetscLayout contains the ownership information that is provided by VecGetOwn-
ershipRange() and with MatGetOwnershipRange(), MatGetOwnershipRangeColumn(). Each
vector has one layout, which can be obtained with VecGetLayout() and MatGetLayouts (). Layouts
support the routines PetsclLayoutGetLocalSize(), PetscLayoutGetSize(), PetsclLayoutGet-
BlockSize(), PetscLayoutGetRanges(), PetscLayoutCompare() as well as a variety of creation
routines. These are used by the Vec and Mat and so are rarely needed directly. Finally PetscSplitOwn-
ership() is a utility routine that does the same splitting of ownership ranges as PetscLayout.

Sparse Matrices

The default matrix representation within PETSc is the general sparse A1J format (also called the compressed
sparse row format, CSR). This section discusses tips for efficiently using this matrix format for large-scale
applications. Additional formats (such as block compressed row and block symmetric storage, which are
generally much more efficient for problems with multiple degrees of freedom per node) are discussed below.
Beginning users need not concern themselves initially with such details and may wish to proceed directly to
Basic Matriz Operations. However, when an application code progresses to the point of tuning for efficiency
and/or generating timing results, it is crucial to read this information.
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Sequential Al) Sparse Matrices

In the PETSc AIJ matrix formats, we store the nonzero elements by rows, along with an array of corre-
sponding column numbers and an array of pointers to the beginning of each row. Note that the diagonal
matrix entries are stored with the rest of the nonzeros (not separately).

To create a sequential AIJ sparse matrix, A, with m rows and n columns, one uses the command

MatCreateSeqAIJ(PETSC COMM SELF,PetscInt m,PetscInt n,PetscInt nz,PetscInt *nnz,Mat,
<*A);

where Nz or NNz can be used to preallocate matrix memory, as discussed below. The user can set Nz=0 and
nnz=NULL for PETSc to control all matrix memory allocation.

The sequential and parallel ALJ matrix storage formats by default employ é-nodes (identical nodes) when
possible. We search for consecutive rows with the same nonzero structure, thereby reusing matrix information
for increased efficiency. Related options database keys are -mat_no_inode (do not use i-nodes) and
-mat_inode limit <limit> (set i-node limit (max limit=5)). Note that problems with a single degree
of freedom per grid node will automatically not use i-nodes.

The internal data representation for the ALJ formats employs zero-based indexing.

Preallocation of Memory for Sequential Al) Sparse Matrices

The dynamic process of allocating new memory and copying from the old storage to the new is intrinsically
very expensive. Thus, to obtain good performance when assembling an AIJ matrix, it is crucial to preallocate
the memory needed for the sparse matrix. The user has two choices for preallocating matrix memory via

MatCreateSeqAIl().

One can use the scalar NZ to specify the expected number of nonzeros for each row. This is generally fine
if the number of nonzeros per row is roughly the same throughout the matrix (or as a quick and easy first
step for preallocation). If one underestimates the actual number of nonzeros in a given row, then during the
assembly process PETSc will automatically allocate additional needed space. However, this extra memory
allocation can slow the computation.

If different rows have very different numbers of nonzeros, one should attempt to indicate (nearly) the exact
number of elements intended for the various rows with the optional array, nnz of length m, where m is the
number of rows, for example

PetscInt nnz[m];
nnz[0] = <nonzeros in row 0>
nnz[1l] = <nonzeros in row 1>

nnz[m-1] = <nonzeros in row m-1>

In this case, the assembly process will require no additional memory allocations if the NNz estimates are
correct. If, however, the NNz estimates are incorrect, PETSc will automatically obtain the additional needed
space, at a slight loss of efficiency.

Using the array nnz to preallocate memory is especially important for efficient matrix assembly if the number
of nonzeros varies considerably among the rows. One can generally set NNz either by knowing in advance the
problem structure (e.g., the stencil for finite difference problems on a structured grid) or by precomputing
the information by using a segment of code similar to that for the regular matrix assembly. The overhead
of determining the NNz array will be quite small compared with the overhead of the inherently expensive
mallocs and moves of data that are needed for dynamic allocation during matrix assembly. Always guess
high if an exact value is not known (extra space is cheaper than too little).
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Thus, when assembling a sparse matrix with very different numbers of nonzeros in various rows, one could
proceed as follows for finite difference methods:

1. Allocate integer array nnz.

2. Loop over grid, counting the expected number of nonzeros for the row(s) associated with the various
grid points.

3. Create the sparse matrix via MatCreateSeqAIJ () or alternative.

4. Loop over the grid, generating matrix entries and inserting in matrix via MatSetValues().
For (vertex-based) finite element type calculations, an analogous procedure is as follows:

1. Allocate integer array nnz.

2. Loop over vertices, computing the number of neighbor vertices, which determines the number of nonze-
ros for the corresponding matrix row(s).

3. Create the sparse matrix via MatCreateSegAIJ () or alternative.
4. Loop over elements, generating matrix entries and inserting in matrix via MatSetValues().

The -info option causes the routines MatAssemblyBegin() and MatAssemblyEnd() to print infor-
mation about the success of the preallocation. Consider the following example for the MATSEQAIJ matrix
format:

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:20 unneeded, 100 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 0

The first line indicates that the user preallocated 120 spaces but only 100 were used. The second line indicates
that the user preallocated enough space so that PETSc did not have to internally allocate additional space
(an expensive operation). In the next example the user did not preallocate sufficient space, as indicated by
the fact that the number of mallocs is very large (bad for efficiency):

MatAssemblyEnd_SeqAIJ:Matrix size 10 X 10; storage space:47 unneeded, 1000 used
MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues is 40000

Although at first glance such procedures for determining the matrix structure in advance may seem unusual,
they are actually very efficient because they alleviate the need for dynamic construction of the matrix data
structure, which can be very expensive.

Parallel Al) Sparse Matrices

Parallel sparse matrices with the AlJ format can be created with the command

MatCreateAIJ(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscInt d nz,
—PetscInt *d nnz, PetscInt o nz,PetscInt *o _nnz,Mat *A);

A is the newly created matrix, while the arguments m, M, and N, indicate the number of local rows and the
number of global rows and columns, respectively. In the PETSc partitioning scheme, all the matrix columns
are local and n is the number of columns corresponding to the local part of a parallel vector. Either the
local or global parameters can be replaced with PETSC_DECIDE, so that PETSc will determine them. The
matrix is stored with a fixed number of rows on each process, given by m, or determined by PETSc if m is
PETSC DECIDE.

If PETSC DECIDE is not used for the arguments m and n, then the user must ensure that they are chosen
to be compatible with the vectors. To do this, one first considers the matrix-vector product y = Azx. The m
that is used in the matrix creation routine MatCreateAIJ () must match the local size used in the vector
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creation routine VecCreateMPI() for y. Likewise, the n used must match that used as the local size in
VecCreateMPI() for x.

The user must set d nz=0, 0 nz=0, d nnz=NULL, and 0_nnz=NULL for PETSc to control dynamic
allocation of matrix memory space. Analogous to Nz and NNz for the routine MatCreateSeqAIJ (), these
arguments optionally specify nonzero information for the diagonal (d_nz and d_nnz) and off-diagonal (0_nz
and 0_Nnz) parts of the matrix. For a square global matrix, we define each process’s diagonal portion to
be its local rows and the corresponding columns (a square submatrix); each process’s off-diagonal portion
encompasses the remainder of the local matrix (a rectangular submatrix). The rank in the MPT communicator
determines the absolute ordering of the blocks. That is, the process with rank 0 in the communicator given
to MatCreateAIJ () contains the top rows of the matrix; the i*” process in that communicator contains
the it block of the matrix.

Preallocation of Memory for Parallel Al Sparse Matrices

As discussed above, preallocation of memory is critical for achieving good performance during matrix assem-
bly, as this reduces the number of allocations and copies required. We present an example for three processes
to indicate how this may be done for the MATMPIAIJ matrix format. Consider the 8 by 8 matrix, which is
partitioned by default with three rows on the first process, three on the second and two on the third.

1 2 0| 0 3 0] 0 4
6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 O
0 18 0 | 19 20 21 | 0O O
0O 0 0 | 22 23 0 | 24 O

25 26 27 | O O 28 | 29 O
30 0 0 | 31 32 33 | 0 34

The “diagonal” submatrix, d, on the first process is given by
1 2 0
0 5 6
9 0

—_

0
while the “off-diagonal” submatrix, 0, matrix is given by
0 0
7 8
1

O O W

0 4
0 0
0 0

—_
—

2

For the first process one could set d Nz to 2 (since each row has 2 nonzeros) or, alternatively, set d_nnz to
{2,2,2}. The 0_nz could be set to 2 since each row of the 0 matrix has 2 nonzeros, or 0_nnz could be set
to {2,2,2}.

For the second process the d submatrix is given by

15 16 17
19 20 21
22 23 0

Thus, one could set d Nz to 3, since the maximum number of nonzeros in each row is 3, or alternatively one
could set d_nnz to {3, 3,2}, thereby indicating that the first two rows will have 3 nonzeros while the third
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has 2. The corresponding 0 submatrix for the second process is

13 0 14 0 O
0 18 0 0 O
0 0 0 24 0

so that one could set 0_nz to 2 or 0_nnz to {2,1,1}.

Note that the user never directly works with the d and 0 submatrices, except when preallocating storage
space as indicated above. Also, the user need not preallocate exactly the correct amount of space; as long
as a sufficiently close estimate is given, the high efficiency for matrix assembly will remain.

As described above, the option -info will print information about the success of preallocation during matrix
assembly. For the MATMPIAIJ and MATMPIBAIJ formats, PETSc will also list the number of elements owned
by on each process that were generated on a different process. For example, the statements

MatAssemblyBegin_MPIAIJ:Stash has 10 entries, uses 0 mallocs
MatAssemblyBegin_MPIAIJ:Stash has 3 entries, uses 0 mallocs
MatAssemblyBegin MPIAIJ:Stash has 5 entries, uses 0 mallocs

indicate that very few values have been generated on different processes. On the other hand, the statements

MatAssemblyBegin MPIAIJ:Stash has 100000 entries, uses 100 mallocs
MatAssemblyBegin MPIAIJ:Stash has 77777 entries, uses 70 mallocs

indicate that many values have been generated on the “wrong” processes. This situation can be very
inefficient, since the transfer of values to the “correct” process is generally expensive. By using the command
MatGetOwnershipRange() in application codes, the user should be able to generate most entries on the
owning process.

Note: 1t is fine to generate some entries on the “wrong” process. Often this can lead to cleaner, simpler, less
buggy codes. One should never make code overly complicated in order to generate all values locally. Rather,
one should organize the code in such a way that most values are generated locally.

The routine MatCreateAIJCUSPARSE () allows one to create GPU based matrices for NVIDIA systems.
MatCreateAIJKokkos () can create matrices for use with CPU, OpenMP, NVIDIA, AMD, or Intel based
GPU systems.

It is sometimes difficult to compute the required preallocation information efficiently, hence PETSc provides
a special MatType, MATPREALLOCATOR that helps make computing this information more straightforward.
One first creates a matrix of this type and then, using the same code that one would use to actually compute
the matrices numerical values, calls MatSetValues() for this matrix, without needing to provide any
preallocation information (one need not provide the matrix numerical values). Once this is complete one uses
MatPreallocatorPreallocate() to provide the accumulated preallocation information to the actual
matrix one will use for the computations. We hope to simplify this process in the future, allowing the removal
of MATPREALLOCATOR, instead simply allowing the use of its efficient insertion process automatically during
the first assembly of any matrix type directly without requiring the detailed preallocation information.

See doc_matrix for a table of the matrix types available in PETSc.
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Limited-Memory Variable Metric (LMVM) Matrices

Variable metric methods, also known as quasi-Newton methods, are frequently used for root finding problems
and approximate Jacobian matrices or their inverses via sequential nonlinear updates based on the secant
condition. The limited-memory variants do not store the full explicit Jacobian, and instead compute forward
products and inverse applications based on a fixed number of stored update vectors.

Table 2.2: PETSc LMVM matrix implementations.

Method PETSc Type Name Property

“Good” Broyden [ref-Gril2] MATLMVMBrdn Imvmbrdn Square

“Bad” Broyden [ref-Gril2] MATLMVMBad - Imvmbadbrdn | Square
Brdn

Symmetric Rank-1 [ref-NW99] MATLMVMSR1 Tmvmsrl Symmet-

ric

Davidon-Fletcher-Powell (DFP) [ref-NW99] MATLMVMDFP Imvmdfp SPD

Broyden-Fletcher-Goldfarb-Shanno  (BFGS) [ref- | MATLMVMBFGS Imvmbfgs SPD

NW99]

Restricted Broyden Family [ref-EM17] MATLMVMSym- Imvmsymbrdn | SPD
Brdn

Restricted Broyden Family (full-memory diagonal) | MATLMVMDiag- Imvmdiag- SPD
Brdn brdn

PETSc implements seven different LMVM matrices listed in the table above. They can be created using the
MatCreate() and MatSetType() workflow, and share a number of common interface functions. We will

review the most important ones below:

o MatLMVMAllocate(Mat B, Vec X, Vec F) — Creates the internal data structures necessary to

store nonlinear updates and compute forward/inverse applications. The X vector defines the solution
space while the F defines the function space for the history of updates.

MatLMVMUpdate(Mat B, Vec X, Vec F) - Applies a nonlinear update to the approximate
Jacobian such that sy = xp — 2x—1 and yr = f(ax) — f(xk—1), where k is the index for the update.

MatLMVMReset (Mat B, PetscBool destructive) — Flushes the accumulated nonlinear updates
and resets the matrix to the initial state. If destructive = PETSC_TRUE, the reset also destroys
the internal data structures and necessitates another allocation call before the matrix can be updated
and used for products and solves.

MatLMVMSetJO(Mat B, Mat JO) — Defines the initial Jacobian to apply the updates to. If no
initial Jacobian is provided, the updates are applied to an identity matrix.

LMVM matrices can be applied to vectors in forward mode via MatMult () or MatMultAdd(), and in in-
verse mode via MatSolve (). They also support MatCreateVecs (), MatDuplicate() and MatCopy ()
operations.

Restricted Broyden Family, DFP and BFGS methods additionally implement special Jacobian initialization
and scaling options available via -mat_lmvm_scale type <none,scalar,diagonal>. We describe
these choices below:

e none — Sets the initial Jacobian to be equal to the identity matrix. No extra computations are required

when obtaining the search direction or updating the approximation. However, the number of function
evaluations required to converge the Newton solution is typically much larger than what is required
when using other initializations.

o scalar — Defines the initial Jacobian as a scalar multiple of the identity matrix. The scalar value o
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is chosen by solving the one dimensional optimization problem
min ||c®Y — o* 1 9|%,
o

where S and Y are the matrices whose columns contain a subset of update vectors s, and yj, and
a € [0,1] is defined by the user via -mat_lmvm_alpha and has a different default value for each
LMVM implementation (e.g.: default a = 1 for BFGS produces the well-known y! sj./ylys scalar
initialization). The number of updates to be used in the S and Y matrices is 1 by default (i.e.: the
latest update only) and can be changed via -mat _lmvm_sigma hist. This technique is inspired by
Gilbert and Lemarechal [ref-GL89).

» diagonal — Uses a full-memory restricted Broyden update formula to construct a diagonal matrix for
the Jacobian initialization. Although the full-memory formula is utilized, the actual memory footprint
is restricted to only the vector representing the diagonal and some additional work vectors used in its
construction. The diagonal terms are also re-scaled with every update as suggested in [ref-GL89]. This
initialization requires the most computational effort of the available choices but typically results in a
significant reduction in the number of function evaluations taken to compute a solution.

Note that the user-provided initial Jacobian via MatLMVMSetJO () overrides and disables all built-in ini-
tialization methods.

Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each process stores its entries in a
column-major array in the usual Fortran style. To create a sequential, dense PETSc matrix, A of dimensions
m by N, the user should call

MatCreateSegDense(PETSC COMM SELF,PetscInt m,PetscInt n,PetscScalar *data,Mat *A);

The variable data enables the user to optionally provide the location of the data for matrix storage (intended
for Fortran users who wish to allocate their own storage space). Most users should merely set data to NULL
for PETSc to control matrix memory allocation. To create a parallel, dense matrix, A, the user should call

MatCreateDense(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscScalar,
—*data,Mat *A)

The arguments m, n, M, and N, indicate the number of local rows and columns and the number of global rows
and columns, respectively. Either the local or global parameters can be replaced with PETSC_DECIDE, so
that PETSc will determine them. The matrix is stored with a fixed number of rows on each process, given
by m, or determined by PETSc if m is PETSC_DECIDE.

PETSc does not provide parallel dense direct solvers, instead interfacing to external packages that provide
these solvers. Our focus is on sparse iterative solvers.

Block Matrices

Block matrices arise when coupling variables with different meaning, especially when solving problems with
constraints (e.g. incompressible flow) and “multi-physics” problems. Usually the number of blocks is small
and each block is partitioned in parallel. We illustrate for a 3 x 3 system with components labeled a, b, c.
With some numbering of unknowns, the matrix could be written as

Aaa Aab Aac
Apa Avp Abe
Aca Acb Acc
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There are two fundamentally different ways that this matrix could be stored, as a single assembled sparse
matrix where entries from all blocks are merged together (“monolithic”), or as separate assembled matrices for
each block (“nested”). These formats have different performance characteristics depending on the operation
being performed. In particular, many preconditioners require a monolithic format, but some that are very
effective for solving block systems (see Solving Block Matrices) are more efficient when a nested format is
used. In order to stay flexible, we would like to be able to use the same code to assemble block matrices
in both monolithic and nested formats. Additionally, for software maintainability and testing, especially in
a multi-physics context where different groups might be responsible for assembling each of the blocks, it is
desirable to be able to use exactly the same code to assemble a single block independently as to assemble it
as part of a larger system. To do this, we introduce the four spaces shown in Fig. 2.3.

The

The monolithic global space is the space in which the Krylov and Newton solvers operate, with collective
semantics across the entire block system.

The split global space splits the blocks apart, but each split still has collective semantics.

The split local space adds ghost points and separates the blocks. Operations in this space can be
performed with no parallel communication. This is often the most natural, and certainly the most
powerful, space for matrix assembly code.

The monolithic local space can be thought of as adding ghost points to the monolithic global space,
but it is often more natural to use it simply as a concatenation of split local spaces on each process. It
is not common to explicitly manipulate vectors or matrices in this space (at least not during assembly),
but it is a useful for declaring which part of a matrix is being assembled.

Monolithic Global Monolithic Local

Split Local

rank O Split Global

rank 0 (LocalToGlobalMapping )

E @etLocalSubMatrlx() I I
rank 1 I I

LocalToGlobal()

rank 1
\ / rank 2
ran k 2
rank 2 I
@etSubMatrix() / GetSubVector@
Fig. 2.3: The relationship between spaces used for coupled assembly.
key to format-independent assembly is the function
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MatGetLocalSubMatrix(Mat A,IS isrow,IS iscol,Mat *submat);

which provides a “view” submat into a matrix A that operates in the monolithic global space. The submat
transforms from the split local space defined by 1scol to the split local space defined by isrow. The
index sets specify the parts of the monolithic local space that submat should operate in. If a nested matrix
format is used, then MatGetLocalSubMatrix() finds the nested block and returns it without making
any copies. In this case, submat is fully functional and has a parallel communicator. If a monolithic
matrix format is used, then MatGetLocalSubMatrix () returns a proxy matrix on PETSC_COMM SELF
that does not provide values or implement MatMult (), but does implement MatSetValuesLocal()
and, if isrow,iscol have a constant block size, MatSetValuesBlockedLocal(). Note that although
submat may not be a fully functional matrix and the caller does not even know a priori which communicator
it will reside on, it always implements the local assembly functions (which are not collective). The index
sets isrow, iscol can be obtained using DMCompositeGetLocalISs () if DMCOMPOSITE is being used.
DMCOMPOSITE can also be used to create matrices, in which case the MATNEST format can be specified
using -prefix _dm mat type nest and MATAIJ can be specified using -prefix _dm mat type aij.
See SNES Tutorial ex28 for a simple example using this interface.

2.2.4 Basic Matrix Operations
Table 2.2 summarizes basic PETSc matrix operations. We briefly discuss a few of these routines in more
detail below.

The parallel matrix can multiply a vector with n local entries, returning a vector with m local entries. That
is, to form the product

MatMult(Mat A,Vec x,Vec y);

the vectors X and Yy should be generated with

VecCreateMPI(MPI_Comm comm,n,N,&x);
VecCreateMPI(MPI_Comm comm,m,M,&y);

By default, if the user lets PETSc decide the number of components to be stored locally (by passing in
PETSC DECIDE as the second argument to VecCreateMPI() or using VecCreate()), vectors and ma-
trices of the same dimension are automatically compatible for parallel matrix-vector operations.

Along with the matrix-vector multiplication routine, there is a version for the transpose of the matrix,

MatMultTranspose(Mat A,Vec x,Vec y);

There are also versions that add the result to another vector:

MatMultAdd(Mat A,Vec x,Vec y,Vec w);
MatMultTransposeAdd(Mat A,Vec x,Vec y,Vec w);

These routines, respectively, produce w = Axx+y and w = AT x4y . In C it is legal for the vectors y and
W to be identical. In Fortran, this situation is forbidden by the language standard, but we allow it anyway.

One can print a matrix (sequential or parallel) to the screen with the command

MatView(Mat mat,PETSC VIEWER STDOUT WORLD);

Other viewers can be used as well. For instance, one can draw the nonzero structure of the matrix into the
default X-window with the command
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MatView(Mat mat,PETSC VIEWER DRAW WORLD);

Also one can use

MatView(Mat mat,PetscViewer viewer);

where viewer was obtained with PetscViewerDrawOpen(). Additional viewers and options are given
in the MatView() man page and Viewers: Looking at PETSc Objects.

Table 2.3: PETSc Matrix Operations

Function Name Operation
MatAXPY (Mat Y, PetscScalar a, Mat X, MatStructure s); | Y =Y +axX
MatAYPX(Mat Y, PetscScalar a, Mat X, MatStructure s); | Y =axY +X
MatMult(Mat A,Vec x, Vec y); y=Axzx
MatMultAdd(Mat A,Vec x, Vec y,Vec z); z=y+Axzx
MatMultTranspose(Mat A,Vec x, Vec y); y=AT xx
MatMultTransposeAdd(Mat A, Vec x, Vec y, Vec z); z=y+ AT xz
MatNorm(Mat A,NormType type, PetscReal *r); r = Atype
MatDiagonalScale(Mat A,Vec 1,Vec r); A = diag(l) * A x diag(r)
MatScale(Mat A,PetscScalar a); A=axA
MatConvert(Mat A, MatType type, Mat *B); B=A
MatCopy(Mat A, Mat B, MatStructure s); B=A
MatGetDiagonal (Mat A, Vec x); x = diag(A)
MatTranspose(Mat A, MatReuse, Mat* B); B=AT
MatZeroEntries(Mat A); A=0
MatShift(Mat Y, PetscScalar a); Y=Y +axI

Table 2.4: Values of MatStructure

Name Meaning

SAME_NONZERO PATTERN | the matrices have an identical nonzero pattern

DIFFER- the matrices may have a different nonzero pattern

ENT NONZERO PATTERN

SUB- the second matrix has a subset of the nonzeros in the first matrix

SET NONZERO PATTERN

UN- there is nothing known about the relation between the nonzero patterns of
KNOWN NONZERO PATTERN| the two matrices

The NormType argument to MatNorm() is one of NORM_1, NORM_INFINITY, and NORM_ FROBENIUS.

2.2.5 Matrix-Free Matrices

Some people like to use matrix-free methods, which do not require explicit storage of the matrix, for the
numerical solution of partial differential equations. To support matrix-free methods in PETSc, one can use
the following command to create a Mat structure without ever actually generating the matrix:

MatCreateShell(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,void *ctx,
—Mat *mat);

Here M and N are the global matrix dimensions (rows and columns), m and n are the local matrix dimensions,
and CtX is a pointer to data needed by any user-defined shell matrix operations; the manual page has
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additional details about these parameters. Most matrix-free algorithms require only the application of the
linear operator to a vector. To provide this action, the user must write a routine with the calling sequence

UserMult(Mat mat,Vec x,Vec y);

and then associate it with the matrix, mat, by using the command

MatShellSetOperation(Mat mat,MatOperation MATOP_MULT, (void(*)(void)) PetscErrorCode,
— (*UserMult) (Mat,Vec,Vec));

Here MATOP_MULT is the name of the operation for matrix-vector multiplication. Within each user-defined
routine (such as UserMult()), the user should call MatShellGetContext() to obtain the user-defined
context, ctx, that was set by MatCreateShell(). This shell matrix can be used with the iterative linear
equation solvers discussed in the following chapters.

The routine MatShellSetOperation() can be used to set any other matrix operations as well. The
file $PETSC_DIR/include/petscmat.h (source) provides a complete list of matrix operations, which
have the form MATOP_<OPERATION>, where <OPERATION> is the name (in all capital letters) of the user
interface routine (for example, MatMult() — MATOP_MULT). All user-provided functions have the same
calling sequence as the usual matrix interface routines, since the user-defined functions are intended to be
accessed through the same interface, e.g., MatMult (Mat,Vec,Vec) — UserMult (Mat,Vec,Vec). The
final argument for MatShellSetOperation() needs to be cast to a void *, since the final argument
could (depending on the MatOperation) be a variety of different functions.

Note that MatShellSetOperation() can also be used as a “backdoor” means of introducing user-defined
changes in matrix operations for other storage formats (for example, to override the default LU factorization
routine supplied within PETSc for the MATSEQAIJ format). However, we urge anyone who introduces such
changes to use caution, since it would be very easy to accidentally create a bug in the new routine that could
affect other routines as well.

See also Matriz-Free Methods for details on one set of helpful utilities for using the matrix-free approach for
nonlinear solvers.

2.2.6 Transposes of Matrices

PETSc provides several ways to work with transposes of matrix.

MatTranspose(Mat A,MatReuse MAT INITIAL MATRIX or MAT_INPLACE MATRIX or MAT_REUSE
—MATRIX,Mat *B)

will either do an in-place or out-of-place matrix explicit formation of the matrix transpose. After it has been
called with MAT _INPLACE MATRIX it may be called again with MAT REUSE MATRIX and it will recompute
the transpose if the A matrix has changed. Internally it keeps track of whether the nonzero pattern of A
has not changed so will reuse the symbolic transpose when possible for efficiency.

MatTransposeSymbolic(Mat A,Mat *B)

only does the symbolic transpose on the matrix. After it is called MatTranspose() may be called with
MAT REUSE MATRIX to compute the numerical transpose.

Occasionally one may already have a B matrix with the needed sparsity pattern to store
the transpose and wants to reuse that space instead of creating a mnew matrix by call-
ing MatTranspose(A,“MAT_INITIAL_MATRIX“,&B) but they cannot just call MatTrans-
pose(A,“MAT_REUSE_MATRIX“&B) so instead they can call MatTransposeSetPrecusor(A,B) and
then callMatTranspose(A,“MAT REUSE_MATRIX* &B). This routine just provides to B the meta-data
it needs to compute the numerical factorization efficiently.
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The routine MatCreateTranspose(A,&B) provides a surrogate matrix B that behaviors like the transpose
of A without forming the transpose explicitly. For example, MatMult(B,x,y) will compute the matrix-vector
product of A transpose times x.

2.2.7 Other Matrix Operations

In many iterative calculations (for instance, in a nonlinear equations solver), it is important for efficiency
purposes to reuse the nonzero structure of a matrix, rather than determining it anew every time the matrix
is generated. To retain a given matrix but reinitialize its contents, one can employ

MatZeroEntries(Mat A);

This routine will zero the matrix entries in the data structure but keep all the data that indicates where
the nonzeros are located. In this way a new matrix assembly will be much less expensive, since no memory
allocations or copies will be needed. Of course, one can also explicitly set selected matrix elements to zero
by calling MatSetValues().

By default, if new entries are made in locations where no nonzeros previously existed, space will be allocated
for the new entries. To prevent the allocation of additional memory and simply discard those new entries,
one can use the option

MatSetOption(Mat A,MAT NEW NONZERO LOCATIONS,PETSC FALSE);

Once the matrix has been assembled, one can factor it numerically without repeating the ordering or the
symbolic factorization. This option can save some computational time, although it does require that the
factorization is not done in-place.

In the numerical solution of elliptic partial differential equations, it can be cumbersome to deal with Dirichlet
boundary conditions. In particular, one would like to assemble the matrix without regard to boundary
conditions and then at the end apply the Dirichlet boundary conditions. In numerical analysis classes this
process is usually presented as moving the known boundary conditions to the right-hand side and then solving
a smaller linear system for the interior unknowns. Unfortunately, implementing this requires extracting a
large submatrix from the original matrix and creating its corresponding data structures. This process can
be expensive in terms of both time and memory.

One simple way to deal with this difficulty is to replace those rows in the matrix associated with known
boundary conditions, by rows of the identity matrix (or some scaling of it). This action can be done with
the command

MatZeroRows (Mat A,PetscInt numRows,PetscInt rows[],PetscScalar diag value,Vec x,Vec,
~b),

or equivalently,

MatZeroRowsIS(Mat A,IS rows,PetscScalar diag value,Vec x,Vec b);

For sparse matrices this removes the data structures for certain rows of the matrix. If the pointer
diag value is NULL, it even removes the diagonal entry. If the pointer is not null, it uses that given
value at the pointer location in the diagonal entry of the eliminated rows.

One nice feature of this approach is that when solving a nonlinear problem such that at each iteration the
Dirichlet boundary conditions are in the same positions and the matrix retains the same nonzero structure,
the user can call MatZeroRows () in the first iteration. Then, before generating the matrix in the second
iteration the user should call
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MatSetOption(Mat A,MAT NEW NONZERO LOCATIONS,PETSC FALSE);

From that point, no new values will be inserted into those (boundary) rows of the matrix.

The functions MatZeroRowsLocal() and MatZeroRowsLocalIS() can also be used if for each process
one provides the Dirichlet locations in the local numbering of the matrix. A drawback of MatZeroRows ()
is that it destroys the symmetry of a matrix. Thus one can use

MatZeroRowsColumns(Mat A,PetscInt numRows,PetscInt rows[],PetscScalar diag value,Vec,
—~Xx,Vec b),

or equivalently,

MatZeroRowsColumnsIS(Mat A,IS rows,PetscScalar diag value,Vec x,Vec b);

Note that with all of these for a given assembled matrix it can be only called once to update the x and b
vector. It cannot be used if one wishes to solve multiple right hand side problems for the same matrix since
the matrix entries needed for updating the b vector are removed in its first use.

Once the zeroed rows are removed the new matrix has possibly many rows with only a diagonal entry
affecting the parallel load balancing. The PCREDISTRIBUTE preconditioner removes all the zeroed rows
(and associated columns and adjusts the right hand side based on the removed columns) and then rebalances
the resulting rows of smaller matrix across the processes. Thus one can use MatZeroRows () to set the
Dirichlet points and then solve with the preconditioner PCREDISTRIBUTE. Note if the original matrix was
symmetric the smaller solved matrix will also be symmetric.

Another matrix routine of interest is

MatConvert(Mat mat,MatType newtype,Mat *M)

which converts the matrix mat to new matrix, M, that has either the same or different format. Set newtype
to MATSAME to copy the matrix, keeping the same matrix format. See $PETSC_DIR/include/petscmat.
h (source) for other available matrix types; standard ones are MATSEQDENSE, MATSEQAIJ, MATMPIAIJ,
MATSEQBAIJ and MATMPIBAIJ.

In certain applications it may be necessary for application codes to directly access elements of a matrix.
This may be done by using the the command (for local rows only)

MatGetRow(Mat A,PetscInt row, PetscInt *ncols,const PetscInt (*cols)[],const,
—PetscScalar (*vals)[]);

The argument NCO1Ss returns the number of nonzeros in that row, while cols and vals returns the column
indices (with indices starting at zero) and values in the row. If only the column indices are needed (and not
the corresponding matrix elements), one can use NULL for the vals argument. Similarly, one can use NULL
for the cols argument. The user can only examine the values extracted with MatGetRow(); the values
cannot be altered. To change the matrix entries, one must use MatSetValues().

Once the user has finished using a row, he or she must call

MatRestoreRow(Mat A,PetscInt row,PetscInt *ncols,PetscInt **cols,PetscScalar **vals);

to free any space that was allocated during the call to MatGetRow().
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2.2.8 Symbolic and Numeric Stages in Sparse Matrix Operations

Many sparse matrix operations can be optimized by dividing the computation into two stages: a sym-
bolic stage that creates any required data structures and does all the computations that do not require
the matrices’ numerical values followed by one or more uses of a numerical stage that use the symbolically
computed information. Examples of such operations include MatTranspose(), MatCreateSubMatri-
ces(), MatCholeskyFactorSymbolic(), and MatCholeskyFactorNumeric(). PETSc uses two
different APT’s to take advantage of these optimizations.

The first approach explicitly divides the computation in the API. This approach is used, for example, with
MatCholeskyFactorSymbolic(), MatCholeskyFactorNumeric(). The caller can take advantage
of their knowledge of changes in the nonzero structure of the sparse matrices to call the appropriate routines
as needed. In fact, they can use MatGetNonzeroState() to determine if a new symbolic computation is
needed. The drawback of this approach is that the caller of these routines has to manage the creation of
new matrices when the nonzero structure changes.

The second approach, as exemplified by MatTranspose(), does not expose the two stages explicit in the
API, instead a flag, MatReuse is passed through the API to indicate if a symbolic data structure is already
available or needs to be computed. Thus MatTranspose(A,MAT INITIAL MATRIX,&B) is called first,
then MatTranspose (A,MAT REUSE MATRIX,&B) can be called repeatedly with new numerical values in
the A matrix. In theory, if the nonzero structure of A changes, the symbolic computations for B could be
redone automatically inside the same B matrix when there is a change in the nonzero state of the A matrix. In
practice, in PETSc, the MAT _REUSE_MATRIX for most PETSc routines only works if the nonzero structure
does not change and the code may crash otherwise. The advantage of this approach (when the nonzero
structure changes are handled correctly) is that the calling code does not need to keep track of the nonzero
state of the matrices; everything “just works”. However, the caller must still know when it is the first call to
the routine so the flag MAT INITIAL MATRIX is being used. If the underlying implementation language
supported detecting a yet to be initialized variable at run time, the MatReuse flag would not be need.

PETSc uses two approaches because the same programming problem was solved with two different ways
during PETSc’s early development. A better model would combine both approaches; an explicit separation
of the stages and a unified operation that internally utilized the two stages appropriately and also handled
changes to the nonzero structure. Code could be simplified in many places with this approach, in most places
the use of the unified API would replace the use of the separate stages.

See FExtracting Submatrices and Matriz-Matriz Products.

2.2.9 Graph Operations

PETSc has four families of graph operations that treat sparse Mat as representing graphs.

Operation Type Available meth- | User guide

ods
Ordering to reduce fill N/A MatOrdering- Matriz Factorization

Type
Partitioning for parallelism | MatParti- MatPartition- Partitioning

tioning ingType
Coloring for parallelism or | MatColoring | MatColoring- Finite Difference Jacobian Ap-
Jacobians Type proximations
Coarsening for multigrid MatCoarsen MatCoarsenType | Algebraic Multigrid (AMG) Pre-
conditioners
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2.2.10 Partitioning

For almost all unstructured grid computation, the distribution of portions of the grid across the process’s
work load and memory can have a very large impact on performance. In most PDE calculations the grid
partitioning and distribution across the processes can (and should) be done in a “pre-processing” step
before the numerical computations. However, this does not mean it need be done in a separate, sequential
program; rather, it should be done before one sets up the parallel grid data structures in the actual program.
PETSc provides an interface to the ParMETIS (developed by George Karypis; see the PETSc installation
instructions for directions on installing PETSc to use ParMETIS) to allow the partitioning to be done in
parallel. PETSc does not currently provide directly support for dynamic repartitioning, load balancing by
migrating matrix entries between processes, etc. For problems that require mesh refinement, PETSc uses the
“rebuild the data structure” approach, as opposed to the “maintain dynamic data structures that support
the insertion/deletion of additional vector and matrix rows and columns entries” approach.

Partitioning in PETSc is organized around the MatPartitioning object. Ome first creates a parallel
matrix that contains the connectivity information about the grid (or other graph-type object) that is to be
partitioned. This is done with the command

MatCreateMPIAdj (MPI_Comm comm,int mlocal,PetscInt n,const PetscInt ia[],const,
—PetscInt ja[l,PetscInt *weights,Mat *Adj);

The argument mlocal indicates the number of rows of the graph being provided by the given process, n is
the total number of columns; equal to the sum of all the mlocal. The arguments ia and ja are the row
pointers and column pointers for the given rows; these are the usual format for parallel compressed sparse
row storage, using indices starting at 0, not 1.

1 4 0

5 2 3
Fig. 2.4: Numbering on Simple Unstructured Grid

This, of course, assumes that one has already distributed the grid (graph) information among the processes.
The details of this initial distribution is not important; it could be simply determined by assigning to the
first process the first ng nodes from a file, the second process the next n; nodes, etc.

For example, we demonstrate the form of the ia and ja for a triangular grid where we
(1) partition by element (triangle)
e Process 0: mlocal = 2, n = 4, ja ={2,3, 3},ia ={0,2,3}
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e Process 1: mlocal = 2,n = 4, ja ={0, 0,1}, ia ={0,1,3}

Note that elements are not connected to themselves and we only indicate edge connections (in some contexts
single vertex connections between elements may also be included). We use a space above to denote the
transition between rows in the matrix; and

(2) partition by vertex.

e Process 0: mlocal 3,n =6, ja ={3,4, 4,5, 3,4,5},ia ={0, 2, 4, 7}
3,n =6, ja ={0,2, 4, 0,1,2,3,5, 1,2,4}, ia ={0, 3, 8, 11}.

Once the connectivity matrix has been created the following code will generate the renumbering required for
the new partition

e Process 1: mlocal

MatPartitioningCreate(MPI_Comm comm,MatPartitioning *part);
MatPartitioningSetAdjacency(MatPartitioning part,Mat Adj);
MatPartitioningSetFromOptions(MatPartitioning part);
MatPartitioningApply(MatPartitioning part,IS *is);
MatPartitioningDestroy(MatPartitioning *part);
MatDestroy(Mat *Adj);

ISPartitioningToNumbering (IS is,IS *isg);

The resulting 1Sg contains for each local node the new global number of that node. The resulting is
contains the new process number that each local node has been assigned to.

Now that a new numbering of the nodes has been determined, one must renumber all the nodes and migrate
the grid information to the correct process. The command

AOCreateBasicIS(isg,NULL,&ao0);

generates, see Application Orderings, an AQ object that can be used in conjunction with the 1S and isg to
move the relevant grid information to the correct process and renumber the nodes etc. In this context, the
new ordering is the “application” ordering so AOPetscToApplication() converts old global indices to
new global indices and AOApplicationToPetsc() converts new global indices back to old global indices.

PETSc does not currently provide tools that completely manage the migration and node renumbering, since
it will be dependent on the particular data structure you use to store the grid information and the type of
grid information that you need for your application. We do plan to include more support for this in the
future, but designing the appropriate general user interface and providing a scalable implementation that
can be used for a wide variety of different grids requires a great deal of time.

See Finite Difference Jacobian Approzimations and Matriz Factorization for discussions on performing graph
coloring and computing graph reorderings to reduce fill in sparse matrix factorizations.

2.3 KSP: Linear System Solvers

The KSP object is the heart of PETSc, because it provides uniform and efficient access to all of the package’s
linear system solvers, including parallel and sequential, direct and iterative. KSP is intended for solving
systems of the form

Az =0, (2.1)

where A denotes the matrix representation of a linear operator, b is the right-hand-side vector, and x is the
solution vector. KSP uses the same calling sequence for both direct and iterative solution of a linear system.
In addition, particular solution techniques and their associated options can be selected at runtime.
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The combination of a Krylov subspace method and a preconditioner is at the center of most modern numerical
codes for the iterative solution of linear systems. Many textbooks (e.g. [FGN92] [vdV03], or [Saa03]) provide
an overview of the theory of such methods. The KSP package, discussed in Krylov Methods, provides many
popular Krylov subspace iterative methods; the PC module, described in Preconditioners, includes a variety
of preconditioners.

2.3.1 Using KSP

To solve a linear system with KSP, one must first create a solver context with the command

KSPCreate (MPI_Comm comm,KSP *ksp);

Here comm is the MPI communicator and Ksp is the newly formed solver context. Before actually solving
a linear system with KSP, the user must call the following routine to set the matrices associated with the
linear system:

KSPSetOperators(KSP ksp,Mat Amat,Mat Pmat);

The argument Amat, representing the matrix that defines the linear system, is a symbolic placeholder
for any kind of matrix or operator. In particular, KSP does support matrix-free methods. The routine
MatCreateShell() in Matriz-Free Matrices provides further information regarding matrix-free methods.
Typically, the matrix from which the preconditioner is to be constructed, Pmat, is the same as the matrix
that defines the linear system, Amat; however, occasionally these matrices differ (for instance, when a
preconditioning matrix is obtained from a lower order method than that employed to form the linear system
matrix).

Much of the power of KSP can be accessed through the single routine

KSPSetFromOptions (KSP ksp);

This routine accepts the option -help as well as any of the KSP and PC options discussed below. To solve
a linear system, one sets the right hand size and solution vectors using the command

KSPSolve (KSP ksp,Vec b,Vec x);

where b and X respectively denote the right-hand-side and solution vectors. On return, the iteration number
at which the iterative process stopped can be obtained using

KSPGetIterationNumber (KSP ksp, PetscInt *its);

Note that this does not state that the method converged at this iteration: it can also have reached the
maximum number of iterations, or have diverged.

Convergence Tests gives more details regarding convergence testing. Note that multiple linear solves can be
performed by the same KSP context. Once the KSP context is no longer needed, it should be destroyed with
the command

KSPDestroy (KSP *ksp);

The above procedure is sufficient for general use of the KSP package. One additional step is required for
users who wish to customize certain preconditioners (e.g., see Block Jacobi and Overlapping Additive Schwarz
Preconditioners) or to log certain performance data using the PETSc profiling facilities (as discussed in
Profiling). In this case, the user can optionally explicitly call

KSPSetUp (KSP ksp);
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before calling KSPSolve() to perform any setup required for the linear solvers. The explicit call of this
routine enables the separate monitoring of any computations performed during the set up phase, such as
incomplete factorization for the ILU preconditioner.

The default solver within KSP is restarted GMRES, preconditioned for the uniprocess case with ILU(0), and
for the multiprocess case with the block Jacobi method (with one block per process, each of which is solved
with ILU(0)). A variety of other solvers and options are also available. To allow application programmers to
set any of the preconditioner or Krylov subspace options directly within the code, we provide routines that
extract the PC and KSP contexts,

KSPGetPC(KSP ksp,PC *pc);

The application programmer can then directly call any of the PC or KSP routines to modify the corresponding
default options.

To solve a linear system with a direct solver (currently supported by PETSc for sequential matrices, and
by several external solvers through PETSc interfaces, see Using External Linear Solvers) one may use the
options -ksp_type preonly (or the equivalent -ksp_type none) -pc_type lu (see below).

By default, if a direct solver is used, the factorization is not done in-place. This approach prevents the user
from the unexpected surprise of having a corrupted matrix after a linear solve. The routine PCFactorSe-
tUseInPlace( ), discussed below, causes factorization to be done in-place.

2.3.2 Solving Successive Linear Systems

When solving multiple linear systems of the same size with the same method, several options are available.
To solve successive linear systems having the same preconditioner matrix (i.e., the same data structure
with exactly the same matrix elements) but different right-hand-side vectors, the user should simply call
KSPSolve () multiple times. The preconditioner setup operations (e.g., factorization for ILU) will be done
during the first call to KSPSolve() only; such operations will not be repeated for successive solves.

To solve successive linear systems that have different preconditioner matrices (i.e., the matrix elements
and/or the matrix data structure change), the user must call KSPSetOperators() and KSPSolve() for
each solve.

2.3.3 Krylov Methods

The Krylov subspace methods accept a number of options, many of which are discussed below. First, to set
the Krylov subspace method that is to be used, one calls the command

KSPSetType(KSP ksp,KSPType method);

The type can be one of KSPRICHARDSON, KSPCHEBYSHEV, KSPCG, KSPGMRES, KSPTCQMR, KSPBCGS,
KSPCGS, KSPTFQMR, KSPCR, KSPLSQR, KSPBICG, KSPPREONLY (or the equivalent KSPNONE), or others;
see KSP Objects or the KSPType man page for more. The KSP method can also be set with the options
database command -ksp_type, followed by one of the options richardson, chebyshev, cg, gmres,
tcgmr, bcgs, cgs, tfgmr, cr, lsqr, bicg, preonly (or the equivalent none), or others (see KSP
Objects or the KSPType man page). There are method-specific options. For instance, for the Richardson,
Chebyshev, and GMRES methods:

KSPRichardsonSetScale(KSP ksp,PetscReal scale);
KSPChebyshevSetEigenvalues (KSP ksp,PetscReal emax,PetscReal emin);
KSPGMRESSetRestart (KSP ksp,PetscInt max_steps);
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The default parameter values are scale=1.0, emax=0.01, emin=100.0, and max steps=30. The
GMRES restart and Richardson damping factor can also be set with the options -ksp _gmres restart
<n> and -ksp_richardson_scale <factor>.

The default technique for orthogonalization of the Krylov vectors in GMRES is the unmodified (classical)
Gram-Schmidt method, which can be set with

KSPGMRESSetOrthogonalization(KSP ksp,KSPGMRESClassicalGramSchmidtOrthogonalization);

or the options database command -ksp gmres classicalgramschmidt. By default this will not use
iterative refinement to improve the stability of the orthogonalization. This can be changed with the option

KSPGMRESSetCGSRefinementType (KSP ksp, KSPGMRESCGSRefinementType type)

or via the options database with

-ksp_gmres _cgs_refinement type <refine never,refine ifneeded,refine always>

The values for KSPGMRESCGSRefinementType() are KSP_GMRES CGS REFINE NEVER,
KSP_GMRES CGS_REFINE_IFNEEDED and KSP_GMRES CGS REFINE ALWAYS.

One can also use modified Gram-Schmidt, by wusing the orthogonalization routine KSPGM-
RESModifiedGramSchmidtOrthogonalization() or by wusing the command line option
-ksp _gmres modifiedgramschmidt.

For the conjugate gradient method with complex numbers, there are two slightly different algorithms de-
pending on whether the matrix is Hermitian symmetric or truly symmetric (the default is to assume that it
is Hermitian symmetric). To indicate that it is symmetric, one uses the command

KSPCGSetType (ksp,KSP_CG_SYMMETRIC) ;

Note that this option is not valid for all matrices.

Some KSP types do not support preconditioning. For instance, the CGLS algorithm does not involve a
preconditioner; any preconditioner set to work with the KSP object is ignored if KSPCGLS was selected.

By default, KSP assumes an initial guess of zero by zeroing the initial value for the solution vector that is
given; this zeroing is done at the call to KSPSolve (). To use a nonzero initial guess, the user must call

KSPSetInitialGuessNonzero(KSP ksp,PetscBool flg);

Preconditioning within KSP

Since the rate of convergence of Krylov projection methods for a particular linear system is strongly dependent
on its spectrum, preconditioning is typically used to alter the spectrum and hence accelerate the convergence
rate of iterative techniques. Preconditioning can be applied to the system (2.1) by

(M AMEG") (Mpx) = M ', (2:2)

where Mj, and Mg indicate preconditioning matrices (or, matrices from which the preconditioner is to be
constructed). If My, = I in (2.2), right preconditioning results, and the residual of (2.1),

rEb—Aarzb—AMglMRx,

is preserved. In contrast, the residual is altered for left (Mpr = I) and symmetric preconditioning, as given
by

r =Mt — M Ar = My .
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By default, most KSP implementations use left preconditioning. Some more naturally use other options,
though. For instance, KSPQCG defaults to use symmetric preconditioning and KSPFGMRES uses right pre-
conditioning by default. Right preconditioning can be activated for some methods by using the options
database command -ksp_pc_side right or calling the routine

KSPSetPCSide(ksp,PC RIGHT);

Attempting to use right preconditioning for a method that does not currently support it results in an error
message of the form

KSPSetUp Richardson:No right preconditioning for KSPRICHARDSON

We summarize the defaults for the residuals used in KSP convergence monitoring within KSP Objects. Details
regarding specific convergence tests and monitoring routines are presented in the following sections. The
preconditioned residual is used by default for convergence testing of all left-preconditioned KSP methods.
For the conjugate gradient, Richardson, and Chebyshev methods the true residual can be used by the options
database command -ksp_norm type unpreconditioned or by calling the routine

KSPSetNormType(ksp,KSP_NORM UNPRECONDITIONED) ;

Table 2.5: KSP Objects

Method KSPType Options Database Name
Richardson KSPRICHARDSON richardson
Chebyshev KSPCHEBYSHEV chebyshev
Conjugate Gradient [HS52] KSPCG cg
Pipelined Conjugate Gradients [GV14] KSPPIPECG pipecg
Pipelined Conjugate Gradients (Gropp) KSPGROPPCG groppcg
Pipelined Conjugate Gradients with Residual Replacement | KSPPIPECGRR pipecgrr
Conjugate Gradients for the Normal Equations KSPCGNE cgne
Flexible Conjugate Gradients [Not00] KSPFCG fcg
Pipelined, Flexible Conjugate Gradients [SSM16] KSPPIPEFCG pipefcg
Conjugate Gradients for Least Squares KSPCGLS cgls
Conjugate Gradients with Constraint (1) KSPNASH nash
Conjugate Gradients with Constraint (2) KSPSTCG stcg
Conjugate Gradients with Constraint (3) KSPGLTR gltr
Conjugate Gradients with Constraint (4) KSPQCG qcg
BiConjugate Gradient KSPBICG bicg
BiCGSTAB [vandVorst92] KSPBCGS bcgs
Improved BiCGSTAB KSPIBCGS ibcgs
QMRCGSTAB [CGS+94] KSPQMRCGS gmrcgs
Flexible BICGSTAB KSPFBCGS fbcgs
Flexible BICGSTAB (variant) KSPFBCGSR fbcgsr
Enhanced BiCGSTAB(L) KSPBCGSL bcgsl
Minimal Residual Method [PS75] KSPMINRES minres
Generalized Minimal Residual [SS86] KSPGMRES gmres
Flexible Generalized Minimal Residual [Saa93] KSPFGMRES fgmres
Deflated Generalized Minimal Residual KSPDGMRES dgmres
Pipelined Generalized Minimal Residual [GAMV13] KSPPGMRES pgmres
Pipelined, Flexible Generalized Minimal Residual [SSM16] | KSPPIPEFGMRES pipefgmres
Generalized Minimal Residual with Accelerated Restart KSPLGMRES lgmres
Conjugate Residual [EES83] KSPCR cr
Generalized Conjugate Residual KSPGCR gcr

continues on next page
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Table 2.5 - continued from previous page

Method KSPType Options Database Name
Pipelined Conjugate Residual KSPPIPECR pipecr

Pipelined, Flexible Conjugate Residual [SSM16)] KSPPIPEGCR pipegcr

FETI-DP KSPFETIDP fetidp

Conjugate Gradient Squared [Son89)] KSPCGS cgs

Transpose-Free Quasi-Minimal Residual (1) [Fre93] KSPTFQMR tfqmr
Transpose-Free Quasi-Minimal Residual (2) KSPTCQMR tcgmr

Least Squares Method KSPLSQR lsqr

Symmetric LQ Method [PS75] KSPSYMMLQ symmlq

TSIRM KSPTSIRM tsirm

Python Shell KSPPYTHON python

Shell for no KSP method KSPPREONLY (or KSPNONE) | preonly (or none)

Note: the bi-conjugate gradient method requires application of both the matrix and its transpose plus the
preconditioner and its transpose. Currently not all matrices and preconditioners provide this support and
thus the KSPBICG cannot always be used.

Note: PETSc implements the FETI-DP (Finite Element Tearing and Interconnecting Dual-Primal) method
as an implementation of KSP since it recasts the original problem into a constrained minimization one with
Lagrange multipliers. The only matrix type supported is MATIS. Support for saddle point problems is
provided. See the man page for KSPFETIDP for further details.

Convergence Tests
The default convergence test, KSPConvergedDefault (), is based on the l3-norm of the residual. Conver-
gence (or divergence) is decided by three quantities: the decrease of the residual norm relative to the norm
of the right hand side, rtol, the absolute size of the residual norm, atol, and the relative increase in the
residual, dtol. Convergence is detected at iteration k if

lrkll2 < max(rtol * ||b]|2, atol),
where 1, = b — Axy. Divergence is detected if

[lrklle > dtol x ||b||2.

These parameters, as well as the maximum number of allowable iterations, can be set with the routine

KSPSetTolerances (KSP ksp,PetscReal rtol,PetscReal atol,PetscReal dtol,PetscInt,
—maxits);

The user can retain the default value of any of these parameters by specifying PETSC_DEFAULT as the
corresponding tolerance; the defaults are rtol=1e-5, atol=1e-50, dtol=1e5, and maxits=1e4. These
parameters can also be set from the options database with the commands -ksp_rtol <rtol>, -ksp_atol
<atol>, -ksp _divtol <dtol>, and -ksp max it <its>.

In addition to providing an interface to a simple convergence test, KSP allows the application programmer
the flexibility to provide customized convergence-testing routines. The user can specify a customized routine
with the command

KSPSetConvergenceTest (KSP ksp,PetscErrorCode (*test)(KSP ksp,PetscInt it,PetscReal,,
—rnorm, KSPConvergedReason *reason,void *ctx),void *ctx,PetscErrorCode,
— (*destroy) (void *ctx));
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The final routine argument, CtX, is an optional context for private data for the user-defined convergence
routine, test. Other test routine arguments are the iteration number, it, and the residual’s I norm,
rnorm. The routine for detecting convergence, test, should set reason to positive for convergence,
0 for no convergence, and negative for failure to converge. A full list of possible values is given in the
KSPConvergedReason manual page. You can use KSPGetConvergedReason () after KSPSolve() to
see why convergence/divergence was detected.

Convergence Monitoring

By default, the Krylov solvers run silently without displaying information about the iterations. The user can
indicate that the norms of the residuals should be displayed by using -ksp_monitor within the options
database. To display the residual norms in a graphical window (running under X Windows), one should
use -ksp monitor draw::draw 1g. Application programmers can also provide their own routines to
perform the monitoring by using the command

KSPMonitorSet(KSP ksp,PetscErrorCode (*mon) (KSP ksp,PetscInt it,PetscReal rnorm,void,
~*ctx),void *ctx,PetscErrorCode (*mondestroy) (void**));

The final routine argument, CtX, is an optional context for private data for the user-defined monitoring rou-
tine, mon. Other mon routine arguments are the iteration number (it) and the residual’s l3 norm (rnorm). A
helpful routine within user-defined monitors is PetscObjectGetComm( (PetscObject)ksp,MPI Comm
*comm), which returns in comm the MPI communicator for the KSP context. See Writing PETSc Programs
for more discussion of the use of MPI communicators within PETSc.

Several monitoring routines are supplied with PETSc, including

KSPMonitorResidual (KSP,PetscInt,PetscReal, void *);
KSPMonitorSingularValue(KSP,PetscInt,PetscReal,void *);
KSPMonitorTrueResidual (KSP,PetscInt,PetscReal, void *);

The default monitor simply prints an estimate of the [o-norm of the residual at each iteration. The routine
KSPMonitorSingularValue() is appropriate only for use with the conjugate gradient method or GM-
RES, since it prints estimates of the extreme singular values of the preconditioned operator at each iteration.
Since KSPMonitorTrueResidual() prints the true residual at each iteration by actually computing the
residual using the formula r = b — Ax, the routine is slow and should be used only for testing or convergence
studies, not for timing. These monitors may be accessed with the command line options -ksp_monitor,
-ksp_monitor singular value, and -ksp monitor true residual.

To employ the default graphical monitor, one should use the command -ksp monitor draw::draw_1g.
One can cancel hardwired monitoring routines for KSP at runtime with -ksp_monitor cancel.

Unless the Krylov method converges so that the residual norm is small, say 10~'°, many of the final digits
printed with the -ksp_monitor option are meaningless. Worse, they are different on different machines;
due to different round-off rules used by, say, the IBM RS6000 and the Sun SPARC. This makes testing
between different machines difficult. The option -ksp monitor short causes PETSc to print fewer of
the digits of the residual norm as it gets smaller; thus on most of the machines it will always print the same
numbers making cross system testing easier.
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Understanding the Operator’s Spectrum

Since the convergence of Krylov subspace methods depends strongly on the spectrum (eigenvalues) of the
preconditioned operator, PETSc has specific routines for eigenvalue approximation via the Arnoldi or Lanczos
iteration. First, before the linear solve one must call

KSPSetComputeEigenvalues (ksp,PETSC_TRUE);

Then after the KSP solve one calls

KSPComputeEigenvalues (KSP ksp,PetscInt n,PetscReal *realpart,PetscReal *complexpart,
—PetscInt *neig);

Here, n is the size of the two arrays and the eigenvalues are inserted into those two arrays. neig is the
number of eigenvalues computed; this number depends on the size of the Krylov space generated during the
linear system solution, for GMRES it is never larger than the restart parameter. There is an additional
routine

KSPComputeEigenvaluesExplicitly (KSP ksp, PetscInt n,PetscReal *realpart,PetscReal,,
—*complexpart);

that is useful only for very small problems. It explicitly computes the full representation of the preconditioned
operator and calls LAPACK to compute its eigenvalues. It should be only used for matrices of size up to a
couple hundred. The PetscDrawSP* () routines are very useful for drawing scatter plots of the eigenvalues.

The eigenvalues may also be computed and displayed graphically with the options data base
commands -ksp view eigenvalues draw and -ksp view eigenvalues explicit draw.
Or they can be dumped to the screen in ASCII text via -ksp view eigenvalues and
-ksp_view eigenvalues explicit.

Flexible Krylov Methods

Standard Krylov methods require that the preconditioner be a linear operator, thus, for example, a standard
KSP method cannot use a KSP in its preconditioner, as is common in the Block-Jacobi method PCBJACOBI,
for example. Flexible Krylov methods are a subset of methods that allow (with modest additional require-
ments on memory) the preconditioner to be nonlinear. For example, they can be used with the PCKSP
preconditioner. The flexible KSP methods have the label “Flexible” in KSP Objects.

One can use KSPMonitorDynamicTolerance() to control the tolerances used by inner KSP solvers in
PCKSP, PCBJACOBI, and PCDEFLATION.

In addition to supporting PCKSP, the flexible methods support KSP*SetModifyPC(), for example,
KSPFGMRESSetModifyPC(), these functions allow the user to provide a callback function that changes
the preconditioner at each Krylov iteration. Its calling sequence is as follows.

PetscErrorCode f(KSP ksp,PetscInt total its,PetscInt its since restart,PetscReal res_
—norm,void *ctx);
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Pipelined Krylov Methods

Standard Krylov methods have one or more global reductions resulting from the computations of inner
products or norms in each iteration. These reductions need to block until all MPI ranks have received the
results. For a large number of MPI ranks (this number is machine dependent but can be above 10,000 ranks)
this synchronization is very time consuming and can significantly slow the computation. Pipelined Krylov
methods overlap the reduction operations with local computations (generally the application of the matrix-
vector products and precondtiioners) thus effectively “hiding” the time of the reductions. In addition, they
may reduce the number of global synchronizations by rearranging the computations in a way that some of
them can be collapsed, e.g., two or more calls to MPI_Allreduce() may be combined into one call. The
pipeline KSP methods have the label “Pipeline” in KSP Objects.

Special configuration of MPI may be necessary for reductions to make asynchronous progress, which is
important for performance of pipelined methods. See doc_faq pipelined for details.

Other KSP Options

To obtain the solution vector and right hand side from a KSP context, one uses

KSPGetSolution(KSP ksp,Vec *x);
KSPGetRhs (KSP ksp,Vec *rhs);

During the iterative process the solution may not yet have been calculated or it may be stored in a different
location. To access the approximate solution during the iterative process, one uses the command

KSPBuildSolution(KSP ksp,Vec w,Vec *v);

where the solution is returned in V. The user can optionally provide a vector in W as the location to store
the vector; however, if w is NULL, space allocated by PETSc in the KSP context is used. One should not
destroy this vector. For certain KSP methods (e.g., GMRES), the construction of the solution is expensive,
while for many others it doesn’t even require a vector copy.

Access to the residual is done in a similar way with the command

KSPBuildResidual (KSP ksp,Vec t,Vec w,Vec *v);

Again, for GMRES and certain other methods this is an expensive operation.

2.3.4 Preconditioners

As discussed in Preconditioning within KSP, Krylov subspace methods are typically used in conjunction
with a preconditioner. To employ a particular preconditioning method, the user can either select it from the
options database using input of the form -pc_type <methodname> or set the method with the command

PCSetType(PC pc,PCType method);

In PETSec Preconditioners (partial list) we summarize the basic preconditioning methods supported in
PETSc. See the PCType manual page for a complete list. The PCSHELL preconditioner uses a specific,
application-provided preconditioner. The direct preconditioner, PCLU , is, in fact, a direct solver for the lin-
ear system that uses LU factorization. PCLU is included as a preconditioner so that PETSc has a consistent
interface among direct and iterative linear solvers.
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Table 2.6: PETSc Preconditioners (partial list)

Method PCType Options Database Name
Jacobi PCJACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
SOR (and SSOR) PCSOR sor

SOR with Eisenstat trick PCEISENSTAT | eisenstat
Incomplete Cholesky PCICC icc
Incomplete LU PCILU ilu
Additive Schwarz PCASM asm
Generalized Additive Schwarz PCGASM gasm
Algebraic Multigrid PCGAMG gamg
Balancing Domain Decomposition by Constraints | PCBDDC bddc
Linear solver PCKSP ksp
Combination of preconditioners PCCOMPOSITE | composite
LU PCLU lu
Cholesky PCCHOLESKY | cholesky
No preconditioning PCNONE none

Shell for user-defined PC PCSHELL shell

Each preconditioner may have associated with it a set of options, which can be set with routines and
options database commands provided for this purpose. Such routine names and commands are all of the
form PC<TYPE><Option> and -pc_<type> <option> [value]. A complete list can be found by
consulting the PCType manual page; we discuss just a few in the sections below.

ILU and ICC Preconditioners

Some of the options for ILU preconditioner are

PCFactorSetLevels(PC pc,PetscInt levels);

PCFactorSetReuseOrdering(PC pc,PetscBool flag);

PCFactorSetDropTolerance(PC pc,PetscReal dt,PetscReal dtcol,PetscInt dtcount);
PCFactorSetReuseFill(PC pc,PetscBool flag);

PCFactorSetUseInPlace(PC pc,PetscBool flg);

PCFactorSetAllowbDiagonalFill(PC pc,PetscBool flg);

When repeatedly solving linear systems with the same KSP context, one can reuse some information computed
during the first linear solve. In particular, PCFactorSetReuseOrdering() causes the ordering (for
example, set with -pc_factor mat ordering type order) computed in the first factorization to be
reused for later factorizations. PCFactorSetUseInPlace() is often used with PCASM or PCBJACOBI
when zero fill is used, since it reuses the matrix space to store the incomplete factorization it saves memory
and copying time. Note that in-place factorization is not appropriate with any ordering besides natural and
cannot be used with the drop tolerance factorization. These options may be set in the database with

o -pc_factor levels <levels>

o -pc_factor reuse ordering

e -pc_factor reuse fill

« -pc_factor_in place

o -pc_factor nonzeros along diagonal
e -pc_factor diagonal fill
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See Memory Allocation for Sparse Matriz Factorization for information on preallocation of memory for
anticipated fill during factorization. By alleviating the considerable overhead for dynamic memory allocation,
such tuning can significantly enhance performance.

PETSc supports incomplete factorization preconditioners for several matrix types for sequential matrices

(for example MATSEQAIJ, MATSEQBAIJ, and MATSEQSBAIJ).

SOR and SSOR Preconditioners

PETSc provides only a sequential SOR preconditioner; it can only be used with sequential matrices or as
the subblock preconditioner when using block Jacobi or ASM preconditioning (see below).

The options for SOR preconditioning with PCSOR are

PCSORSetOmega (PC pc,PetscReal omega);
PCSORSetIterations(PC pc,PetscInt its,PetscInt 1lits);
PCSORSetSymmetric(PC pc,MatSORType type);

The first of these commands sets the relaxation factor for successive over (under) relaxation. The
second command sets the number of inner iterations its and local iterations 1its (the number
of smoothing sweeps on a process before doing a ghost point update from the other processes) to
use between steps of the Krylov space method. The total number of SOR sweeps is given by
its*lits. The third command sets the kind of SOR sweep, where the argument type can be
one of SOR_FORWARD SWEEP, SOR BACKWARD SWEEP or SOR_SYMMETRIC SWEEP, the default being
SOR FORWARD SWEEP. Setting the type to be SOR_SYMMETRIC SWEEP produces the SSOR method. In
addition, each process can locally and independently perform the specified variant of SOR, with the types
SOR LOCAL FORWARD SWEEP, SOR LOCAL BACKWARD SWEEP, and SOR LOCAL SYMMETRIC SWEEP.
These variants can also be set with the options -pc_sor _omega <omega>, -pc_sor_its <its>,
-pc_sor_lits <lits>, -pc_sor backward, -pc_sor symmetric, -pc_sor local forward,
-pc_sor_local backward, and -pc_sor_local symmetric.

The Eisenstat trick [Eis81] for SSOR preconditioning can be employed with the method PCEISEN-
STAT (-pc_type eisenstat). By using both left and right preconditioning of the linear sys-
tem, this variant of SSOR requires about half of the floating-point operations for conventional SSOR.
The option -pc_eisenstat no diagonal scaling (or the routine PCEisenstatSetNoDiago-
nalScaling()) turns off diagonal scaling in conjunction with Eisenstat SSOR method, while the op-
tion -pc_eisenstat omega <omega> (or the routine PCEisenstatSetOmega(PC pc,PetscReal
omega) ) sets the SSOR relaxation coefficient, omega, as discussed above.

LU Factorization

The LU preconditioner provides several options. The first, given by the command

PCFactorSetUseInPlace(PC pc,PetscBool flg);

causes the factorization to be performed in-place and hence destroys the original matrix. The options
database variant of this command is -pc_factor_in place. Another direct preconditioner option is
selecting the ordering of equations with the command -pc_factor mat ordering type <ordering>.
The possible orderings are

o MATORDERINGNATURAL - Natural

o MATORDERINGND - Nested Dissection

o MATORDERINGIWD - One-way Dissection

o MATORDERINGRCM - Reverse Cuthill-McKee

2.3. KSP: Linear System Solvers 81




PETSc/TAO Users Manual, Release 3.20.1

o MATORDERINGQMD - Quotient Minimum Degree

These orderings can also be set through the options database by specifying one of the following:
-pc_factor mat ordering type natural, or nd, or 1wd, or rcm, or gmd. In addition, see MatGe-
t0rdering(), discussed in Matriz Factorization.

The sparse LU factorization provided in PETSc does not perform pivoting for numerical stability (since they
are designed to preserve nonzero structure), and thus occasionally an LU factorization will fail with a zero
pivot when, in fact, the matrix is non-singular. The option -pc_factor nonzeros along diagonal
<tol> will often help eliminate the zero pivot, by preprocessing the column ordering to remove small values
from the diagonal. Here, tol is an optional tolerance to decide if a value is nonzero; by default it is 1.e-10.

In addition, Memory Allocation for Sparse Matriz Factorization provides information on preallocation of
memory for anticipated fill during factorization. Such tuning can significantly enhance performance, since it
eliminates the considerable overhead for dynamic memory allocation.

Block Jacobi and Overlapping Additive Schwarz Preconditioners

The block Jacobi and overlapping additive Schwarz methods in PETSc are supported in parallel; however,
only the uniprocess version of the block Gauss-Seidel method is currently in place. By default, the PETSc
implementations of these methods employ ILU(0) factorization on each individual block (that is, the default
solver on each subblock is PCType=PCILU, KSPType=KSPPREONLY (or equivalently KSPType=KSPNONE);
the user can set alternative linear solvers via the options -sub_ksp type and -sub_pc_type. In fact, all
of the KSP and PC options can be applied to the subproblems by inserting the prefix - sub_ at the beginning
of the option name. These options database commands set the particular options for all of the blocks within
the global problem. In addition, the routines

PCBJacobiGetSubKSP(PC pc,PetscInt *n local,PetscInt *first local,KSP **subksp);
PCASMGetSubKSP (PC pc,PetscInt *n local,PetscInt *first local,KSP **subksp);

extract the KSP context for each local block. The argument h_local is the number of blocks on the calling
process, and first local indicates the global number of the first block on the process. The blocks are
numbered successively by processes from zero through b, — 1, where b, is the number of global blocks. The
array of KSP contexts for the local blocks is given by Subksp. This mechanism enables the user to set
different solvers for the various blocks. To set the appropriate data structures, the user must explicitly call
KSPSetUp () before calling PCBJacobiGetSubKSP () or PCASMGetSubKSP (). For further details, see
KSP Tutorial ex7 or KSP Tutorial ex8.

The block Jacobi, block Gauss-Seidel, and additive Schwarz preconditioners allow the user to set the num-
ber of blocks into which the problem is divided. The options database commands to set this value are
-pc_bjacobi blocks n and -pc_bgs blocks n, and, within a program, the corresponding routines
are

PCBJacobiSetTotalBlocks (PC pc,PetscInt blocks,PetscInt *size);
PCASMSetTotalSubdomains (PC pc,PetscInt n,IS *is,IS *islocal);
PCASMSetType(PC pc,PCASMType type);

The optional argument Size is an array indicating the size of each block. Currently, for certain parallel
matrix formats, only a single block per process is supported. However, the MATMPIAIJ and MATMPIBAIJ
formats support the use of general blocks as long as no blocks are shared among processes. The 1S argument
contains the index sets that define the subdomains.

The object PCASMType is one of PC_ASM BASIC, PC_ASM INTERPOLATE, PC_ASM RESTRICT, or
PC_ASM NONE and may also be set with the options database -pc_asm_type [basic, interpo-
late, restrict, none]. The type PC_ASM BASIC (or -pc_asm_type basic) corresponds to the
standard additive Schwarz method that uses the full restriction and interpolation operators. The type
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PC_ASM RESTRICT (or -pc_asm_type restrict) uses a full restriction operator, but during the inter-
polation process ignores the off-process values. Similarly, PC_ASM INTERPOLATE (or -pc_asm_type in-
terpolate) uses a limited restriction process in conjunction with a full interpolation, while PC_ASM NONE
(or -pc_asm_type none) ignores off-process values for both restriction and interpolation. The ASM
types with limited restriction or interpolation were suggested by Xiao-Chuan Cai and Marcus Sarkis [CS97].
PC_ASM RESTRICT is the PETSc default, as it saves substantial communication and for many problems has
the added benefit of requiring fewer iterations for convergence than the standard additive Schwarz method.

The user can also set the number of blocks and sizes on a per-process basis with the commands

PCBJacobiSetLocalBlocks (PC pc,PetscInt blocks,PetscInt *size);
PCASMSetLocalSubdomains (PC pc,PetscInt N,IS *is,IS *islocal);

For the ASM preconditioner one can use the following command to set the overlap to compute in constructing
the subdomains.

PCASMSetOverlap(PC pc,PetscInt overlap);

The overlap defaults to 1, so if one desires that no additional overlap be computed beyond what may
have been set with a call to PCASMSetTotalSubdomains() or PCASMSetLocalSubdomains (), then
overlap must be set to be 0. In particular, if one does not explicitly set the subdomains in an application
code, then all overlap would be computed internally by PETSc, and using an overlap of 0 would result in
an ASM variant that is equivalent to the block Jacobi preconditioner. Note that one can define initial index
sets 1s with any overlap via PCASMSetTotalSubdomains () or PCASMSetLocalSubdomains (); the
routine PCASMSetOverlap () merely allows PETSc to extend that overlap further if desired.

PCGASM is an experimental generalization of PCASM that allows the user to specify subdomains that span
multiple MPI ranks. This can be useful for problems where small subdomains result in poor convergence.
To be effective, the multirank subproblems must be solved using a sufficient strong subsolver, such as LU,
for which SuperLU DIST or a similar parallel direct solver could be used; other choices may include a
multigrid solver on the subdomains.

The interface for PCGASM is similar to that of PCASM. In particular, PCGASMType is one of PC_GASM BASIC,
PC_GASM INTERPOLATE, PC_GASM RESTRICT, PC_GASM NONE. These options have the same meaning
as with PCASM and may also be set with the options database -pc_gasm_type [basic, interpolate,
restrict, none].

Unlike PCASM, however, PCGASM allows the user to define subdomains that span multiple MPI ranks. The
simplest way to do this is using a call to PCGASMSetTotalSubdomains(PC pc,PetscInt N) with
the total number of subdomains N that is smaller than the MPI communicator size. In this case PCGASM
will coalesce size/N consecutive single-rank subdomains into a single multi-rank subdomain. The single-
rank subdomains contain the degrees of freedom corresponding to the locally-owned rows of the PCGASM
preconditioning matrix — these are the subdomains PCASM and PCGASM use by default.

Each of the multirank subdomain subproblems is defined on the subcommunicator that contains the coalesced
PCGASM ranks. In general this might not result in a very good subproblem if the single-rank problems
corresponding to the coalesced ranks are not very strongly connected. In the future this will be addressed
with a hierarchical partitioner that generates well-connected coarse subdomains first before subpartitioning
them into the single-rank subdomains.

In the meantime the wuser can provide his or her own multi-rank subdomains by calling
PCGASMSetSubdomains (PC,IS[]1,IS[]) where each of the IS objects on the list defines the inner
(without the overlap) or the outer (including the overlap) subdomain on the subcommunicator of the IS
object. A helper subroutine PCGASMCreateSubdomains2D () is similar to PCASM’s but is capable of con-
structing multi-rank subdomains that can be then used with PCGASMSetSubdomains (). An alternative
way of creating multi-rank subdomains is by using the underlying DM object, if it is capable of generating
such decompositions via DMCreateDomainDecomposition(). Ordinarily the decomposition specified
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by the user via PCGASMSetSubdomains () takes precedence, unless PCGASMSetUseDMSubdomains ()
instructs PCGASM to prefer DM-created decompositions.

Currently there is no support for increasing the overlap of multi-rank subdomains via PCGASMSetOver -
lap() — this functionality works only for subdomains that fit within a single MPI rank, exactly as in
PCASM.

Examples of the described PCGASM usage can be found in KSP Tutorial ex62. In particular,
runex62 superlu_dist illustrates the use of SuperLU DIST as the subdomain solver on coalesced
multi-rank subdomains. The runex62 2D * examples illustrate the use of PCGASMCreateSubdo-
mains2D().

Algebraic Multigrid (AMG) Preconditioners

PETSc has a native algebraic multigrid preconditioner PCGAMG — gamg — and interfaces to three external
AMG packages: hypre, ML and AMGz (CUDA platforms only), that can be downloaded in the configuration
phase (eg, - -download-hypre ) and used by specifiying that command line parameter (eg, -pc_type
hypre). Hypre is relatively monolithic in that a PETSc matrix is converted into a hypre matrix and then
hypre is called to do the entire solve. ML is more modular in that PETSc only has ML generate the coarse
grid spaces (columns of the prolongation operator), which is core of an AMG method, and then constructs
a PCMG with Galerkin coarse grid operator construction. PCGAMG is designed from the beginning to be
modular, to allow for new components to be added easily and also populates a multigrid preconditioner
PCMG so generic multigrid parameters are used (see Multigrid Preconditioners). PETSc provides a fully
supported (smoothed) aggregation AMG, but supports the addition of new methods (-pc_type gamg
-pc_gamg type agg or PCSetType(pc,PCGAMG) and PCGAMGSetType (pc, PCGAMGAGG) . Examples
of extension are a reference implementations of a classical AMG method (-pc_gamg_type classical), a
(2D) hybrid geometric AMG method (-pC_gamg_type geo) that are not supported. A 2.5D AMG method
DofColumns [ISG15] supports 2D coarsenings extruded in the third dimension. PCGAMG does require the
use of MATAIJ matrices. For instance, MATBAIJ matrices are not supported. One can use MATAIJ instead
of MATBAIJ without changing any code other than the constructor (or the -mat_type from the command
line). For instance, MatSetValuesBlocked works with MATAIJ matrices.

PCGAMG provides unsmoothed aggregation (-pc_gamg agg nsmooths 0) and smoothed aggregation
(-pc_gamg_agg nsmooths 1 or PCGAMGSetNSmooths(pc,1)). Smoothed aggregation (SA) is rec-
ommended for symmetric positive definite systems. Unsmoothed aggregation can be useful for asymmetric
problems and problems where highest eigen estimates are problematic. If poor convergence rates are observed
using the smoothed version one can test unsmoothed aggregation.

Eigenvalue estimates: The parameters for the KSP eigen estimator, used for SA, can be set with
-pc_gamg esteig ksp max it and -pc_gamg esteig ksp type. For example CG generally con-
verges to the highest eigenvalue fast than GMRES (the default for KSP) if your problem is symmet-
ric positive definite. One can specify CG with -pc_gamg esteig ksp type cg. The default for
-pc_gamg esteig ksp max_ it is 10, which we have found is pretty safe with a (default) safety fac-
tor of 1.1. One can specify the range of real eigenvalues, in the same way that one can for Chebyshev KSP
solvers (smoothers), with -pc_gamg_eigenvalues <emin,emax>. GAMG sets the MG smoother type
to chebyshev by default. By default, GAMG uses its eigen estimate, if it has one, for Chebyshev smoothers
if the smoother uses Jacobi preconditioning. This can be overridden with -pCc_gamg use sa esteig
<true, false>.

AMG methods requires knowledge of the number of degrees of freedom per vertex, the default is one (a
scalar problem). Vector problems like elasticity should set the block size of the matrix appropriately with
-mat block size bs or MatSetBlockSize(mat,bs). Equations must be ordered in “vertex-major”
ordering (e.g., T1,Y1, 21, T2, Y2, ---)-

Near null space: Smoothed aggregation requires an explicit representation of the (near) null space of
the operator for optimal performance. One can provide an orthonormal set of null space vectors with
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MatSetNearNullSpace(). The vector of all ones is the default, for each variable given by the block size
(e.g., the translational rigid body modes). For elasticity, where rotational rigid body modes are required to
complete the near null space you can use MatNullSpaceCreateRigidBody () to create the null space
vectors and then MatSetNearNullSpace().

Coarse grid data model: The GAMG framework provides for reducing the number of active processes
on coarse grids to reduce communication costs when there is not enough parallelism to keep relative com-
munication costs down. Most AMG solver reduce to just one active process on the coarsest grid (the
PETSc MG framework also supports redundantly solving the coarse grid on all processes to potentially
reduce communication costs), although this forcing to one process can be overridden if one wishes to use
a parallel coarse grid solver. GAMG generalizes this by reducing the active number of processes on other
coarse grids as well. GAMG will select the number of active processors by fitting the desired number of
equation per process (set with -pc_gamg_process _eq limit <50>,) at each level given that size of
each level. If P; < P processors are desired on a level ¢ then the first P; ranks are populated with the
grid and the remaining are empty on that grid. One can, and probably should, repartition the coarse grids
with -pc_gamg_repartition <true>, otherwise an integer process reduction factor (q) is selected and
the equations on the first ¢ processes are moved to process 0, and so on. As mentioned multigrid generally
coarsens the problem until it is small enough to be solved with an exact solver (eg, LU or SVD) in a relatively
small time. GAMG will stop coarsening when the number of equation on a grid falls below at threshold give
by -pc_gamg coarse eq limit <50>,.

Coarse grid parameters: There are several options to provide parameters to the coarsening algorithm and
parallel data layout. Run a code that uses PCGAMG with -he'lp to get full listing of GAMG parameters with
short parameter descriptions. The rate of coarsening is critical in AMG performance — too slow coarsening
will result in an overly expensive solver per iteration and too fast coarsening will result in decrease in the
convergence rate. -pCc_gamg_threshold <-1> and -pc_gamg aggressive coarsening <N> are
the primary parameters that control coarsening rates, which is very important for AMG performance. A
greedy maximal independent set (MIS) algorithm is used in coarsening. Squaring the graph implements so
called MIS-2, the root vertex in an aggregate is more than two edges away from another root vertex, instead
of more than one in MIS. The threshold parameter sets a normalized threshold for which edges are removed
from the MIS graph, thereby coarsening slower. Zero will keep all non-zero edges, a negative number will
keep zero edges, a positive number will drop small edges. Typical finite threshold values are in the range of
0.01 — 0.05. There are additional parameters for changing the weights on coarse grids.

The parallel MIS algorithms requires symmetric weights/matrix. Thus PCGAMG will automatically make
the graph symmetric if it is not symmetric. Since this has additional cost users should indicate the symme-
try of the matrices they provide by calling MatSetOption™ " (mat,  "MAT SYMMETRIC “PETSC_TRUE“
(or PETSC_FALSE)) or MatSetOption " (mat,  "MAT STRUCTURALLY SYMMETRIC “PETSC_TRUE“
(or PETSC FALSE)) . If they know that the matrix will always have symmetry, despite future
changes to the matrix (with, for example, MatSetValues()) then they should also call MatSe-
tOption " (mat,  "MAT SYMMETRY ETERNAL,“PETSC_TRUE*“ (or PETSC FALSE)) or MatSetOp-
tion™ " (mat,  "MAT STRUCTURAL SYMMETRY_ ETERNAL,“PETSC_TRUE“ (or PETSC_FALSE)). Using
this information allows the algorithm to skip the unnecessary computations.

Trouble shooting algebraic multigrid methods: If PCGAMG, ML, AMGz or hypre does not perform
well the first thing to try is one of the other methods. Often the default parameters or just the strengths of
different algorithms can fix performance problems or provide useful information to guide further debugging.
There are several sources of poor performance of AMG solvers and often special purpose methods must be
developed to achieve the full potential of multigrid. To name just a few sources of performance degradation
that may not be fixed with parameters in PETSc currently: non-elliptic operators, curl/curl operators, highly
stretched grids or highly anisotropic problems, large jumps in material coefficients with complex geometry
(AMG is particularly well suited to jumps in coefficients but it is not a perfect solution), highly incompressible
elasticity, not to mention ill-posed problems, and many others. For Grad-Div and Curl-Curl operators, you
may want to try the Auxiliary-space Maxwell Solver (AMS, -pc_type hypre -pc_hypre type ams)
or the Auxiliary-space Divergence Solver (ADS, -pc_type hypre -pc _hypre type ads) solvers.
These solvers need some additional information on the underlying mesh; specifically, AMS needs the discrete
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gradient operator, which can be specified via PCHYPRESetDiscreteGradient(). In addition to the
discrete gradient, ADS also needs the specification of the discrete curl operator, which can be set using
PCHYPRESetDiscreteCurl().

I am converging slowly, what do I do? AMG methods are sensitive to coarsening rates and methods;
for GAMG use -pc_gamg_threshold <x> or PCGAMGSetThreshold() to regulate coarsening rates,
higher values decrease coarsening rate. Squaring the graph is the second mechanism for increasing coarsening
rate. Use -pc_gamg_aggressive coarsening <N>, or PCGAMGSetAggressivelevels(pc,N), to
aggressive ly coarsen (MIS-2) the graph on the finest N levels. A high threshold (e.g., z = 0.08) will result
in an expensive but potentially powerful preconditioner, and a low threshold (e.g., x = 0.0) will result in
faster coarsening, fewer levels, cheaper solves, and generally worse convergence rates.

One can run with -info :pc and grep for PCGAMG to get statistics on each level, which can be used to
see if you are coarsening at an appropriate rate. With smoothed aggregation you generally want to coarse
at about a rate of 3:1 in each dimension. Coarsening too slow will result in large numbers of non-zeros
per row on coarse grids (this is reported). The number of non-zeros can go up very high, say about 300
(times the degrees-of-freedom per vertex) on a 3D hex mesh. One can also look at the grid complexity,
which is also reported (the ratio of the total number of matrix entries for all levels to the number of matrix
entries on the fine level). Grid complexity should be well under 2.0 and preferably around 1.3 or lower. If
convergence is poor and the Galerkin coarse grid construction is much smaller than the time for each solve
then one can safely decrease the coarsening rate. -pc_gamg_ threshold —1.0 is the simplest and most
robust option, and is recommended if poor convergence rates are observed, at least until the source of the
problem is discovered. In conclusion, if convergence is slow then decreasing the coarsening rate (increasing
the threshold) should be tried.

A note on Chebyshev smoothers. Chebyshev solvers are attractive as multigrid smoothers because they
can target a specific interval of the spectrum which is the purpose of a smoother. The spectral bounds for
Chebyshev solvers are simple to compute because they rely on the highest eigenvalue of your (diagonally
preconditioned) operator, which is conceptually simple to compute. However, if this highest eigenvalue
estimate is not accurate (too low) then the solvers can fail with and indefinite preconditioner message.
One can run with -info and grep for PCGAMG to get these estimates or use -ksp _view. These highest
eigenvalues are generally between 1.5-3.0. For symmetric positive definite systems CG is a better eigenvalue
estimator -mg_levels esteig ksp type cg. Indefinite matrix messages are often caused by bad Eigen
estimates. Explicitly damped Jacobi or Krylov smoothers can provide an alternative to Chebyshev and hypre
has alternative smoothers.

Now am I solving alright, can I expect better? If you find that you are getting nearly one digit in
reduction of the residual per iteration and are using a modest number of point smoothing steps (e.g., 1-4
iterations of SOR), then you may be fairly close to textbook multigrid efficiency. Although you also need
to check the setup costs. This can be determined by running with -1og view and check that the time for
the Galerkin coarse grid construction (MatPtAP()) is not (much) more than the time spent in each solve
(KSPSolve()). If the MatPtAP () time is too large then one can increase the coarsening rate by decreasing
the threshold and using aggressive coarsening (-pC_gamg _aggressive coarsening <N> squares the
graph on the finest N levels). Likewise if your MatPtAP () time is small and your convergence rate is not
ideal then you could decrease the coarsening rate.

PETSc’s AMG solver is constructed as a framework for developers to easily add AMG capabilities, like a new
AMG methods or an AMG component like a matrix triple product. Contact us directly if you are interested
in contributing.

It is possible but not recommended to use algebraic multigrid as a “standalone” solver, that is not accelerating
it with a Krylov method. Use a KSPType of KSPRICHARDSON (or equivalently -ksp_type richardson) to
achieve this. Using KSPPREONLY will not work since it only applies a single cycle of multigrid.
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Adaptive Interpolation

Interpolation transfers a function from the coarse space to the fine space. We would like this process to
be accurate for the functions resolved by the coarse grid, in particular the approximate solution computed
there. By default, we create these matrices using local interpolation of the fine grid dual basis functions in the
coarse basis. However, an adaptive procedure can optimize the coefficients of the interpolator to reproduce
pairs of coarse/fine functions which should approximate the lowest modes of the generalized eigenproblem

Ax = \Mzx

where A is the system matrix and M is the smoother. Note that for defect-correction MG, the interpolated
solution from the coarse space need not be as accurate as the fine solution, for the same reason that updates
in iterative refinement can be less accurate. However, in FAS or in the final interpolation step for each level
of Full Multigrid, we must have interpolation as accurate as the fine solution since we are moving the entire
solution itself.

Injection should accurately transfer the fine solution to the coarse grid. Accuracy here means that the
action of a coarse dual function on either should produce approximately the same result. In the structured
grid case, this means that we just use the same values on coarse points. This can result in aliasing.

Restriction is intended to transfer the fine residual to the coarse space. Here we use averaging (often the
transpose of the interpolation operation) to damp out the fine space contributions. Thus, it is less accurate
than injection, but avoids aliasing of the high modes.

For a multigrid cycle, the interpolator P is intended to accurately reproduce “smooth” functions from the
coarse space in the fine space, keeping the energy of the interpolant about the same. For the Laplacian on
a structured mesh, it is easy to determine what these low-frequency functions are. They are the Fourier
modes. However an arbitrary operator A will have different coarse modes that we want to resolve accurately
on the fine grid, so that our coarse solve produces a good guess for the fine problem. How do we make sure
that our interpolator P can do this?

We first must decide what we mean by accurate interpolation of some functions. Suppose we know the
continuum function f that we care about, and we are only interested in a finite element description of
discrete functions. Then the coarse function representing f is given by

FC=>"1Fe7,

2

and similarly the fine grid form is
=3 "flef.

Now we would like the interpolant of the coarse representer to the fine grid to be as close as possible to the
fine representer in a least squares sense, meaning we want to solve the minimization problem

min || f* = Pf9]
P
Now we can express P as a matrix by looking at the matrix elements P;; = ¢ qujc. Then we have

of fF =i Pf¢
ZfZF—ZPijij
J

so that our discrete optimization problem is

min || £ = > Py £l
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and we will treat each row of the interpolator as a separate optimization problem. We could allow an arbitrary
sparsity pattern, or try to determine adaptively, as is done in sparse approximate inverse preconditioning.
However, we know the supports of the basis functions in finite elements, and thus the naive sparsity pattern
from local interpolation can be used.

We note here that the BAMG framework of Brannick et al. [BBKL11] does not use fine and coarse functions
spaces, but rather a fine point/coarse point division which we will not employ here. Our general PETSc
routine should work for both since the input would be the checking set (fine basis coefficients or fine space
points) and the approximation set (coarse basis coefficients in the support or coarse points in the sparsity
pattern).

We can easily solve the above problem using QR factorization. However, there are many smooth functions
from the coarse space that we want interpolated accurately, and a single f would not constrain the values
P,;; well. Therefore, we will use several functions {f} in our minimization,

mmekaFk Z ka
:Igj?zkjwm; Z Py £l
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ij
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wo
W =
WK
F0
fi
1 = :
fF,K
i
¢o .. fCo
0 n
fC = . . .
C,K
o fnC’K
Py
pi = :
Pin
or alternatively
kk = Wk
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e = 1
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[fc]kj f
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We thus have a standard least-squares problem

ngiljl\lb—Afcllz

where
A=Wz g0
b=w2fF
T = Dpi
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which can be solved using LAPACK.

We will typically perform this optimization on a multigrid level [ when the change in eigenvalue from level
I +1 is relatively large, meaning

[\t — A4
RV

This indicates that the generalized eigenvector associated with that eigenvalue was not adequately repre-
sented by Pll 1, and the interpolator should be recomputed.

Balancing Domain Decomposition by Constraints

PETSc provides the Balancing Domain Decomposition by Constraints (PCBDDC) method for precondition-
ing parallel finite element problems stored in unassembled format (see MATIS). PCBDDC is a 2-level non-
overlapping domain decomposition method which can be easily adapted to different problems and discretiza-
tions by means of few user customizations. The application of the preconditioner to a vector consists in
the static condensation of the residual at the interior of the subdomains by means of local Dirichlet solves,
followed by an additive combination of Neumann local corrections and the solution of a global coupled coarse
problem. Command line options for the underlying KSP objects are prefixed by -pc_bddc _dirichlet,
-pc_bddc_neumann, and -pc_bddc_coarse respectively.

The current implementation supports any kind of linear system, and assumes a one-to-one mapping between
subdomains and MPI processes. Complex numbers are supported as well. For non-symmetric problems, use
the runtime option -pc_bddc_symmetric 0.

Unlike conventional non-overlapping methods that iterates just on the degrees of freedom at the in-
terface between subdomain, PCBDDC iterates on the whole set of degrees of freedom, allowing the
use of approximate subdomain solvers. When using approximate solvers, the command line switches
-pc_bddc _dirichlet approximate and/or -pc_bddc _neumann_approximate should be used to
inform PCBDDC. If any of the local problems is singular, the nullspace of the local operator should be attached
to the local matrix via MatSetNullSpace().

At the basis of the method there’s the analysis of the connected components of the interface for the detection
of vertices, edges and faces equivalence classes. Additional information on the degrees of freedom can be
supplied to PCBDDC by using the following functions:

o PCBDDCSetDofsSplitting()

« PCBDDCSetLocalAdjacencyGraph()

- PCBDDCSetPrimalVerticesLocalIS()

« PCBDDCSetNeumannBoundaries ()

« PCBDDCSetDirichletBoundaries()

- PCBDDCSetNeumannBoundariesLocal()

« PCBDDCSetDirichletBoundariesLocal()

Crucial for the convergence of the iterative process is the specification of the primal constraints to be im-
posed at the interface between subdomains. PCBDDC uses by default vertex continuities and edge arithmetic
averages, which are enough for the three-dimensional Poisson problem with constant coeflicients. The user
can switch on and off the usage of vertices, edges or face constraints by using the command line switches
-pc_bddc use vertices, -pc _bddc use edges, -pc_bddc use faces. A customization of the
constraints is available by attaching a MatNullSpace object to the preconditioning matrix via MatSetN-
earNullSpace(). The vectors of the MatNullSpace object should represent the constraints in the form
of quadrature rules; quadrature rules for different classes of the interface can be listed in the same vector.
The number of vectors of the MatNullSpace object corresponds to the maximum number of constraints
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that can be imposed for each class. Once all the quadrature rules for a given interface class have been
extracted, an SVD operation is performed to retain the non-singular modes. As an example, the rigid body
modes represent an effective choice for elasticity, even in the almost incompressible case. For particular
problems, e.g. edge-based discretization with Nedelec elements, a user defined change of basis of the degrees
of freedom can be beneficial for PCBDDC; use PCBDDCSetChangeOfBasisMat () to customize the change
of basis.

The PCBDDC method is usually robust with respect to jumps in the material parameters aligned with the
interface; for PDEs with more than one material parameter you may also consider to use the so-called
deluxe scaling, available via the command line switch -pc_bddc_use deluxe scaling. Other scal-
ings are available, see PCISSetSubdomainScalingFactor(), PCISSetSubdomainDiagonalScal-
ing() or PCISSetUseStiffnessScaling(). However, the convergence properties of the PCBDDC
method degrades in presence of large jumps in the material coefficients not aligned with the interface;
for such cases, PETSc has the capability of adaptively computing the primal constraints. Adaptive
selection of constraints could be requested by specifying a threshold value at command line by using
-pc_bddc_adaptive threshold x. Valid values for the threshold X ranges from 1 to infinity, with
smaller values corresponding to more robust preconditioners. For SPD problems in 2D, or in 3D with only
face degrees of freedom (like in the case of Raviart-Thomas or Brezzi-Douglas-Marini elements), such a
threshold is a very accurate estimator of the condition number of the resulting preconditioned operator.
Since the adaptive selection of constraints for PCBDDC* methods is still an active topic of research, its
implementation is currently limited to SPD problems; moreover, because the technique requires the explicit
knowledge of the local Schur complements, it needs the external package MUMPS.

When solving problems decomposed in thousands of subdomains or more, the solution of the PCBDDC coarse
problem could become a bottleneck; in order to overcome this issue, the user could either consider to solve
the parallel coarse problem on a subset of the communicator associated with PCBDDC by using the command
line switch -pc_bddc_coarse redistribute, or instead use a multilevel approach. The latter can
be requested by specifying the number of requested level at command line (-pc_bddc_levels) or by
using PCBDDCSetLevels (). An additional parameter (see PCBDDCSetCoarseningRatio()) controls
the number of subdomains that will be generated at the next level; the larger the coarsening ratio, the lower
the number of coarser subdomains.

For further details, see the example KSP Tutorial ex59 and the online documentation for PCBDDC.
Shell Preconditioners

The shell preconditioner simply uses an application-provided routine to implement the preconditioner. To
set this routine, one uses the command

PCShellSetApply(PC pc,PetscErrorCode (*apply) (PC,Vec,Vec));

Often a preconditioner needs access to an application-provided data structured. For this, one should use

PCShellSetContext (PC pc,void *ctx);

to set this data structure and

PCShellGetContext (PC pc,void *ctx);

to retrieve it in apply. The three routine arguments of apply () are the PC, the input vector, and the
output vector, respectively.

For a preconditioner that requires some sort of “setup” before being used, that requires a new setup every
time the operator is changed, one can provide a routine that is called every time the operator is changed
(usually via KSPSetOperators()).

90 Chapter 2. The Solvers in PETSc/TAO



PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ksp/ksp/tutorials/ex59.c

PETSc/TAO Users Manual, Release 3.20.1

PCShellSetSetUp(PC pc,PetscErrorCode (*setup)(PC));

The argument to the setup routine is the same PC object which can be used to obtain the operators with
PCGetOperators() and the application-provided data structure that was set with PCShellSetCon-
text().

Combining Preconditioners

The PC type PCCOMPOSITE allows one to form new preconditioners by combining already-defined precondi-
tioners and solvers. Combining preconditioners usually requires some experimentation to find a combination
of preconditioners that works better than any single method. It is a tricky business and is not recommended
until your application code is complete and running and you are trying to improve performance. In many
cases using a single preconditioner is better than a combination; an exception is the multigrid /multilevel
preconditioners (solvers) that are always combinations of some sort, see Multigrid Preconditioners.

Let B; and By represent the application of two preconditioners of type typel and type2. The precondi-
tioner B = By + By can be obtained with

PCSetType(pc, PCCOMPOSITE) ;
PCCompositeAddPCType(pc,typel);
PCCompositeAddPCType(pc, type2);

Any number of preconditioners may added in this way.

This way of combining preconditioners is called additive, since the actions of the preconditioners are added
together. This is the default behavior. An alternative can be set with the option

PCCompositeSetType(pc,PC_COMPOSITE MULTIPLICATIVE);

In this form the new residual is updated after the application of each preconditioner and the next precondi-
tioner applied to the next residual. For example, with two composed preconditioners: B; and Bs; y = Bx
is obtained from

y:Blli
w; =z — Ay
y =y + Bawn

Loosely, this corresponds to a Gauss-Seidel iteration, while additive corresponds to a Jacobi iteration.

Under most circumstances, the multiplicative form requires one-half the number of iterations as the additive
form; however, the multiplicative form does require the application of A inside the preconditioner.

In the multiplicative version, the calculation of the residual inside the preconditioner can be done in two
ways: using the original linear system matrix or using the matrix used to build the preconditioners By, B,
etc. By default it uses the “preconditioner matrix”, to use the Amat matrix use the option

PCSetUseAmat (PC pc);

The individual preconditioners can be accessed (in order to set options) via

PCCompositeGetPC(PC pc,PetscInt count,PC *subpc);

For example, to set the first sub preconditioners to use ILU(1)

PC subpc;
PCCompositeGetPC(pc,0,&subpc);
PCFactorSetFill(subpc,1);
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One can also change the operator that is used to construct a particular PC in the composite PC call
PCSetOperators() on the obtained PC.

These various options can also be set via the options database. For example, -pc_type composite
-pc_composite pcs jacobi,ilu causes the composite preconditioner to be used with two precondition-
ers: Jacobi and ILU. The option -pc_composite typemultiplicative initiates the multiplicative ver-
sion of the algorithm, while -pc_composite type additive the additive version. Using the Amat matrix
is obtained with the option -pc_use_amat. One sets options for the sub-preconditioners with the extra pre-
fix -sub N where N is the number of the sub-preconditioner. For example, -sub 0 pc_ifactor fill
0.

PETSc also allows a preconditioner to be a complete linear solver. This is achieved with the PCKSP type.

PCSetType(PC pc,PCKSP PCKSP);
PCKSPGetKSP (pc, &ksp) ;
/* set any KSP/PC options */

From the command line one can use 5 iterations of biCG-stab with ILU(0) preconditioning as the precondi-

tioner with -pc_type ksp -ksp pc type ilu -ksp ksp max it 5 -ksp ksp type bcgs.

By default the inner KSP solver uses the outer preconditioner matrix, Pmat, as the matrix to be solved in
the linear system; to use the matrix that defines the linear system, Amat use the option

PCSetUseAmat (PC pc);

or at the command line with -pc_use_amat.

Naturally, one can use a PCKSP preconditioner inside a composite preconditioner. For example, -pc_type
composite -pc_composite pcs ilu,ksp -sub 1 pc type jacobi -sub 1 ksp max it 10
uses two preconditioners: ILU(0) and 10 iterations of GMRES with Jacobi preconditioning. However, it is
not clear whether one would ever wish to do such a thing.

Multigrid Preconditioners

A large suite of routines is available for using geometric multigrid as a preconditioner®. In the PC framework,
the user is required to provide the coarse grid solver, smoothers, restriction and interpolation operators, and
code to calculate residuals. The PC package allows these components to be encapsulated within a PETSc-
compliant preconditioner. We fully support both matrix-free and matrix-based multigrid solvers.

A multigrid preconditioner is created with the four commands

KSPCreate (MPI_Comm comm,KSP *ksp);

KSPGetPC(KSP ksp,PC *pc);

PCSetType(PC pc,PCMG);

PCMGSetLevels(pc,PetscInt levels,MPI Comm *comms);

A large number of parameters affect the multigrid behavior. The command

PCMGSetType(PC pc,PCMGType mode);

indicates which form of multigrid to apply [SBjorstadG96].

For standard V or W-cycle multigrids, one sets the mode to be PC_ MG MULTIPLICATIVE; for the additive
form (which in certain cases reduces to the BPX method, or additive multilevel Schwarz, or multilevel
diagonal scaling), one uses PC_MG_ADDITIVE as the mode. For a variant of full multigrid, one can use
PC MG FULL, and for the Kaskade algorithm PC_MG_KASKADE. For the multiplicative and full multigrid
options, one can use a W-cycle by calling

2 See Algebraic Multigrid (AMG) Preconditioners for information on using algebraic multigrid.
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PCMGSetCycleType(PC pc,PCMGCycleType ctype);

with a value of PC_MG_CYCLE W for ctype. The commands above can also be set from the options
database. The option names are -pc_mg_type [multiplicative, additive, full, kaskade],
and -pc_mg_cycle type <ctype>.

The user can control the amount of smoothing by configuring the solvers on the levels. By default, the up
and down smoothers are identical. If separate configuration of up and down smooths is required, it can be
requested with the option -pc_mg distinct smoothup or the routine

PCMGSetDistinctSmoothUp (PC pc);

The multigrid routines, which determine the solvers and interpolation/restriction operators that are used,
are mandatory. To set the coarse grid solver, one must call

PCMGGetCoarseSolve(PC pc,KSP *ksp);

and set the appropriate options in Ksp. Similarly, the smoothers are controlled by first calling

PCMGGetSmoother(PC pc,PetscInt level,KSP *ksp);

and then setting the various options in the KsSp. For example,

PCMGGetSmoother(pc,1,8&ksp);
KSPSetOperators(ksp,Al,Al);

sets the matrix that defines the smoother on level 1 of the multigrid. While

PCMGGetSmoother(pc,1,&ksp);
KSPGetPC(ksp,&pc);
PCSetType(pc,PCSOR) ;

sets SOR as the smoother to use on level 1.

To use a different pre- or postsmoother, one should call the following routines instead.

PCMGGetSmootherUp(PC pc,PetscInt level,KSP *upksp);
PCMGGetSmootherDown (PC pc,PetscInt level,KSP *downksp);

Use

PCMGSetInterpolation(PC pc,PetscInt level,Mat P);

and

PCMGSetRestriction(PC pc,PetscInt level,Mat R);

to define the intergrid transfer operations. If only one of these is set, its transpose will be used for the other.

It is possible for these interpolation operations to be matrix-free (see Matriz-Free Matrices); One should
then make sure that these operations are defined for the (matrix-free) matrices passed in. Note that this
system is arranged so that if the interpolation is the transpose of the restriction, you can pass the same mat
argument to both PCMGSetRestriction() and PCMGSetInterpolation().

On each level except the coarsest, one must also set the routine to compute the residual. The following
command suffices:
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PCMGSetResidual(PC pc,PetscInt level,PetscErrorCode (*residual)(Mat,Vec,Vec,Vec),Mat,
—mat);

The residual() function normally does not need to be set if one’s operator is stored in Mat format. In
certain circumstances, where it is much cheaper to calculate the residual directly, rather than through the
usual formula b — Az, the user may wish to provide an alternative.

Finally, the user may provide three work vectors for each level (except on the finest, where only the residual
work vector is required). The work vectors are set with the commands

PCMGSetRhs (PC pc,PetscInt level,Vec b);
PCMGSetX(PC pc,PetscInt level,Vec x);
PCMGSetR(PC pc,PetscInt level,Vec r);

The PC references these vectors, so you should call VecDestroy() when you are finished with them. If
any of these vectors are not provided, the preconditioner will allocate them.

One can control the KSP and PC options used on the various levels (as well as the coarse grid) using the
prefix mg_levels (mg_coarse_for the coarse grid). For example, -mg_levels ksp type cg will
cause the CG method to be used as the Krylov method for each level. Or -mg_levels pc type ilu
-mg_levels pc factor_levels 2 will cause the ILU preconditioner to be used on each level with two
levels of fill in the incomplete factorization.

2.3.5 Solving Block Matrices

Block matrices represent an important class of problems in numerical linear algebra and offer the possibility
of far more efficient iterative solvers than just treating the entire matrix as black box. In this section we use
the common linear algebra definition of block matrices where matrices are divided in a small, problem-size
independent (two, three or so) number of very large blocks. These blocks arise naturally from the underlying
physics or discretization of the problem, for example, the velocity and pressure. Under a certain numbering
of unknowns the matrix can be written as

Agg Aor Az Aos
Ay A A Ags
Asg Az Axy Az |7
Aszg Az Azx Ass

where each A;; is an entire block. On a parallel computer the matrices are not explicitly stored this way.
Instead, each process will own some of the rows of Ag., A1« etc. On a process, the blocks may be stored one
block followed by another

AOOoo A0001 A0002 e AOloo A0102
A()()lo AO(]H AOO12 .o A()llo A(]112
A0020 A0021 A0022 A0120 A0122
Alooo A1001 A1002 Alloo A1102

A1010 A1011 Alolg A1110 A1112

or interlaced, for example with two blocks
AOOOO Aoloo A0001 AOlol
A1000 Alloo A1001 A1101

Aoy Aoty Aooy,  Aorg,
A1010 Alllo A1011 A1111
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Note that for interlaced storage the number of rows/columns of each block must be the same size. Matrices
obtained with DMCreateMatrix () where the DM is a DMDA are always stored interlaced. Block matrices
can also be stored using the MATNEST format which holds separate assembled blocks. Each of these nested
matrices is itself distributed in parallel. It is more efficient to use MATNEST with the methods described in
this section because there are fewer copies and better formats (e.g. MATBAIJ or MATSBAIJ) can be used
for the components, but it is not possible to use many other methods with MATNEST. See Block Matrices for
more on assembling block matrices without depending on a specific matrix format.

The PETSc PCFIELDSPLIT preconditioner is used to implement the “block” solvers in PETSc. There
are three ways to provide the information that defines the blocks. If the matrices are stored as interlaced
then PCFieldSplitSetFields() can be called repeatedly to indicate which fields belong to each block.
More generally PCFieldSplitSetIS() can be used to indicate exactly which rows/columns of the matrix
belong to a particular block. You can provide names for each block with these routines, if you do not provide
names they are numbered from 0. With these two approaches the blocks may overlap (though generally they
will not). If only one block is defined then the complement of the matrices is used to define the other block.
Finally the option -pc_fieldsplit detect saddle point causes two diagonal blocks to be found,
one associated with all rows/columns that have zeros on the diagonals and the rest.

For simplicity in the rest of the section we restrict our matrices to two-by-two blocks. So the matrix is

Ao Aot
A Aun )

On occasion the user may provide another matrix that is used to construct parts of the preconditioner

Apoo  Apor
Apro Apun )’
For notational simplicity define ksp(A, Ap) to mean approximately solving a linear system using KSP with

operator A and preconditioner built from matrix Ap.

For matrices defined with any number of blocks there are three “block” algorithms available: block Jacobi,

< ksp(Aoo, Apoo) 0 >
0 ksp(A11, Ap11)

block Gauss-Seidel,

I 0 I 0 Ay 0
0 A —Ap I 0 I
which is implemented® as

(0 smtanann ) (0 7) (e 50) Gon)J (7 1)

and symmetric block Gauss-Seidel

Ay 0 I —Ayp A O I 0 Ay 0
0 I 0o I 0  Ap ~Ay I 0o I)°

These can be accessed with -pc_fieldsplit type<additive,multiplicative,
symmetric multiplicative> or the function PCFieldSplitSetType(). The option prefixes
for the internal KSPs are given by -fieldsplit name .

By default blocks Agg, Ap1 and so on are extracted out of Pmat, the matrix that the KSP uses to build
the preconditioner, and not out of Amat (i.e., A itself). As discussed above in Combining Preconditioners,

3 This may seem an odd way to implement since it involves the “extra” multiply by —A11. The reason is this is implemented
this way is that this approach works for any number of blocks that may overlap.
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however, it is possible to use Amat instead of Pmat by calling PCSetUseAmat (pc) or using -pCc_use amat
on the command line. Alternatively, you can have PCFIELDSPLIT extract the diagonal blocks Agg, A11 etc.
out of Amat by calling PCFieldSplitSetDiagUseAmat (pc,PETSC TRUE) or supplying command-line
argument -pc_fieldsplit diag use amat. Similarly, PCFieldSplitSetOffDiagUseAmat (pc,
{PETSC_TRUE) or -pc_fieldsplit off diag use amat will cause the off-diagonal blocks Agi, A1
etc. to be extracted out of Amat.

For two-by-two blocks only, there is another family of solvers, based on Schur complements. The inverse of
the Schur complement factorization is

AO I AglAe \]7°
AmAgO 0 I
I A001A01 A—01 I o0\
0 0 N AloAgol I
I —AOO Apy Ay I 0
0 0 S ! ~ApAy T

Ay 0 I —Ap Ay O I 0 Ay 0
0 I 0 I 0o St —Ayp I 0o I)

The preconditioner is accessed with -pc_fieldsplit type schur and is implemented as

kSp(Aoo,Apoo) 0 I —A01 1 Q R I 0
0 I 0 I 0 ksp(S,Sp) —Aioksp(Aoo, Apoo) I )

Where S = Aj; — A10ksp(Ago, Apoo) Ao is the approximate Schur complement.

There are several variants of the Schur complement preconditioner obtained by dropping some of the terms,
these can be obtained with -pc_fieldsplit schur fact type <diag, lower,upper, full> or the
function PCFieldSplitSetSchurFactType(). Note that the diag form uses the preconditioner

kSP(Aoo, Apoo) OA R
0 —kSp(S, Sp) .

This is done to ensure the preconditioner is positive definite for a common class of problems, saddle points
with a positive definite Agg: for these the Schur complement is negative definite.

The effectiveness of the Schur complement preconditioner depends on the availability of a good precon-
ditioner Sp for the Schur complement matrix. In general, you are responsible for supplying Sp via
PCFieldSplitSetSchurPre(pc,PC FIELDSPLIT SCHUR PRE_USER,Sp). In the absence of a good
problem-specific S’p, you can use some of the built-in options.

Using -pc_fieldsplit schur precondition user on the command line activates the matrix sup-
plied programmatically as explained above.

With -pc_fieldsplit _schur precondition all (default) Sp = Aj is used to build a preconditioner
for S.

Otherwise, -pc_fieldsplit schur precondition self will set Sp = S and use the Schur comple-
ment matrix itself to build the preconditioner.

The problem with the last approach is that S is used in unassembled, matrix-free form, and many precondi-
tioners (e.g., ILU) cannot be built out of such matrices. Instead, you can assemble an approximation to S by
inverting Agp, but only approximately, so as to ensure the sparsity of S’p as much as possible. Specifically,
using -pc_fieldsplit schur precondition selfp will assemble Sp= Ay — Ajpinv(Ago) Ao

By  default  inv(Agy) is  the inverse of the  diagonal of = Ago, but  using
-fieldsplit 1 mat schur complement ainv_type  lump will lump Ago first. Using
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-fieldsplit 1 mat schur complement ainv type blockdiag will use the inverse of the
block diagonal of Agg. Option -mat _schur complement ainv_ type applies to any matrix of
MatSchurComplement type and here it is used with the prefix - fieldsplit 1 of the linear system in
the second split.

Finally, you can use the PCLSC preconditioner for the Schur complement with -pc_fieldsplit type
schur -fieldsplit 1 pc type lsc. This uses for the preconditioner to S the operator

ksp(A10Ao1, A10Ao1)Ar0AooAoiksp(Ai0Aor, A1oAor)

which, of course, introduces two additional inner solves for each application of the Schur complement. The
options prefix for this inner KSP is - fieldsplit 1 1sc . Instead of constructing the matrix AjgAg; the
user can provide their own matrix. This is done by attaching the matrix/matrices to the Sp matrix they
provide with

PetscObjectCompose( (PetscObject)Sp,"LSC L", (PetscObject)L);
PetscObjectCompose( (PetscObject)Sp,"LSC Lp", (PetscObject)Lp);

2.3.6 Solving Singular Systems

Sometimes one is required to solver singular linear systems. In this case, the system matrix has a nontrivial
null space. For example, the discretization of the Laplacian operator with Neumann boundary conditions
has a null space of the constant functions. PETSc has tools to help solve these systems. This approach is
only guaranteed to work for left preconditioning (see KSPSetPCSide()); for example it may not work in
some situations with KSPFGMRES.

First, one must know what the null space is and store it using an orthonormal basis in an array of PETSc
Vecs. The constant functions can be handled separately, since they are such a common case. Create a
MatNullSpace object with the command

MatNullSpaceCreate(MPI_Comm,PetscBool hasconstants,PetscInt dim,Vec *basis,
—MatNullSpace *nsp);

Here, dim is the number of vectors in basis and hasconstants indicates if the null space contains the
constant functions. If the null space contains the constant functions you do not need to include it in the
basis vectors you provide, nor in the count dim.

One then tells the KSP object you are using what the null space is with the call

MatSetNullSpace(Mat Amat,MatNullSpace nsp);

The Amat should be the first matrix argument used with KSPSetOperators(), SNESSetJacobian(),
or TSSetIJacobian(). The PETSc solvers will now handle the null space during the solution process.

If the right hand side of linear system is not in the range of Amat, that is it is not orthogonal to the null space
of Amat transpose, then the residual norm of the Krylov iteration will not converge to zero; it will converge
to a non-zero value while the solution is converging to the least squares solution of the linear system. One
can, if one desires, apply MatNullSpaceRemove() with the null space of Amat transpose to the right
hand side before calling KSPSolve (). Then the residual norm will converge to zero.

If one chooses a direct solver (or an incomplete factorization) it may still detect a zero pivot. You can
run with the additional options or -pc_factor shift type NONZERO -pc factor shift amount
<dampingfactor> to prevent the zero pivot. A good choice for the dampingfactor is 1.e-10.

If the matrix is non-symmetric and you wish to solve the transposed linear system you must provide the null
space of the transposed matrix with MatSetTransposeNullSpace().
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2.3.7 Using External Linear Solvers

PETSc interfaces to several external linear solvers (also see acknowledgements). To use these solvers,
one may:

1.

Run configure with the additional options --download-packagename e.g.
--download-superlu dist --download-parmetis (SuperLU_DIST needs ParMetis) or
- -download-mumps --download-scalapack (MUMPS requires ScaLAPACK).

Build the PETSc libraries.
Use the runtime option: -ksp_ type preonly (or equivalently -ksp type none) -pc_type

<pctype> -pc_factor mat solver type <packagename>. For eg: -ksp type preonly
-pc_type lu -pc_factor mat solver type superlu dist.
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Table 2.7: Options for External Solvers

MatType PCType MatSolverType Package

segaij lu MATSOLVERESSL essl

segaij lu MATSOLVERLUSOL lusol

segaij lu MATSOLVERMATLAB matlab

aij lu MATSOLVERMUMPS mumps

aij cholesky . .

sbaij cholesky . .

seqaij lu MATSOLVERSUPERLU superlu

aij lu MATSOLVERSU - superlu_dist
PERLU DIST

seqaij lu MATSOLVERUMFPACK umfpack

segaij cholesky MATSOLVERCHOLMOD cholmod

segaij lu MATSOLVERKLU klu

dense lu MATSOLVERELEMEN - elemental
TAL

dense cholesky . .

segaij lu MAT - mkl pardiso
SOLVERMKL PARDISO

aij lu MAT - mkl cpardiso
SOLVERMKL CPARDISO

aij lu MATSOLVERPASTIX pastix

aij cholesky MATSOLVERBAS bas

aijcusparse lu MATSOLVERCUSPARSE | cusparse

aijcusparse cholesky . .

aij lu, cholesky MATSOLVERPETSC petsc

baij L] L] L]

aijcrl . . .

aijperm . . .

seqdense . . .

aij L] L[] L[]

balJ L] L[] L]

aijcrl . . .

aijperm . . .

seqdense . . .
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The default and available input options for each external software can be found by specifying -help at
runtime.

As an alternative to using runtime flags to employ these external packages, procedural calls are provided for
some packages. For example, the following procedural calls are equivalent to runtime options -ksp_type
preonly (or equivalently -ksp type none) -pc_type lu -pc_factor mat solver type mumps
-mat mumps icntl 7 3:

KSPSetType (ksp,KSPPREONLY); (or equivalently KSPSetType(ksp,KSPNONE))
KSPGetPC(ksp,&pc);

PCSetType(pc,PCLU);

PCFactorSetMatSolverType(pc,MATSOLVERMUMPS) ;
PCFactorSetUpMatSolverType(pc);

PCFactorGetMatrix(pc,&F);

icntl=7; ival = 3;

MatMumpsSetIcntl(F,icntl,ival);

One can also create matrices with the appropriate capabilities by calling MatCreate() followed by Mat -
SetType() specifying the desired matrix type from Options for External Solvers. These matrix types
inherit capabilities from their PETSc matrix parents: MATSEQAIJ, MATMPIAIJ, etc. As a result, the preal-
location routines MatSeqAIJSetPreallocation(), MatMPIAIJSetPreallocation(), etc. and any
other type specific routines of the base class are supported. One can also call MatConvert () inplace to
convert the matrix to and from its base class without performing an expensive data copy. MatConvert ()
cannot be called on matrices that have already been factored.

In Options for External Solvers, the base class aij refers to the fact that inheritance is based on MATSEQAIJ
when constructed with a single process communicator, and from MATMPIAIJ otherwise. The same holds for
baij and sbaij. For codes that are intended to be run as both a single process or with multiple processes,
depending on the mpiexec command, it is recommended that both sets of preallocation routines are called
for these communicator morphing types. The call for the incorrect type will simply be ignored without any
harm or message.

2.3.8 Using PETSc’s MPI parallel linear solvers from a non-MPI pro-
gram

Using PETSc’s MPI linear solver server it is possible to use multiple MPI processes to solve a a linear system
when the application code, including the matrix generation, is run on a single MPI rank (with or without
OpenMP). The application code must be built with MPI and must call PetscInitialize() at the very
beginning of the program and end with PetscFinalize(). The application code may utilize OpenMP.
The code may create multiple matrices and KSP objects and call KSPSolve(), similarly the code may utilize
the SNES nonlinear solvers, the T'S ODE integrators, and the TAO optimization algorithms which use KSP.

The program must then be launched using the standard approaches for launching MPI programs with the
additional PETSc option -mpi linear solver server. The linear solves are controlled via the options
database in the usual manner (using any options prefix you may have provided via KSPSetOptionsPre-
fix (), for example -ksp_type cg -ksp monitor -pc type bjacobi -ksp view. The solver
options cannot be set via the functional interface, for example KSPSetType() etc.

The option -mpi_ linear solver server view will print a summary of all the systems solved by the
MPIT linear solver server when the program completes. By default the linear solver server will only parallelize
the linear solve to the extent that it believes is appropriate to obtain speedup for the parallel solve, for
example, if the matrix has 1,000 rows and columns the solution will not be parallelized by default. One can
use the option -mpi linear solver server minimum count per rank 5000 to cause the linear
solver server to allow as few as 5,000 unknowns per rank in the parallel solve.

See PCMPI, PCMPIServerBegin(), and PCMPIServerEnd () for more details on the solvers.
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Amdahl’s law makes clear that parallelizing only a portion of a numerical code can only provide a limited
improvement in the computation time; thus it is crucial to understand what phases of a computation must
be parallelized (via MPI, OpenMP, or some other model) to ensure a useful increase in performance. One of
the crucial phases is likely the generation of the matrix entries; the use of MatSetPreallocationCO00()
and MatSetValuesCO0() in an OpenMP code allows parallelizing the generation of the matrix.

References

2.4 SNES: Nonlinear Solvers

Note: This chapter is being cleaned up by Jed Brown. Contributions are welcome.

The solution of large-scale nonlinear problems pervades many facets of computational science and demands
robust and flexible solution strategies. The SNES library of PETSc provides a powerful suite of data-
structure-neutral numerical routines for such problems. Built on top of the linear solvers and data structures
discussed in preceding chapters, SNES enables the user to easily customize the nonlinear solvers according to
the application at hand. Also, the SNES interface is identical for the uniprocess and parallel cases; the only
difference in the parallel version is that each process typically forms only its local contribution to various
matrices and vectors.

The SNES class includes methods for solving systems of nonlinear equations of the form
F(x) =0, (2.3)

where F : R — R". Newton-like methods provide the core of the package, including both line search and
trust region techniques. A suite of nonlinear Krylov methods and methods based upon problem decompo-
sition are also included. The solvers are discussed further in The Nonlinear Solvers. Following the PETSc
design philosophy, the interfaces to the various solvers are all virtually identical. In addition, the SNES
software is completely flexible, so that the user can at runtime change any facet of the solution process.

PETSc’s default method for solving the nonlinear equation is Newton’s method. The general form of the
n-dimensional Newton’s method for solving (2.3) is

Xpr1 = xp — J(xp) 'F(xz), E=0,1,..., (2.4)

where xq is an initial approximation to the solution and J(x;) = F/(x), the Jacobian, is nonsingular at each
iteration. In practice, the Newton iteration (2.4) is implemented by the following two steps:

1.(Approximately) solve J(xj)Ax; = —F(xx).
2.Update Xp4+1 < X + Axy,.

Other defect-correction algorithms can be implemented by using different choices for J(xg).

2.4.1 Basic SNES Usage

In the simplest usage of the nonlinear solvers, the user must merely provide a C, C+++, or Fortran routine
to evaluate the nonlinear function (2.3). The corresponding Jacobian matrix can be approximated with
finite differences. For codes that are typically more efficient and accurate, the user can provide a routine to
compute the Jacobian; details regarding these application-provided routines are discussed below. To provide
an overview of the use of the nonlinear solvers, browse the concrete example in exl.c or skip ahead to the
discussion.

Listing: src/snes/tutorials/exl.c
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static char help[] = "Newton's method for a two-variable system, sequential.\n\n";

/*
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petscsys.h - base PETSc routines  petscvec.h - vectors
petscmat.h - matrices
petscis.h - 1ndex sets petscksp.h - Krylov subspace methods
petscviewer.h - viewers petscpc.h - preconditioners
petscksp.h - linear solvers

*/

/*F

This examples solves either

\begin{equation}

Figenfrac{(}{)}{Opt}{}{x O}{x 1} = \genfrac{(}{)}HOpt}{}{x*2 0 + x 0 x 1 - 3}{x 0 x_
1+ x"2 1 - 6}
\end{equation}
or i1f the {\tt -hard} options is given
\begin{equation}
Figenfrac{ (}{) HOpt}{}{x_0}{x_1} = \genfrac{(}{)}{Opt}{}{\sin(3 x_0) + x_0}{x_1}
\end{equation}
F*/
#include <petscsnes. h>

/*

User-defined routines
*/
extern PetscErrorCode FormJacobianl(SNES, Vec, Mat, Mat, void *);
extern PetscErrorCode FormFunctionl(SNES, Vec, Vec, void *);
extern PetscErrorCode FormJacobian2(SNES, Vec, Mat, Mat, void *);
extern PetscErrorCode FormFunction2(SNES, Vec, Vec, void *);

int main(int argc, char **argv)

{
SNES snes; /* nonlinear solver context */
KSP ksp; /* linear solver context */
PC pc; /* preconditioner context */
Vec X, r; /* solution, residual vectors */
Mat J; /* Jacobian matrix */
PetscMPIInt size;
PetscScalar pfive = .5, *xx;

PetscBool flg;

PetscFunctionBeginUser;

PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));

PetscCallMPI(MPI Comm size(PETSC COMM WORLD, &size));

PetscCheck(size == 1, PETSC COMM WORLD, PETSC ERR WRONG MPI SIZE, "Example is only,,
—for sequential runs");

___________________ R T R O 4

PetscCall(SNESSetType(snes, SNESNEWTONLS));
PetscCall(SNESSetOptionsPrefix(snes, "mysolver "));

(continues on next page)
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(continued from previous page)

Create matrix and vector data structures; set corresponding routines
/* -------------------

Create vectors for solution and nonlinear function
*/
PetscCall(VecCreate(PETSC COMM WORLD, &x));
PetscCall(VecSetSizes(x, PETSC DECIDE, 2));
PetscCall(VecSetFromOptions(x));
PetscCall(VecDuplicate(x, &r));

*/

/*
Create Jacobian matrix data structure
*/

PetscCall
PetscCall
PetscCall
PetscCall

_— e~ o~ —~

MatCreate(PETSC_COMM WORLD, &J));

MatSetSizes(J, PETSC DECIDE, PETSC DECIDE, 2, 2));
MatSetFromOptions(J));

MatSetUp(J));

PetscCall(PetscOptionsHasName (NULL, NULL, "-hard", &flg));

if (!flg) {

/*

Set function evaluation routine and vector.

*/

PetscCall(SNESSetFunction(snes, r, FormFunctionl, NULL));

/*

Set Jacobian matrix data structure and Jacobian evaluation routine

*/

PetscCall(SNESSetJacobian(snes, J, J, FormJacobianl, NULL));
} else {

PetscCall(SNESSetFunction(snes, r, FormFunction2, NULL));

PetscCall(SNESSetJacobian(snes, J, J, FormJacobian2, NULL));

Set linear solver defaults for this problem. By extracting the
KSP and PC contexts from the SNES context, we can then
directly call any KSP and PC routines to set various options.
*/
PetscCall(SNESGetKSP(snes, &ksp));
PetscCall(KSPGetPC(ksp, &pc));
PetscCall(PCSetType(pc, PCNONE));
PetscCall(KSPSetTolerances(ksp, 1.e-4, PETSC DEFAULT, PETSC DEFAULT, 20));

/*

Set SNES/KSP/KSP/PC runtime options, e.g.,
-snes _view -snes _monitor -ksp type <ksp> -pc type <pc>

These options will override those specified above as long as
SNESSetFromOptions() is called after any other customization
routines.

*/

PetscCall(SNESSetFromOptions(snes));

(continues on next page)
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/* ____________ oo oo oo oo oo oo e e e e e e e e e
Evaluate initial guess; then solve nonlinear system
________________ ___________________*/
if (!'flg) {
PetscCall(VecSet(x, pfive));
} else {
PetscCall(VecGetArray(x, &xx));
xX[0] = 2.0;
xx[1] = 3.0;
PetscCall(VecRestoreArray(x, &xx));
}
/*

Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/

PetscCall(SNESSolve(snes, NULL, x));
if (flg) {
Vec f;
PetscCall(VecView(x, PETSC_VIEWER STDOUT WORLD));
PetscCall(SNESGetFunction(snes, &f, 0, 0));
PetscCall(VecView(r, PETSC VIEWER STDOUT WORLD));
}

/* ______________ S e e e e e e e e e e e e e e e e e e -
Free work space. All PETSc objects should be destroyed when they
are no longer needed.

PetscCall(VecDestroy(&x));
PetscCall(VecDestroy(&r));
PetscCall(MatDestroy(&J));
PetscCall(SNESDestroy(&snes));
PetscCall(PetscFinalize());
return 0;

FormFunctionl - Evaluates nonlinear function, F(x).

Input Parameters:

snes - the SNES context

X - Input vector

ctx - optional user-defined context

Output Parameter:

. f - function vector
*/

PetscErrorCode FormFunctionl(SNES snes, Vec x, Vec f, void *ctx)

{
const PetscScalar *xx;
PetscScalar *ff;

PetscFunctionBeginUser;

(continues on next page)
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(continued from previous page)

/*
Get pointers to vector data.
- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.
- You MUST call VecRestoreArray() when you no longer need access to
the array.
*/
PetscCall(VecGetArrayRead(x, &xx));
PetscCall(VecGetArray(f, &ff));

/* Compute function */
ff[0o] xx[0] * xx[0] + xx[0] * xx[1] - 3.0;
ff[1] xX[0] * xx[1] + xx[1] * xx[1] - 6.0;

/* Restore vectors */
PetscCall(VecRestoreArrayRead(x, &xx));
PetscCall(VecRestoreArray(f, &ff));
PetscFunctionReturn(PETSC SUCCESS);

FormJacobianl - Evaluates Jacobian matrix.

Input Parameters:

snes - the SNES context

X - 1nput vector

dummy - optional user-defined context (not used here)

Output Parameters:

jac - Jacobian matrix

B - optionally different preconditioning matrix
. flag - flag indicating matrix structure

*/
PetscErrorCode FormJacobianl(SNES snes, Vec x, Mat jac, Mat B, void *dummy)

{

const PetscScalar *xx;

PetscScalar Al4];
PetscInt idx[2] = {0, 1};
PetscFunctionBeginUser;
/*
Get pointer to vector data
*/

PetscCall(VecGetArrayRead(x, &xx));

/*
Compute Jacobian entries and insert into matrix.
- Since this is such a small problem, we set all entries for
the matrix at once.

*/

A[0] = 2.0 * xx[0] + xx[1];
A[1] = xx[0];

A[2] = xx[1];

A[3] = xx[0] + 2.0 * xx[1];

PetscCall(MatSetValues(B, 2, idx, 2, idx, A, INSERT VALUES));

(continues on next page)
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/*
Restore vector
*/
PetscCall(VecRestoreArrayRead(x, &xx));

/*
Assemble matrix
*/
PetscCall(MatAssemblyBegin(B, MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd (B, MAT FINAL ASSEMBLY));
if (jac != B) {
PetscCall(MatAssemblyBegin(jac, MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd(jac, MAT_FINAL ASSEMBLY));

}
PetscFunctionReturn(PETSC SUCCESS);

/* ___________________________________________________________________

PetscErrorCode FormFunction2(SNES snes, Vec x, Vec f, void *dummy)

{

const PetscScalar *xx;
PetscScalar *ff;

PetscFunctionBeginUser;
/*
Get pointers to vector data.

- For default PETSc vectors, VecGetArray() returns a pointer to
the data array. Otherwise, the routine is implementation dependent.
- You MUST call VecRestoreArray() when you no longer need access to

the array.
*/
PetscCall(VecGetArrayRead(x, &xx));
PetscCall(VecGetArray(f, &ff));

/*
Compute function
*/
ff[0] = PetscSinScalar(3.0 * xx[0]) + xx[0];
ffl1] = xx[1];
/*
Restore vectors
*/

PetscCall(VecRestoreArrayRead(x, &xx));
PetscCall(VecRestoreArray(f, &ff));
PetscFunctionReturn(PETSC SUCCESS);

*/

}
/* ___________________________________________________________________
PetscErrorCode FormJacobian2(SNES snes, Vec x, Mat jac, Mat B, void *dummy)
{

const PetscScalar *xx;

PetscScalar Al4];

PetscInt idx[2] = {0, 1};

PetscFunctionBeginUser;
/*

(continues on next page)
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Get pointer to vector data
*/
PetscCall(VecGetArrayRead(x, &xx));

/*
Compute Jacobian entries and insert into matrix.
- Since this is such a small problem, we set all entries for
the matrix at once.

*/
A[O] = 3.0 * PetscCosScalar(3.0 * xx[0]) + 1.0;
A[l] = 0.0;
A[2] = 0.0;
A[3] = 1.0;
PetscCall(MatSetValues(B, 2, idx, 2, idx, A, INSERT VALUES));
/*
Restore vector
*/
PetscCall(VecRestoreArrayRead(x, &xx));
/*
Assemble matrix
*/

PetscCall(MatAssemblyBegin(B, MAT_ FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd (B, MAT_FINAL ASSEMBLY));
if (jac != B) {
PetscCall(MatAssemblyBegin(jac, MAT FINAL ASSEMBLY));
PetscCall(MatAssemblyEnd(jac, MAT_FINAL ASSEMBLY));

}
PetscFunctionReturn(PETSC_SUCCESS);

To create a SNES solver, one must first call SNESCreate() as follows:

SNESCreate(MPI_Comm comm,SNES *snes);

The user must then set routines for evaluating the residual function (2.3) and its associated Jacobian matrix,
as discussed in the following sections.

To choose a nonlinear solution method, the user can either call

SNESSetType(SNES snes,SNESType method);

or use the option -snes_type <method>, where details regarding the available methods are presented in
The Nonlinear Solvers. The application code can take complete control of the linear and nonlinear techniques
used in the Newton-like method by calling

SNESSetFromOptions(snes);

This routine provides an interface to the PETSc options database, so that at runtime the user can select
a particular nonlinear solver, set various parameters and customized routines (e.g., specialized line search
variants), prescribe the convergence tolerance, and set monitoring routines. With this routine the user can
also control all linear solver options in the KSP, and PC modules, as discussed in KSP: Linear System Solvers.

After having set these routines and options, the user solves the problem by calling
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SNESSolve (SNES snes,Vec b,Vec Xx);

where X should be initialized to the initial guess before calling and contains the solution on return. In
particular, to employ an initial guess of zero, the user should explicitly set this vector to zero by calling
VecZeroEntries(x). Finally, after solving the nonlinear system (or several systems), the user should
destroy the SNES context with

SNESDestroy(SNES *snes);

Nonlinear Function Evaluation

When solving a system of nonlinear equations, the user must provide a a residual function (2.3), which is
set using

SNESSetFunction(SNES snes,Vec f,PetscErrorCode (*FormFunction) (SNES snes,Vec x,Vec f,
—void *ctx),void *ctx);

The argument T is an optional vector for storing the solution; pass NULL to have the SNES allocate it for
you. The argument CtX is an optional user-defined context, which can store any private, application-specific
data required by the function evaluation routine; NULL should be used if such information is not needed. In
C and C++, a user-defined context is merely a structure in which various objects can be stashed; in Fortran
a user context can be an integer array that contains both parameters and pointers to PETSc objects. SNES
Tutorial ex5 and SNES Tutorial ex5f90 give examples of user-defined application contexts in C and Fortran,
respectively.

Jacobian Evaluation

The user must also specify a routine to form some approximation of the Jacobian matrix, A, at the current
iterate, X, as is typically done with

SNESSetJacobian(SNES snes,Mat Amat,Mat Pmat,PetscErrorCode (*FormJacobian) (SNES snes,
~Vec x,Mat A,Mat B,void *ctx),void *ctx);

The arguments of the routine FormJacobian() are the current iterate, X; the (approximate) Jacobian
matrix, Amat; the matrix from which the preconditioner is constructed, Pmat (which is usually the same
as Amat); and an optional user-defined Jacobian context, CtX, for application-specific data. Note that the
SNES solvers are all data-structure neutral, so the full range of PETSc matrix formats (including “matrix-
free” methods) can be used. Matrices discusses information regarding available matrix formats and options,
while Matriz-Free Methods focuses on matrix-free methods in SNES. We briefly touch on a few details of
matrix usage that are particularly important for efficient use of the nonlinear solvers.

A common usage paradigm is to assemble the problem Jacobian in the preconditioner storage B, rather than
A. In the case where they are identical, as in many simulations, this makes no difference. However, it allows
us to check the analytic Jacobian we construct in FormJacobian () by passing the -snes_mf operator
flag. This causes PETSc to approximate the Jacobian using finite differencing of the function evaluation
(discussed in Finite Difference Jacobian Approzimations), and the analytic Jacobian becomes merely the
preconditioner. Even if the analytic Jacobian is incorrect, it is likely that the finite difference approximation
will converge, and thus this is an excellent method to verify the analytic Jacobian. Moreover, if the analytic
Jacobian is incomplete (some terms are missing or approximate), -snes_mf_operator may be used to
obtain the exact solution, where the Jacobian approximation has been transferred to the preconditioner.

One such approximate Jacobian comes from “Picard linearization” which writes the nonlinear system as

F(x):=Ax)x—b=0
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where A(x) usually contains the lower-derivative parts of the equation. For example, the nonlinear diffusion
problem

-V - (k(u)Vu) =0
would be linearized as
Au)v ~ =V - (k(u) V).

Usually this linearization is simpler to implement than Newton and the linear problems are somewhat easier
to solve. In addition to using -snes mf operator with this approximation to the Jacobian, the Picard
iterative procedure can be performed by defining J(x) to be A(x). Sometimes this iteration exhibits better
global convergence than Newton linearization.

During successive calls to FormJacobian(), the user can either insert new matrix contexts or reuse old
ones, depending on the application requirements. For many sparse matrix formats, reusing the old space (and
merely changing the matrix elements) is more efficient; however, if the matrix structure completely changes,
creating an entirely new matrix context may be preferable. Upon subsequent calls to the FormJacobian ()
routine, the user may wish to reinitialize the matrix entries to zero by calling MatZeroEntries(). See
Other Matriz Operations for details on the reuse of the matrix context.

The directory $PETSC DIR/src/snes/tutorials provides a variety of examples.

Sometimes a nonlinear solver may produce a step that is not within the domain of a given function, for
example one with a negative pressure. When this occurs one can call SNESSetFunctionDomainError()
or SNESSetJacobianDomainError() to indicate to SNES the step is not valid. One must also use
SNESGetConvergedReason() and check the reason to confirm if the solver succeeded. See Variational
Inequalities for how to provide SNES with bounds on the variables to solve (differential) variational inequal-
ities and how to control properties of the line step computed.

2.4.2 The Nonlinear Solvers

As summarized in Table PETSc Nonlinear Solvers, SNES includes several Newton-like nonlinear solvers based
on line search techniques and trust region methods. Also provided are several nonlinear Krylov methods, as
well as nonlinear methods involving decompositions of the problem.

Each solver may have associated with it a set of options, which can be set with routines and options database
commands provided for this purpose. A complete list can be found by consulting the manual pages or by
running a program with the -he'lp option; we discuss just a few in the sections below.
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Table 2.8: PETSc Nonlinear Solvers

Method SNESType Options Default Line Search
Name

Line Search Newton SNESNEWTONLS newtonls SNESLINESEARCHBT

Trust region Newton SNESNEWTONTR newtontr —

Nonlinear Richardson SNESNRICHARDSON | nrichardson | SNESLINESEARCHL?2

Nonlinear CG SNESNCG ncg SNESLINESEARCHCP

Nonlinear GMRES SNESNGMRES ngmres SNESLINESEARCHL?2

Quasi-Newton SNESQN gn see  PETSc quasi-Newton

solvers

Full Approximation Scheme | SNESFAS fas —

Nonlinear ASM SNESNASM nasm -

ASPIN SNESASPIN aspin SNESLINESEARCHBT

Nonlinear Gauss-Seidel SNESNGS ngs -

Anderson Mixing SNESANDERSON anderson -

Newton with constraints | SNESVINEW- vinew- SNESLINESEARCHBT

(1) TONRSLS tonrsls

Newton with constraints | SNESVINEWTON- vinewton- SNESLINESEARCHBT

(2) SSLS ssls

Multi-stage Smoothers SNESMS ms -

Composite SNESCOMPOSITE composite -

Linear solve only SNESKSPONLY ksponly -

Python Shell SNESPYTHON python -

Shell (user-defined) SNESSHELL shell -

Line Search Newton

The method SNESNEWTONLS (-snes_type newtonls) provides a line search Newton method for solv-
ing systems of nonlinear equations. By default, this technique employs cubic backtracking [DennisJrS83].
Alternative line search techniques are listed in Table PETSc Line Search Methods.

Table 2.9: PETSc Line Search Methods

Line Search SNESLineSearchType | Options Name
Backtracking SNESLINESEARCHBT bt

(damped) step SNESLINESEARCHBASIC | basic

identical to above SNESLINESEARCHNONE none

L2-norm Minimization | SNESLINESEARCHL?2 12

Critical point SNESLINESEARCHCP cp

Shell SNESLINESEARCHSHELL | shell

Every SNES has a line search context of type SNESLineSearch that may be retrieved using

SNESGetLineSearch(SNES snes,SNESLineSearch *1s);.

There are several default options for the line searches. The order of polynomial approximation may be set
with -snes linesearch order or

SNESLineSearchSetOrder (SNESLineSearch ls, PetscInt order);

for instance, 2 for quadratic or 3 for cubic. Sometimes, it may not be necessary to monitor the progress of
the nonlinear iteration. In this case, -snes linesearch norms or
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SNESLineSearchSetComputeNorms (SNESLineSearch 1s,PetscBool norms);

may be used to turn off function, step, and solution norm computation at the end of the linesearch.

The default line search for the line search Newton method, SNESLINESEARCHBT involves several parameters,
which are set to defaults that are reasonable for many applications. The user can override the defaults by
using the following options:

« -snes_linesearch alpha <alpha>
e -snes linesearch maxstep <max>
o -snes_linesearch minlambda <tol>

Besides the backtracking linesearch, there are SNESLINESEARCHL2, which uses a polynomial secant mini-
mization of ||F(z)||2, and SNESLINESEARCHCP, which minimizes F'(z) - Y where Y is the search direction.
These are both potentially iterative line searches, which may be used to find a better-fitted steplength
in the case where a single secant search is not sufficient. The number of iterations may be set with
-snes_linesearch max_it. In addition, the convergence criteria of the iterative line searches may be
set using function tolerances -snes_linesearch rtol and -snes linesearch atol, and steplength
tolerance snes_linesearch ltol.

Custom line search types may either be defined using SNESLineSearchShell, or by creating a custom
user line search type in the model of the preexisting ones and register it using

SNESLineSearchRegister(const char sname[],PetscErrorCode (*function) (SNESLineSearch));

e

Trust Region Methods

The trust region method in SNES for solving systems of nonlinear equations, SNESNEWTONTR (-snes_type
newtontr), is taken from the MINPACK project [MoreSGHS84]. Several parameters can be set to control
the variation of the trust region size during the solution process. In particular, the user can control the
initial trust region radius, computed by

A = Ao Follz,

by setting Ag via the option -snes_tr delta® <delta0®>.

Nonlinear Krylov Methods

A number of nonlinear Krylov methods are provided, including Nonlinear Richardson, conjugate gradient,
GMRES, and Anderson Mixing. These methods are described individually below. They are all instrumental
to PETSc’s nonlinear preconditioning.

Nonlinear Richardson. The nonlinear Richardson iteration merely takes the form of a line search-damped
fixed-point iteration of the form

Xpr1 =X, — AF(xz), K=0,1,...,

where the default linesearch is SNESLINESEARCHL2. This simple solver is mostly useful as a nonlinear
smoother, or to provide line search stabilization to an inner method.

Nonlinear Conjugate Gradients. Nonlinear CG is equivalent to linear CG, but with the steplength
determined by line search (SNESLINESEARCHCP by default). Five variants (Fletcher-Reed, Hestenes-Steifel,
Polak-Ribiere-Polyak, Dai-Yuan, and Conjugate Descent) are implemented in PETSc and may be chosen
using
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SNESNCGSetType (SNES snes, SNESNCGType btype);

Anderson Mixing and Nonlinear GMRES Methods. Nonlinear GMRES and Anderson Mixing meth-
ods combine the last m iterates, plus a new fixed-point iteration iterate, into a residual-minimizing new
iterate.

Quasi-Newton Methods

Quasi-Newton methods store iterative rank-one updates to the Jacobian instead of computing it directly.
Three limited-memory quasi-Newton methods are provided, L-BFGS, which are described in Table PETSc
quasi-Newton solvers. These all are encapsulated under -snes_type qn and may be changed with
snes_gn_type. The default is L-BFGS, which provides symmetric updates to an approximate Jacobian.
This iteration is similar to the line search Newton methods.

Table 2.10: PETSc quasi-Newton solvers

QN Method | SNESQNType Options Default Line Search
Name
L-BFGS SNES_QN_LBFGS | lbfgs SNESLINESEARCHCP
“Good” SNES QN BROYDENbroyden SNESLINESEARCHBASIC (or equivalently SNESLT -
Broyden NESEARCHNONE
“Bad” Broy- | SNES QN BADBROYBMdbroy - SNESLINESEARCHL2
den den

One may also control the form of the initial Jacobian approximation with

SNESQNSetScaleType(SNES snes, SNESQNScaleType stype);

and the restart type with

SNESQNSetRestartType(SNES snes, SNESQNRestartType rtype);

The Full Approximation Scheme

The Full Approximation Scheme is a nonlinear multigrid correction. At each level, there is a recursive cycle
control SNES instance, and either one or two nonlinear solvers as smoothers (up and down). Problems set
up using the SNES DMDA interface are automatically coarsened. FAS differs slightly from PCMG, in that the
hierarchy is constructed recursively. However, much of the interface is a one-to-one map. We describe the
“get” operations here, and it can be assumed that each has a corresponding “set” operation. For instance,
the number of levels in the hierarchy may be retrieved using

SNESFASGetLevels(SNES snes, PetscInt *levels);

There are four SNESFAS cycle types, SNES FAS MULTIPLICATIVE, SNES FAS ADDITIVE,
SNES FAS FULL, and SNES FAS KASKADE. The type may be set with

SNESFASSetType (SNES snes,SNESFASType fastype);.

and the cycle type, 1 for V, 2 for W, may be set with

SNESFASSetCycles(SNES snes, PetscInt cycles);.
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Much like the interface to PCMG described in Multigrid Preconditioners, there are interfaces to recover the
various levels’ cycles and smoothers. The level smoothers may be accessed with

SNESFASGetSmoother (SNES snes, PetscInt level, SNES *smooth);
SNESFASGetSmootherUp(SNES snes, PetscInt level, SNES *smooth);
SNESFASGetSmootherDown (SNES snes, PetscInt level, SNES *smooth);

and the level cycles with

SNESFASGetCycleSNES (SNES snes,PetscInt level,SNES *1lsnes);.

Also akin to PCMG, the restriction and prolongation at a level may be acquired with

SNESFASGetInterpolation(SNES snes, PetscInt level, Mat *mat);
SNESFASGetRestriction(SNES snes, PetscInt level, Mat *mat);

In addition, FAS requires special restriction for solution-like variables, called injection. This may be set with

SNESFASGetInjection(SNES snes, PetscInt level, Mat *mat);.

The coarse solve context may be acquired with

SNESFASGetCoarseSolve(SNES snes, SNES *smooth);

Nonlinear Additive Schwarz

Nonlinear Additive Schwarz methods (NASM) take a number of local nonlinear subproblems, solves them
independently in parallel, and combines those solutions into a new approximate solution.

SNESNASMSetSubdomains (SNES snes,PetscInt n,SNES subsnes[],VecScatter iscatter[],
—VecScatter oscatter[],VecScatter gscatter[]);

allows for the user to create these local subdomains. Problems set up using the SNES DMDA interface are
automatically decomposed. To begin, the type of subdomain updates to the whole solution are limited to two
types borrowed from PCASM: PC_ASM BASIC, in which the overlapping updates added. PC_ASM RESTRICT
updates in a nonoverlapping fashion. This may be set with

SNESNASMSetType (SNES snes,PCASMType type);.

SNESASPIN is a helper SNES type that sets up a nonlinearly preconditioned Newton’s method using NASM
as the preconditioner.

2.4.3 General Options

This section discusses options and routines that apply to all SNES solvers and problem classes. In particular,
we focus on convergence tests, monitoring routines, and tools for checking derivative computations.
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Convergence Tests

Convergence of the nonlinear solvers can be detected in a variety of ways; the user can even specify a
customized test, as discussed below. Most of the nonlinear solvers use SNESConvergenceTestDefault (),
however, SNESNEWTONTR uses a method-specific additional convergence test as well. The convergence tests
involves several parameters, which are set by default to values that should be reasonable for a wide range
of problems. The user can customize the parameters to the problem at hand by using some of the following
routines and options.

One method of convergence testing is to declare convergence when the norm of the change in the solution
between successive iterations is less than some tolerance, Stol. Convergence can also be determined based
on the norm of the function. Such a test can use either the absolute size of the norm, atol, or its relative
decrease, rtol, from an initial guess. The following routine sets these parameters, which are used in many
of the default SNES convergence tests:

SNESSetTolerances (SNES snes,PetscReal atol,PetscReal rtol,PetscReal stol, PetscInt,
—1ts,PetscInt fcts);

This routine also sets the maximum numbers of allowable nonlinear iterations, its, and function evaluations,
fcts. The corresponding options database commands for setting these parameters are:

e -snes_atol <atol>
e -snes _rtol <rtol>
o -snes _stol <stol>
e -snes max_ it <its>
e -snes max_ funcs <fcts>
A related routine is SNESGetTolerances().

Convergence tests for trust regions methods often use an additional parameter that indicates the minimum
allowable trust region radius. The user can set this parameter with the option -snes _tr tol <trtol>
or with the routine

SNESSetTrustRegionTolerance(SNES snes,PetscReal trtol);

Users can set their own customized convergence tests in SNES by using the command

SNESSetConvergenceTest (SNES snes,PetscErrorCode (*test)(SNES snes,PetscInt it,
—.PetscReal xnorm, PetscReal gnorm,PetscReal f,SNESConvergedReason reason, void,,
~*cctx),void *cctx,PetscErrorCode (*destroy)(void *cctx));

The final argument of the convergence test routine, CCtX, denotes an optional user-defined context for
private data. When solving systems of nonlinear equations, the arguments xnorm, gnorm, and T are the
current iterate norm, current step norm, and function norm, respectively. SNESConvergedReason should
be set positive for convergence and negative for divergence. See include/petscsnes.h for a list of values
for SNESConvergedReason.
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Convergence Monitoring

By default the SNES solvers run silently without displaying information about the iterations. The user can
initiate monitoring with the command

SNESMonitorSet (SNES snes,PetscErrorCode (*mon) (SNES,PetscInt its,PetscReal norm,void*
—mctx),void *mctx,PetscErrorCode (*monitordestroy) (void**));

The routine, mon, indicates a user-defined monitoring routine, where its and mctX respectively denote
the iteration number and an optional user-defined context for private data for the monitor routine. The
argument NOrm is the function norm.

The routine set by SNESMonitorSet() is called once after every successful step computation within
the nonlinear solver. Hence, the user can employ this routine for any application-specific computations
that should be done after the solution update. The option -snes monitor activates the default SNES
monitor routine, SNESMonitorDefault (), while -snes _monitor 1g residualnorm draws a simple
line graph of the residual norm’s convergence.

One can cancel hardwired monitoring routines for SNES at runtime with -snes_monitor cancel.

As the Newton method converges so that the residual norm is small, say 107'°, many of the final digits
printed with the -snes_monitor option are meaningless. Worse, they are different on different machines;
due to different round-off rules used by, say, the IBM RS6000 and the Sun SPARC. This makes testing
between different machines difficult. The option -snes_monitor short causes PETSc to print fewer of
the digits of the residual norm as it gets smaller; thus on most of the machines it will always print the same
numbers making cross-process testing easier.

The routines

SNESGetSolution(SNES snes,Vec *x);
SNESGetFunction(SNES snes,Vec *r,void *ctx,int(**func) (SNES,Vec,Vec,void*));

return the solution vector and function vector from a SNES context. These routines are useful, for instance, if
the convergence test requires some property of the solution or function other than those passed with routine
arguments.

Checking Accuracy of Derivatives

Since hand-coding routines for Jacobian matrix evaluation can be error prone, SNES provides easy-to-use
support for checking these matrices against finite difference versions. In the simplest form of comparison,
users can employ the option -snes_test jacobian to compare the matrices at several points. Although
not exhaustive, this test will generally catch obvious problems. One can compare the elements of the two
matrices by using the option -snes test jacobian view , which causes the two matrices to be printed
to the screen.

Another means for verifying the correctness of a code for Jacobian computation is running the problem with
either the finite difference or matrix-free variant, -snes fd or -snes_mf; see Finite Difference Jacobian
Approzimations or Matriz-Free Methods. If a problem converges well with these matrix approximations but
not with a user-provided routine, the problem probably lies with the hand-coded matrix. See the note in
Jacobian Evaluation about assembling your Jabobian in the “preconditioner” slot Pmat.

The correctness of user provided MATSHELL Jacobians in general can be checked with MatShellTest-
MultTranspose() and MatShellTestMult().

The correctness of user provided MATSHELL Jacobians via TSSetRHSJacobian() can be checked with
TSRHSJacobianTestTranspose() and TSRHSJacobianTest() that check the correction of the
matrix-transpose vector product and the matrix-product. From the command line, these can be checked
with
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-ts rhs jacobian test mult transpose

o -mat_shell test mult transpose view
o -ts rhs_jacobian test mult

o -mat shell test mult view

2.4.4 Inexact Newton-like Methods

Since exact solution of the linear Newton systems within (2.4) at each iteration can be costly, modifications
are often introduced that significantly reduce these expenses and yet retain the rapid convergence of Newton’s
method. Inexact or truncated Newton techniques approximately solve the linear systems using an iterative
scheme. In comparison with using direct methods for solving the Newton systems, iterative methods have
the virtue of requiring little space for matrix storage and potentially saving significant computational work.
Within the class of inexact Newton methods, of particular interest are Newton-Krylov methods, where the
subsidiary iterative technique for solving the Newton system is chosen from the class of Krylov subspace
projection methods. Note that at runtime the user can set any of the linear solver options discussed in KSP:
Linear System Solvers, such as -ksp_type <ksp method> and -pc_type <pc_method>, to set the
Krylov subspace and preconditioner methods.

Two levels of iterations occur for the inexact techniques, where during each global or outer Newton iteration
a sequence of subsidiary inner iterations of a linear solver is performed. Appropriate control of the accuracy
to which the subsidiary iterative method solves the Newton system at each global iteration is critical, since
these inner iterations determine the asymptotic convergence rate for inexact Newton techniques. While the
Newton systems must be solved well enough to retain fast local convergence of the Newton’s iterates, use of
excessive inner iterations, particularly when ||x; — x.|| is large, is neither necessary nor economical. Thus,
the number of required inner iterations typically increases as the Newton process progresses, so that the
truncated iterates approach the true Newton iterates.

A sequence of nonnegative numbers {n;} can be used to indicate the variable convergence criterion. In
this case, when solving a system of nonlinear equations, the update step of the Newton process remains
unchanged, and direct solution of the linear system is replaced by iteration on the system until the residuals

rff) = F'(xx)Axy + F(xz)

satisfy
L I
PRl = 7~
Here xq is an initial approximation of the solution, and || - | denotes an arbitrary norm in " .

By default a constant relative convergence tolerance is used for solving the subsidiary linear systems within
the Newton-like methods of SNES. When solving a system of nonlinear equations, one can instead employ the
techniques of Eisenstat and Walker [EW96] to compute 7, at each step of the nonlinear solver by using the
option -snes_ksp_ew . In addition, by adding one’s own KSP convergence test (see Convergence Tests),
one can easily create one’s own, problem-dependent, inner convergence tests.
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2.4.5 Matrix-Free Methods

The SNES class fully supports matrix-free methods. The matrices specified in the Jacobian evaluation
routine need not be conventional matrices; instead, they can point to the data required to implement a
particular matrix-free method. The matrix-free variant is allowed only when the linear systems are solved by
an iterative method in combination with no preconditioning (PCNONE or -pc_type none), a user-provided
preconditioner matrix, or a user-provided preconditioner shell (PCSHELL, discussed in Preconditioners); that
is, obviously matrix-free methods cannot be used with a direct solver, approximate factorization, or other
preconditioner which requires access to explicit matrix entries.

The user can create a matrix-free context for use within SNES with the routine

MatCreateSNESMF (SNES snes,Mat *mat);

This routine creates the data structures needed for the matrix-vector products that arise within Krylov
space iterative methods [BS90]. The default SNES matrix-free approximations can also be invoked with
the command -snes mf. Or, one can retain the user-provided Jacobian preconditioner, but replace the
user-provided Jacobian matrix with the default matrix-free variant with the option -snes_mf operator.

MatCreateSNESMF () uses

MatCreateMFFD(Vec x, Mat *mat);

which can also be used directly for users who need a matrix-free matrix but are not using SNES.

The user can set one parameter to control the Jacobian-vector product approximation with the command

MatMFFDSetFunctionError(Mat mat,PetscReal rerror);

The parameter rerror should be set to the square root of the relative error in the function evaluations,
erel; the default is the square root of machine epsilon (about 10~% in double precision), which assumes that
the functions are evaluated to full floating-point precision accuracy. This parameter can also be set from the
options database with -mat_mffd err <err>

In addition, PETSc provides ways to register new routines to compute the differencing parameter (h); see
the manual page for MatMFFDSetType() and MatMFFDRegister(). We currently provide two default
routines accessible via -mat _mffd type <ds or wp>. For the default approach there is one “tuning”
parameter, set with

MatMFFDDSSetUmin(Mat mat,PetscReal umin);

This parameter, UMin (or w,,:,), is a bit involved; its default is 107 . Its command line form is
-mat_mffd umin <umin>.

The Jacobian-vector product is approximated via the formula

Fu+hx*a)— F(u)

F’ =
(u)a -
where h is computed via
b o el el i fu”a] > o ]
) v sign(uTa)||al|1/||al|?  otherwise.

This approach is taken from Brown and Saad [BS90]. The second approach, taken from Walker and Pernice,
[PWO8], computes h via

b V14 ||ullere

|lal]
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This has no tunable parameters, but note that inside the nonlinear solve for the entire linear iterative
process u does not change hence /1 + ||u|| need be computed only once. This information may be set with
the options

MatMFFDWPSetComputeNormU(Mat mat,PetscBool );

or -mat _mffd compute normu <true or false>. This information is used to eliminate the redundant
computation of these parameters, therefore reducing the number of collective operations and improving the
efficiency of the application code. This takes place automatically for the PETSc GMRES solver with left
preconditioning.

It is also possible to monitor the differencing parameters h that are computed via the routines

MatMFFDSetHHistory(Mat,PetscScalar *,int);
MatMFFDResetHHistory(Mat,PetscScalar *,int);
MatMFFDGetH(Mat,PetscScalar *);

We include an explicit example of using matrix-free methods in ex3.c. Note that by using the option
-snes_mf one can easily convert any SNES code to use a matrix-free Newton-Krylov method without a
preconditioner. As shown in this example, SNESSetFromOptions () must be called after SNESSetJaco-
bian() to enable runtime switching between the user-specified Jacobian and the default SNES matrix-free
form.

Listing: src/snes/tutorials/ex3.c

static char help[] = "Newton methods to solve u'' + u”{2} = f in parallel.\n\
This example employs a user-defined monitoring routine and optionally a user-defined\
<n\
routine to check candidate iterates produced by line search routines.\n\
The command line options include:\n\
-pre_check iterates : activate checking of iterates\n\
-post check iterates : activate checking of iterates\n\
-check _tol <tol>: set tolerance for iterate checking\n\
-user_precond : activate a (trivial) user-defined preconditioner\n\n";

/*
Include "petscdm.h" so that we can use data management objects (DMs)
Include "petscdmda.h" so that we can use distributed arrays (DMDAs).
Include "petscsnes.h" so that we can use SNES solvers. Note that this
file automatically includes:

petscsys.h - base PETSc routines
petscvec.h - vectors

petscmat.h - matrices

petscis.h - index sets

petscksp.h - Krylov subspace methods
petscviewer.h - viewers

petscpc.h - preconditioners
petscksp.h - linear solvers

*/

#include <petscdm. h>
#include <petscdmda.h>
#include <petscsnes.h>

/*
User-defined routines.
*/

(continues on next page)
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(continued from previous page)

PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
—void *);

PetscErrorCode
void *);

PetscErrorCode

/*

FormJacobian(SNES, Vec, Mat, Mat, void *);

FormFunction(SNES, Vec, Vec, void *);

FormInitialGuess(Vec);

Monitor(SNES, PetscInt, PetscReal, void *);

PreCheck (SNESLineSearch, Vec, Vec, PetscBool *, void *);

PostCheck (SNESLineSearch, Vec, Vec, Vec, PetscBool *, PetscBool *,

u

PostSetSubKSP(SNESLineSearch, Vec, Vec, Vec, PetscBool *, PetscBool *,

MatrixFreePreconditioner(PC, Vec, Vec);

User-defined application context

*/

typedef struct
DM
Vec

PetscReal
PetscBool

da;
F;
PetscMPIInt rank;
PetscMPIInt size;
h;
sjerr; /*

{

/*
/*
/*
/*
/*

distributed array */

right-hand-side of PDE */

rank of processor */

size of communicator */

mesh spacing */

if or not to test jacobian domain error */

} ApplicationCtx;

/*

User-defined context

*/
typedef struct

for monitoring

{

PetscViewer viewer;

} MonitorCtx;

/*

User-defined context for checking candidate iterates that are
determined by line search methods

*/

typedef struct
Vec
PetscReal

{
last _step; /* previous iterate */
tolerance; /* tolerance for changes between successive iterates */

ApplicationCtx *user;

} StepCheckCtx;

typedef struct

{

PetscInt its@; /* num of previous outer KSP iterations */

} SetSubKSPCtx;

int main(int argc, char **argv)

{

SNES snes; /* SNES context */

SNESLineSearch linesearch; /* SNESLineSearch context */

Mat J; /* Jacobian matrix */

ApplicationCtx ctx; /* user-defined context */

Vec x, r, U, F; /* vectors */

MonitorCtx monP; /* monitoring context */

StepCheckCtx checkP; /* step-checking context */

SetSubKSPCtx checkP1;

PetscBool pre _check, post check, post setsubksp; /* flag indicating whether we

—'re checking

candidate iterates */

(continues on next page)

2.4. SNES: Nonlinear Solvers

119




PETSc/TAO Users Manual, Release 3.20.1

(continued from previous page)

PetscScalar xp, *FF, *UU, none = -1.0;
PetscInt its, N =5, i, maxit, maxf, xs,
PetscReal abstol, rtol, stol, norm;
PetscBool flg, viewinitial = PETSC_FALSE;

PetscFunctionBeginUser;

PetscCall(PetscInitialize(&argc, &argv, (char

PetscCallMPI(MPI_Comm_rank(PETSC COMM WORLD, &ctx.rank)
PetscCallMPI(MPI Comm size(PETSC COMM WORLD, &ctx.size)

PetscCall(PetscOptionsGetInt(NULL, NULL,
ctx.h 1.0 / (N - 1);
ctx.sjerr = PETSC FALSE;

||_n||’

PetscCall(PetscOptionsGetBool(NULL, NULL, "-test jacobian domain error"

— NULL));

Xm;

’

*)0, help

’

))
);
);
))

&N, NULL

, &ctx.sjerr,

PetscCall(PetscOptionsGetBool (NULL, NULL, "-view initial", &viewinitial, NULL));

/*

*/

*/

Create distributed array (DMDA) to manage parallel grid and vectors

*/

PetscCall(DMDACreateld (PETSC_COMM WORLD, DM BOUNDARY NONE, N, 1, 1, NULL, &ctx.da));

PetscCall(DMSetFromOptions(ctx.da));
PetscCall(DMSetUp(ctx.da));

/*
Extract global and local vectors from DMDA;
vectors that are the same types
*/
PetscCall(DMCreateGlobalVector(ctx.da, &x));
PetscCall(VecDuplicate(x, &r));
PetscCall(VecDuplicate(x, &F));
ctx.F = F;
PetscCall(VecDuplicate(x, &U));

/*
Set function evaluation routine and vector.

then duplicate for remaining

Whenever the nonlinear

solver needs to compute the nonlinear function, it will call this

routine.
- Note that the final routine argument is

the user-defined

context that provides application-specific data for the

function evaluation routine.
*/

PetscCall(SNESSetFunction(snes, r,

Create matrix data structure; set Jacobian

FormFunction, &ctx));

evaluation routine

(continues on next page)
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PetscCall(MatCreate(PETSC COMM WORLD, &3J));
PetscCall(MatSetSizes(J, PETSC DECIDE, PETSC DECIDE, N, N));
PetscCall(MatSetFromOptions(J));
PetscCall(MatSeqAIJSetPreallocation(J, 3, NULL));
PetscCall(MatMPIAIJSetPreallocation(J, 3, NULL, 3, NULL));

/*
Set Jacobian matrix data structure and default Jacobian evaluation
routine. Whenever the nonlinear solver needs to compute the
Jacobian matrix, it will call this routine.
- Note that the final routine argument is the user-defined
context that provides application-specific data for the
Jacobian evaluation routine.

*/
PetscCall(SNESSetJacobian(snes, J, J, FormJacobian, &ctx));
/*
Optionally allow user-provided preconditioner

*/
PetscCall(PetscOptionsHasName (NULL, NULL, "-user precond", &flg));
if (flg) {

KSP ksp;

PC pc;

PetscCall(SNESGetKSP(snes, &ksp));
PetscCall(KSPGetPC(ksp, &pc));

PetscCall(PCSetType(pc, PCSHELL));
PetscCall(PCShellSetApply(pc, MatrixFreePreconditioner));

}
2 L oLl
Customize nonlinear solver; set runtime options
_______________ ____________________*/
/*
Set an optional user-defined monitoring routine
*/

PetscCall(PetscViewerDrawOpen(PETSC COMM WORLD, 0, 0, 0, 0, 400, 400, &monP.
—viewer));
PetscCall(SNESMonitorSet(snes, Monitor, &monP, 0));

/*
Set names for some vectors to facilitate monitoring (optional)
*/
PetscCall(PetscObjectSetName( (PetscObject)x, "Approximate Solution"));
PetscCall(PetscObjectSetName( (PetscObject)U, "Exact Solution"));

/*
Set SNES/KSP/KSP/PC runtime options, e.g.,
-snes _view -snes _monitor -ksp type <ksp> -pc type <pc>
*/
PetscCall(SNESSetFromOptions(snes));

/*
Set an optional user-defined routine to check the validity of candidate
iterates that are determined by line search methods

(continues on next page)
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*/
PetscCall(SNESGetLineSearch(snes, &linesearch));
PetscCall(PetscOptionsHasName(NULL, NULL, "-post check iterates", &post check));

if (post_check) {
PetscCall(PetscPrintf (PETSC_COMM WORLD, "Activating post step checking routine\n
="));
PetscCall(SNESLineSearchSetPostCheck(linesearch, PostCheck, &checkP));
PetscCall(VecDuplicate(x, &(checkP.last step)));

checkP.tolerance
checkP.user

1.0;
&ctx;

PetscCall(PetscOptionsGetReal (NULL, NULL, "-check tol", &checkP.tolerance, NULL));
}

PetscCall(PetscOptionsHasName(NULL, NULL, "-post setsubksp", &post setsubksp));
if (post _setsubksp) {
PetscCall(PetscPrintf (PETSC_COMM WORLD, "Activating post setsubksp\n"));
PetscCall(SNESLineSearchSetPostCheck(linesearch, PostSetSubkKSP, &checkPl));
}

PetscCall(PetscOptionsHasName (NULL, NULL, "-pre check iterates", &pre_check));
if (pre_check) {
PetscCall(PetscPrintf(PETSC_COMM WORLD, "Activating pre step checking routine\n
="));
PetscCall(SNESLineSearchSetPreCheck(linesearch, PreCheck, &checkP));
}

/*
Print parameters used for convergence testing (optional) ... just
to demonstrate this routine; this information is also printed with
the option -snes view
*/
PetscCall(SNESGetTolerances(snes, &abstol, &rtol, &stol, &maxit, &maxf));
PetscCall(PetscPrintf (PETSC_COMM WORLD, "atol=%g, rtol=%g, stol=%g, maxit=%"
—PetscInt FMT ", maxf=%" PetscInt FMT "\n", (double)abstol, (double)rtol, |
— (double)stol, maxit, maxf));

Initialize application:
Store right-hand-side of PDE and exact solution

/*
Get local grid boundaries (for 1-dimensional DMDA):
Xs, xm - starting grid index, width of local grid (no ghost points)
*/
PetscCall(DMDAGetCorners(ctx.da, &xs, NULL, NULL, &xm, NULL, NULL));

/*
Get pointers to vector data
*/
PetscCall(DMDAVecGetArray(ctx.da, F, &FF));
PetscCall(DMDAVecGetArray(ctx.da, U, &UU));

(continues on next page)
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/*
Compute local vector entries
*/
xp = ctx.h * xs;
for (i = xs; 1 < xs + xm; i++) {
FF[i] = 6.0 * xp + PetscPowScalar(xp + l1.e-12, 6.0); /* +1.e-12 is to prevent 076,
X/
UULi] = xp * xp * xp;
xp += ctx.h;

}

/*
Restore vectors
*/
PetscCall(DMDAVecRestoreArray(ctx.da, F, &FF));
PetscCall(DMDAVecRestoreArray(ctx.da, U, &UU));
if (viewinitial) {
PetscCall(VecView(U, 0));
PetscCall(VecView(F, 0));
}

/*
Note: The user should initialize the vector, x, with the initial guess
for the nonlinear solver prior to calling SNESSolve(). In particular,
to employ an initial guess of zero, the user should explicitly set
this vector to zero by calling VecSet().

*/

PetscCall(FormInitialGuess(x));

PetscCall(SNESSolve(snes, NULL, x));

PetscCall(SNESGetIterationNumber(snes, &its));

PetscCall(PetscPrintf (PETSC_COMM WORLD, "Number of SNES iterations = %" PetscInt

<FMT "\n", its));

/*
Check the error
*/
PetscCall(VecAXPY(x, none, U));
PetscCall(VecNorm(x, NORM 2, &norm));
PetscCall(PetscPrintf (PETSC_COMM WORLD, "Norm of error %g Iterations %" PetscInt
—~FMT "\n", (double)norm, its));
if (ctx.sjerr) {
SNESType snestype;
PetscCall(SNESGetType(snes, &snestype));
PetscCall(PetscPrintf(PETSC_COMM WORLD, "SNES Type %s\n", snestype));
}

/*
Free work space. All PETSc objects should be destroyed when they

(continues on next page)
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are no longer needed.
*/
PetscCall(PetscViewerDestroy(&monP.viewer));
if (post_check) PetscCall(VecDestroy(&checkP.last step));
PetscCall(VecDestroy(&x));
PetscCall(VecDestroy(&r));
PetscCall(VecDestroy(&U));
PetscCall(VecDestroy(&F));
PetscCall(MatDestroy(&J3));
PetscCall(SNESDestroy(&snes));
PetscCall(DMDestroy(&ctx.da));
PetscCall(PetscFinalize());
return 0;

FormInitialGuess - Computes initial guess.

Input/Output Parameter:
x - the solution vector
*/
PetscErrorCode FormInitialGuess(Vec x)

{
PetscScalar pfive = .50;

PetscFunctionBeginUser;
PetscCall(VecSet(x, pfive));
PetscFunctionReturn(PETSC SUCCESS);

FormFunction - Evaluates nonlinear function, F(x).

Input Parameters:

snes - the SNES context

X - 1nput vector

ctx - optional user-defined context, as set by SNESSetFunction()

Output Parameter:
f - function vector

Note:
The user-defined context can contain any application-specific
data needed for the function evaluation.
*/
PetscErrorCode FormFunction(SNES snes, Vec x, Vec f, void *ctx)
{
ApplicationCtx *user = (ApplicationCtx *)ctx;
DM da = user->da;
PetscScalar *ff, d;
const PetscScalar *xx, *FF;
PetscInt i, M, xs, xm;
Vec xlocal;

(continues on next page)
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PetscFunctionBeginUser;
PetscCall(DMGetLocalVector(da, &xlocal));
/*
Scatter ghost points to local vector, using the 2-step process
DMGlobalToLocalBegin(), DMGlobalToLocalEnd().
By placing code between these two statements, computations can
be done while messages are in transition.
*/
PetscCall(DMGlobalToLocalBegin(da, x, INSERT VALUES, xlocal));
PetscCall(DMGlobalToLocalEnd(da, x, INSERT VALUES, xlocal));

/*
Get pointers to vector data.
- The vector xlocal includes ghost point; the vectors x and f do
NOT include ghost points.
- Using DMDAVecGetArray() allows accessing the values using global ordering
*/
PetscCall(DMDAVecGetArrayRead(da, xlocal, (void *)&xx));
PetscCall(DMDAVecGetArray(da, f, &ff));
PetscCall(DMDAVecGetArrayRead(da, user->F, (void *)&FF));

/*
Get local grid boundaries (for 1-dimensional DMDA) :
Xs, xm - starting grid index, width of local grid (no ghost points)
*/
PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));
PetscCall(DMDAGetInfo(da, NULL, &M, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,,
—NULL, NULL, NULL));

/*

Set function values for boundary points; define local interior grid point range:
xsi - starting interior grid index
xei - ending interior grid index

*/

if (xs == 0) { /* left boundary */
ff[0] = xx[0];
XS++;
Xm- - ;

}

if (xs + xm == M) { /* right boundary */
fflxs + xm - 1] = xx[xs + xm - 1] - 1.0;
Xm- - ;

}

/*
Compute function over locally owned part of the grid (interior points only)
*/
d=1.0/ (user->h * user->h);
for (1 = xs; 1 < xs + xm; i++) ff[i] =d * (xx[1i - 1] - 2.0 * xx[i] + xx[1 + 1]) +,
oxx[i] * xx[i] - FF[i];

/*
Restore vectors
*/
PetscCall(DMDAVecRestoreArrayRead(da, xlocal, (void *)&xx));
PetscCall(DMDAVecRestoreArray(da, f, &ff));

(continues on next page)
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PetscCall(DMDAVecRestoreArrayRead(da, user->F, (void *)&FF));
PetscCall(DMRestoreLocalVector(da, &xlocal));
PetscFunctionReturn(PETSC SUCCESS);

FormJacobian - Evaluates Jacobian matrix.

Input Parameters:

snes - the SNES context

X - 1nput vector

dummy - optional user-defined context (not used here)

Output Parameters:
jac - Jacobian matrix
B - optionally different preconditioning matrix
. flag - flag indicating matrix structure
*/
PetscErrorCode FormJacobian(SNES snes, Vec x, Mat jac, Mat B, void *ctx)
{

ApplicationCtx *user = (ApplicationCtx *)ctx;

PetscScalar *xx, d, A[3];

PetscInt i, jI31, M, xs, xm;

DM da = user->da;

PetscFunctionBeginUser;
if (user->sjerr) {
PetscCall(SNESSetJacobianDomainError(snes));
PetscFunctionReturn(PETSC_SUCCESS);
}
/*
Get pointer to vector data
*/
PetscCall(DMDAVecGetArrayRead(da, x, &xx));
PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));

/*
Get range of locally owned matrix
*/
PetscCall(DMDAGetInfo(da, NULL, &M, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,,
—NULL, NULL, NULL));

/*
Determine starting and ending local indices for interior grid points.
Set Jacobian entries for boundary points.

*/
if (xs == 0) { /* left boundary */
i = 0;
A[0] = 1.0;
PetscCall(MatSetValues(jac, 1, &i, 1, &i, A, INSERT VALUES));
XS++,
Xm- - ;

(continues on next page)

126 Chapter 2. The Solvers in PETSc/TAO




PETSc/TAO Users Manual, Release 3.20.1

(continued from previous page)

if (xs + xm == M) { /* right boundary */

i M- 1;
A[O] 1.0;
PetscCall(MatSetValues(jac, 1, &i, 1, &i, A, INSERT VALUES));
Xm- - ;
}
/*
Interior grid points
- Note that in this case we set all elements for a particular
row at once.
*/
d=1.0 / (user->h * user->h);
for (i = xs; 1 < xs + xm; i++) {
jle] =i - 1;
jl1] = 1i;
jl2l =1+ 1,
A[0] = A[2] = d;
A[1] = -2.0fd+ 2.0 * xx[1];
PetscCall(MatSetValues(jac, 1, &i, 3, j, A, INSERT VALUES));
}
/*

Assemble matrix, using the 2-step process:

MatAssemblyBegin(), MatAssemblyEnd().
By placing code between these two statements, computations can be
done while messages are in transition.

Also, restore vector.
*/

PetscCall(MatAssemblyBegin(jac, MAT FINAL ASSEMBLY));
PetscCall(DMDAVecRestoreArrayRead(da, x, &xx));
PetscCall(MatAssemblyEnd(jac, MAT_FINAL ASSEMBLY));

PetscFunctionReturn(PETSC SUCCESS);

Monitor - Optional user-defined monitoring routine that views the
current iterate with an x-window plot. Set by SNESMonitorSet().

Input Parameters:

snes - the SNES context

its - iteration number

norm - 2-norm function value (may be estimated)

ctx - optional user-defined context for private data for the
monitor routine, as set by SNESMonitorSet()

Note:
See the manpage for PetscViewerDrawOpen() for useful runtime options,
such as -nox to deactivate all x-window output.
*/
PetscErrorCode Monitor(SNES snes, PetscInt its, PetscReal fnorm, void *ctx)

{

(continues on next page)
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MonitorCtx *monP = (MonitorCtx *)ctx;
Vec X;

PetscFunctionBeginUser;

PetscCall(PetscPrintf(PETSC_COMM WORLD, "iter = %" PetscInt FMT ",SNES Function,
—norm %g\n", its, (double)fnorm));

PetscCall(SNESGetSolution(snes, &x));

PetscCall(VecView(x, monP->viewer));

PetscFunctionReturn(PETSC SUCCESS);

}

/* ___________________________________________________________________ */

/*
PreCheck - Optional user-defined routine that checks the validity of
candidate steps of a line search method. Set by SNESLineSearchSetPreCheck().
Input Parameters:
snes - the SNES context
xcurrent - current solution
y - search direction and length
Output Parameters:
y - proposed step (search direction and length) (possibly changed)
changed y - tells if the step has changed or not

*/

PetscErrorCode PreCheck(SNESLineSearch linesearch, Vec xcurrent, Vec y, PetscBool,,
—*changed y, void *ctx)
{

PetscFunctionBeginUser;

*changed y = PETSC_FALSE;

PetscFunctionReturn(PETSC_SUCCESS);

PostCheck - Optional user-defined routine that checks the validity of
candidate steps of a line search method. Set by SNESLineSearchSetPostCheck().

Input Parameters:

snes - the SNES context

ctx - optional user-defined context for private data for the
monitor routine, as set by SNESLineSearchSetPostCheck()

xcurrent - current solution

y - search direction and length

X - the new candidate iterate

Output Parameters:
y - proposed step (search direction and length) (possibly changed)
X - current iterate (possibly modified)

*/
PetscErrorCode PostCheck(SNESLineSearch linesearch, Vec xcurrent, Vec y, Vec X,
—PetscBool *changed y, PetscBool *changed x, void *ctx)
{
PetscInt i, iter, xs, xm;
StepCheckCtx *check;

(continues on next page)
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ApplicationCtx *user;

PetscScalar *xa, *xa last, tmp;
PetscReal rdiff;

DM da;

SNES snes;

PetscFunctionBeginUser;
*changed x = PETSC_FALSE;
*changed y = PETSC FALSE;

PetscCall(SNESLineSearchGetSNES(linesearch, &snes));
check = (StepCheckCtx *)ctx;

user = check->user;
PetscCall(SNESGetIterationNumber(snes, &iter));

/* iteration 1 indicates we are working on the second iteration */
if (iter > 0) {
da = user->da;
PetscCall(PetscPrintf(PETSC_COMM WORLD, "Checking candidate step at iteration %"
—PetscInt FMT " with tolerance %g\n", iter, (double)check->tolerance));

W]

/* Access local array data */

PetscCall(DMDAVecGetArray(da, check->last step, &xa last));
PetscCall(DMDAVecGetArray(da, x, &xa));
PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));

/*
If we fail the user-defined check for validity of the candidate iterate,
then modify the iterate as we like. (Note that the particular modification
below is intended simply to demonstrate how to manipulate this data, not
as a meaningful or appropriate choice.)
*/
for (i = xs; 1 < xs + xm; i++) {
if (!PetscAbsScalar(xa[i])) rdiff = 2 * check->tolerance;
else rdiff = PetscAbsScalar((xa[i] - xa last[i]) / xalil]);
if (rdiff > check->tolerance) {

tmp = xal[il;

xa[i] = .5 * (xa[i] + xa_last[i]);

*changed x = PETSC_TRUE;

PetscCall(PetscPrintf(PETSC_COMM WORLD, " Altering entry %" PetscInt FMT ": |

X=%Qg, X last=%g, diff=%g, x new=%g\n", i, (double)PetscAbsScalar(tmp),
— (double)PetscAbsScalar(xa last[i]), (double)rdiff, (double)PetscAbsScalar(xal[il)));
}
}
PetscCall(DMDAVecRestoreArray(da, check->last step, &xa last));
PetscCall(DMDAVecRestoreArray(da, x, &xa));
}
PetscCall(VecCopy(x, check->last step));
PetscFunctionReturn(PETSC_SUCCESS);

PostSetSubKSP - Optional user-defined routine that reset SubKSP options when,,
—hierarchical bjacobi PC is used

e.g,

(continues on next page)
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mpiexec -n 8 ./ex3 -nox -n 10000 -ksp type fgmres -pc type bjacobi -pc bjacobi
—blocks 4 -sub _ksp type gmres -sub ksp max it 3 -post setsubksp -sub ksp rtol 1.e-16
Set by SNESLineSearchSetPostCheck().

Input Parameters:

linesearch - the LineSearch context
xcurrent - current solution

y - search direction and length

X - the new candidate iterate

Output Parameters:
y - proposed step (search direction and length) (possibly changed)
X - current iterate (possibly modified)

*/
PetscErrorCode PostSetSubKSP(SNESLineSearch linesearch, Vec xcurrent, Vec y, Vec x,,,
—.PetscBool *changed y, PetscBool *changed x, void *ctx)

{
SetSubKSPCtx *check;
PetscInt iter, its, sub its, maxit;
KSP ksp, sub _ksp, *sub_ksps;
PC pc;
PetscReal ksp_ratio;
SNES snes;

PetscFunctionBeginUser;

PetscCall(SNESLineSearchGetSNES(linesearch, &snes));

check = (SetSubKSPCtx *)ctx;

PetscCall(SNESGetIterationNumber(snes, &iter));

PetscCall(SNESGetKSP(snes, &ksp));

PetscCall(KSPGetPC(ksp, &pc));

PetscCall(PCBJacobiGetSubKSP(pc, NULL, NULL, &sub ksps));

sub_ksp = sub_ksps[0];

PetscCall(KSPGetIterationNumber(ksp, &its)); /* outer KSP iteration number,

PetscCall(KSPGetIterationNumber(sub ksp, &sub _its)); /* inner KSP iteration number,
LK/

if (iter) {

PetscCall(PetscPrintf (PETSC_COMM WORLD, " ...PostCheck snes iteration %",
—PetscInt FMT ", ksp it %" PetscInt FMT " %" PetscInt FMT ", subksp it %" PetscInt
—~FMT "\n", iter, check->its@, its, sub_its));

ksp_ratio = ((PetscReal)(its)) / check->its0;

maxit = (PetscInt)(ksp ratio * sub its + 0.5);

if (maxit < 2) maxit = 2;

PetscCall(KSPSetTolerances(sub ksp, PETSC DEFAULT, PETSC DEFAULT, PETSC DEFAULT, ,
—maxit));

PetscCall(PetscPrintf(PETSC_COMM WORLD, " ...ksp _ratio %g, new maxit %"
—PetscInt FMT "\n\n", (double)ksp ratio, maxit));

}
check->its0 = its; /* save current outer KSP iteration number */
PetscFunctionReturn(PETSC_SUCCESS);

[S]

(continues on next page)
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MatrixFreePreconditioner - This routine demonstrates the use of a
user-provided preconditioner. This code implements just the null
preconditioner, which of course is not recommended for general use.

Input Parameters:
+ pc - preconditioner
- X - 1nput vector

Output Parameter:

.y - preconditioned vector

*/

PetscErrorCode MatrixFreePreconditioner(PC pc, Vec x, Vec y)

{
PetscFunctionBeginUser;
PetscCall(VecCopy(x, y));
PetscFunctionReturn(PETSC_SUCCESS);

}

Table Jacobian Options summarizes the various matrix situations that SNES supports. In particular, different
linear system matrices and preconditioning matrices are allowed, as well as both matrix-free and application-
provided preconditioners. If ez3.c is run with the options -snes mf and -user_precond then it uses a
matrix-free application of the matrix-vector multiple and a user provided matrix-free Jacobian.

Table 2.11: Jacobian Options

Matrix Conventional Matrix Formats | Matrix-free versions

Use

Jaco- Create matrix with MatCre- | Create matrix with MatCreateShell(). TUse Mat-
bian ate()~*. Assemble matrix | ShellSetOperation() to set various matrix actions, or
Matrix with user-defined routine use MatCreateMFFD() or MatCreateSNESMF ().

Pre- Create matrix with MatCre- | Use SNESGetKSP() and KSPGetPC() to access the PC,
condi- ate()~*. Assemble matrix | then use PCSetType(pc, PCSHELL) followed by PC-
tioning with user-defined routine f ShellSetApply().

Matrix

* Use either the generic MatCreate() or a format-specific variant such as MatCreateAIJ().

T Set user-defined matrix formation routine with SNESSetJacobian() or with a DM variant such as
DMDASNESSetJacobianLocal()

SNES also provides some less well-integrated code to apply matrix-free finite differencing using an automat-
ically computed measurement of the noise of the functions. This can be selected with -snes_mf version
2; it does not use MatCreateMFFD() but has similar options that start with -snes mf instead of
-mat_mffd . Note that this alternative prefix only works for version 2 differencing.
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2.4.6 Finite Difference Jacobian Approximations

PETSc provides some tools to help approximate the Jacobian matrices efficiently via finite differences. These
tools are intended for use in certain situations where one is unable to compute Jacobian matrices analytically,
and matrix-free methods do not work well without a preconditioner, due to very poor conditioning. The
approximation requires several steps:

 First, one colors the columns of the (not yet built) Jacobian matrix, so that columns of the same color
do not share any common rows.

o Next, one creates a MatFDColoring data structure that will be used later in actually computing the
Jacobian.

 Finally, one tells the nonlinear solvers of SNES to use the SNESComputeJacobianDefaultColor()
routine to compute the Jacobians.

A code fragment that demonstrates this process is given below.

ISColoring iscoloring;
MatFDColoring fdcoloring;
MatColoring coloring;

/*
This initializes the nonzero structure of the Jacobian. This is artificial
because clearly if we had a routine to compute the Jacobian we wouldn't
need to use finite differences.

*/

FormJacobian(snes,x, &3, &J, &user);

/*

Color the matrix, i.e. determine groups of columns that share no common

rows. These columns in the Jacobian can all be computed simultaneously.
*/
MatColoringCreate(J, &coloring);
MatColoringSetType(coloring,MATCOLORINGSL) ;
MatColoringSetFromOptions(coloring);
MatColoringApply(coloring, &iscoloring);
MatColoringDestroy(&coloring);
/*

Create the data structure that SNESComputeJacobianDefaultColor() uses

to compute the actual Jacobians via finite differences.
*/
MatFDColoringCreate(J,iscoloring, &fdcoloring);
ISColoringDestroy(&iscoloring);
MatFDColoringSetFunction(fdcoloring, (PetscErrorCode (*)(void))FormFunction, &user);
MatFDColoringSetFromOptions(fdcoloring);

/*

Tell SNES to use the routine SNESComputeJacobianDefaultColor()

to compute Jacobians.
*/
SNESSetJacobian(snes,J,J,SNESComputeJacobianDefaultColor, fdcoloring);

Of course, we are cheating a bit. If we do not have an analytic formula for computing the Jacobian, then how
do we know what its nonzero structure is so that it may be colored? Determining the structure is problem
dependent, but fortunately, for most structured grid problems (the class of problems for which PETSc was
originally designed) if one knows the stencil used for the nonlinear function one can usually fairly easily
obtain an estimate of the location of nonzeros in the matrix. This is harder in the unstructured case, but
one typically knows where the nonzero entries are from the mesh topology and distribution of degrees of
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freedom. If using DMPlex (DMPlex: Unstructured Grids) for unstructured meshes, the nonzero locations
will be identified in DMCreateMatrix () and the procedure above can be used. Most external packages for
unstructured meshes have similar functionality.

One need not necessarily use a MatColoring object to determine a coloring. For example, if a grid can be
colored directly (without using the associated matrix), then that coloring can be provided to MatFDCol-
oringCreate(). Note that the user must always preset the nonzero structure in the matrix regardless of
which coloring routine is used.

PETSc provides the following coloring algorithms, which can be selected using MatColoringSetType()
or via the command line argument -mat coloring type.

Algorithm MatColoringType -mat coloring type | Parallel
smallest-last [MoreSGH84| MATCOLORINGSL sl No
largest-first [MoreSGHS84] MATCOLORINGLF 1f No
incidence-degree [MoreSGHS84| MATCOLORINGID id No
Jones-Plassmann [JP93] MATCOLORINGJP ip Yes
Greedy MATCOLORINGGREEDY | greedy Yes
Natural (1 color per column) MATCOLORINGNATURAL | natural Yes
Power (AF followed by 1-coloring) | MATCOLORINGPOWER power Yes

As for the matrix-free computation of Jacobians (Matriz-Free Methods), two parameters affect the accuracy
of the finite difference Jacobian approximation. These are set with the command

MatFDColoringSetParameters(MatFDColoring fdcoloring,PetscReal rerror,PetscReal umin);

The parameter rerror is the square root of the relative error in the function evaluations, e,.;; the default
is the square root of machine epsilon (about 10~ in double precision), which assumes that the functions are
evaluated approximately to floating-point precision accuracy. The second parameter, umin, is a bit more
involved; its default is 10e=¢ . Column i of the Jacobian matrix (denoted by F};) is approximated by the
formula

F(u+ hx*dx;) — F(u)

Fl ~
i h

where h is computed via:

h— U; if \uz\ > Umin
= €rel ° . .
Umin - sign(u;) otherwise.

for MATMFFD_DS or:
h = erel\/(”“’”)

for MATMFFD_WP (default). These parameters may be set from the options database with

-mat_fd coloring err <err>
-mat_fd coloring umin <umin>
-mat_fd type <htype>

Note that MatColoring type MATCOLORINGSL, MATCOLORINGLF, and MATCOLORINGID are sequential
algorithms. MATCOLORINGJP and MATCOLORINGGREEDY are parallel algorithms, although in practice they
may create more colors than the sequential algorithms. If one computes the coloring iscoloring reason-
ably with a parallel algorithm or by knowledge of the discretization, the routine MatFDColoringCreate()
is scalable. An example of this for 2D distributed arrays is given below that uses the utility routine DMCre -
ateColoring().
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DMCreateColoring(da,IS COLORING GHOSTED, &iscoloring);
MatFDColoringCreate(J,iscoloring, &fdcoloring);
MatFDColoringSetFromOptions(fdcoloring);
ISColoringDestroy( &iscoloring);

Note that the routine MatFDColoringCreate() currently is only supported for the AIJ and BAIJ matrix
formats.

2.4.7 Variational Inequalities

SNES can also solve (differential) variational inequalities with box (bound) constraints. These are nonlinear
algebraic systems with additional inequality constraints on some or all of the variables: L; < u; < H;. For
example, the pressure variable cannot be negative. Some, or all, of the lower bounds may be negative infinity
(indicated to PETSc with SNES VI NINF) and some, or all, of the upper bounds may be infinity (indicated
by SNES VI INF). The commands

SNESVISetVariableBounds (SNES,Vec L,Vec H);
SNESVISetComputeVariableBounds (SNES snes, PetscErrorCode (*compute) (SNES,Vec,Vec))

are used to indicate that one is solving a variational inequality. Problems with box constraints can be solved
with the reduced space, SNESVINEWTONRSLS, and semi-smooth SNESVINEWTONSSLS solvers.

The option -snes_vi monitor turns on extra monitoring of the active set associated with the bounds
and -snes_vi type allows selecting from several VI solvers, the default is preferred.

SNESLineSearchSetPreCheck() and SNESLineSearchSetPostCheck() can also be used to control
properties of the steps selected by SNES.

2.4.8 Nonlinear Preconditioning

The mathematical framework of nonlinear preconditioning is explained in detail in [BKST15]. Nonlinear
preconditioning in PETSc involves the use of an inner SNES instance to define the step for an outer SNES
instance. The inner instance may be extracted using

SNESGetNPC(SNES snes,SNES *npc);

and passed run-time options using the -npc_ prefix. Nonlinear preconditioning comes in two flavors: left
and right. The side may be changed using -snes npc_side or SNESSetNPCSide(). Left nonlinear
preconditioning redefines the nonlinear function as the action of the nonlinear preconditioner M;

Fu(z) = M(x,b) — x.

Right nonlinear preconditioning redefines the nonlinear function as the function on the action of the nonlinear
preconditioner;

F(M(x,b)) = b,

which can be interpreted as putting the preconditioner into “striking distance” of the solution by outer
acceleration.

In addition, basic patterns of solver composition are available with the SNESType SNESCOM-
POSITE. This allows for two or more SNES instances to be combined additively or multiplica-
tively. By command line, a set of SNES types may be given by comma separated list ar-
gument to -snes _composite sneses. There are additive (SNES_COMPOSITE ADDITIVE),
additive with optimal damping (SNES_COMPOSITE ADDITIVEOPTIMAL), and multiplicative
(SNES_COMPOSITE MULTIPLICATIVE) variants which may be set with
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SNESCompositeSetType (SNES,SNESCompositeType);

New subsolvers may be added to the composite solver with

SNESCompositeAddSNES (SNES, SNESType) ;

and accessed with

SNESCompositeGetSNES (SNES,PetscInt,SNES *);

2.5 TS: Scalable ODE and DAE Solvers

The TS library provides a framework for the scalable solution of ODEs and DAEs arising from the discretiza-
tion of time-dependent PDEs.

Simple Example: Consider the PDE
Ut = Ugy

discretized with centered finite differences in space yielding the semi-discrete equation

Ujgp1 — 2U; + Ui
(ui)t = : h/; : 9

Uy = Au;

or with piecewise linear finite elements approximation in space u(z,t) = >, &(t)¢;(x) yielding the semi-
discrete equation

BE'(t) = AL(t)
Now applying the backward Fuler method results in
(B — dt" A)u"! = Bu",
in which
u"i = &i(tn) = u(@i, tn),

un+1i _ uni

/ -
5 (tn+1) - dtn )

A is the stiffness matrix, and B is the identity for finite differences or the mass matrix for the finite element
method.

The PETSc interface for solving time dependent problems assumes the problem is written in the form
F(tvuv’d) = G(ta ’U,)7 u(tO) = Ug.

In general, this is a differential algebraic equation (DAE)*. For ODE with nontrivial mass matrices such as
arise in FEM, the implicit/DAE interface significantly reduces overhead to prepare the system for algebraic
solvers (SNES/KSP) by having the user assemble the correctly shifted matrix. Therefore this interface is also
useful for ODE systems.

To solve an ODE or DAE one uses:

o Function F(t,u, )

4 If the matrix Fy(t) = OF/0u is nonsingular then it is an ODE and can be transformed to the standard explicit form,
although this transformation may not lead to efficient algorithms.
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TSSetIFunction(TS ts,Vec R,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,Vec,void*),
~void *funP);

The vector R is an optional location to store the residual. The arguments to the function () are the
timestep context, current time, input state u, input time derivative %, and the (optional) user-provided
context funP. If F(t,u, ) = @ then one need not call this function.

Function G(t, u), if it is nonzero, is provided with the function

TSSetRHSFunction(TS ts,Vec R,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void,
~*funP);

Jacobian o F, (1", u™, &™) + F, (t", u™, 4™)
If using a fully implicit or semi-implicit (IMEX) method one also can provide an appropriate
(approximate) Jacobian matrix of F().

TSSetIJacobian(TS ts,Mat A,Mat B,PetscErrorCode (*fjac)(TS,PetscReal,Vec,Vec,
—PetscReal,Mat,Mat,void*),void *jacP);

The arguments for the function fjac() are the timestep context, current time, input state w, input
derivative 4, input shift o, matrix A, preconditioning matrix B, and the (optional) user-provided
context jacP.

The Jacobian needed for the nonlinear system is, by the chain rule,

dF  OF 9 OF

e T Ul i al

For any ODE integration method the approximation of @ is linear in u™ hence %|un = o, where the
shift o depends on the ODE integrator and time step but not on the function being integrated. Thus

ar

= Bt U i)+ Bt ).

This explains why the user provide Jacobian is in the given form for all integration methods. An
equivalent way to derive the formula is to note that

F(t",u™u") = F{t",u",w+ o *u")

where w is some linear combination of previous time solutions of u so that

dF
= oFy (B u™, a™) + Fu (87, u™,4™)

again by the chain rule.
For example, consider backward Euler’s method applied to the ODE F(t,u,4) = @ — f(t,u) with
0= (u" —u""1) /8t and g—Z|un = 1/6t resulting in

dF

duin = (1/6t)Fu+Fu(tn,un,U/n)

But Fy = 1, in this special case, resulting in the expected Jacobian I/t — f, (¢, u™).

Jacobian G,

If using a fully implicit method and the function G() is provided, one also can provide an appropriate
(approximate) Jacobian matrix of G().
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TSSetRHSJacobian(TS ts,Mat A,Mat B,
PetscErrorCode (*fjac)(TS,PetscReal,Vec,Mat,Mat,void*),void *jacP);

The arguments for the function fjac() are the timestep context, current time, input state u, matrix
A, preconditioning matrix B, and the (optional) user-provided context jacP.

Providing appropriate F() and G() for your problem allows for the easy runtime switching between explicit,
semi-implicit (IMEX), and fully implicit methods.

2.5.1 Basic TS Options

The user first creates a TS object with the command

int TSCreate(MPI_Comm comm,TS *ts);

int TSSetProblemType(TS ts,TSProblemType problemtype);

The TSProblemType is one of TS _LINEAR or TS NONLINEAR.
To set up TS for solving an ODE, one must set the “initial conditions” for the ODE with

TSSetSolution(TS ts, Vec initialsolution);

One can set the solution method with the routine

TSSetType(TS ts,TSType type);

Some of the currently supported types are TSEULER, TSRK (Runge-Kutta), TSBEULER, TSCN
(Crank-Nicolson), TSTHETA, TSGLLE (generalized linear), TSPSEUDO, and TSSUNDIALS (only if the
Sundials package is installed), or the command line option

-ts type euler,rk,beuler,cn,theta,gl, pseudo,sundials,eimex,arkimex, rosw.

A list of available methods is given in integrator_table.

Set the initial time with the command

TSSetTime (TS ts,PetscReal time);

One can change the timestep with the command

TSSetTimeStep (TS ts,PetscReal dt);

can determine the current timestep with the routine

TSGetTimeStep (TS ts,PetscReal* dt);

Here, “current” refers to the timestep being used to attempt to promote the solution form u™ to u™*!.

One sets the total number of timesteps to run or the total time to run (whatever is first) with the commands

TSSetMaxSteps (TS ts,PetscInt maxsteps);
TSSetMaxTime(TS ts,PetscReal maxtime);

and determines the behavior near the final time with
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TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt);

where eftopt is one of TS EXACTFINALTIME STEPOVER,TS EXACTFINALTIME INTERPOLATE, or
TS EXACTFINALTIME MATCHSTEP. One performs the requested number of time steps with

TSSolve(TS ts,Vec U);

The solve call implicitly sets up the timestep context; this can be done explicitly with

TSSetUp (TS ts);

One destroys the context with

TSDestroy (TS *ts);

and views it with

TSView(TS ts,PetscViewer viewer);

In place of TSSolve(), a single step can be taken using

TSStep (TS ts);

2.5.2 DAE Formulations

You can find a discussion of DAEs in [AP98] or Scholarpedia. In PETSc, TS deals with the semi-discrete
form of the equations, so that space has already been discretized. If the DAE depends explicitly on the
coordinate z, then this will just appear as any other data for the equation, not as an explicit argument.
Thus we have

F(t,u,u) =0
In this form, only fully implicit solvers are appropriate. However, specialized solvers for restricted forms of

DAE are supported by PETSc. Below we consider an ODE which is augmented with algebraic constraints
on the variables.

Hessenberg Index-1 DAE

This is a Semi-Explicit Index-1 DAE which has the form

= f(t,u,z)
0= h(t,u,z)
dh

where 2 is a new constraint variable, and the Jacobian ¢ is non-singular everywhere. We have suppressed
the = dependence since it plays no role here. Using the non-singularity of the Jacobian and the Implicit
Function Theorem, we can solve for z in terms of u. This means we could, in principle, plug z(u) into the
first equation to obtain a simple ODE, even if this is not the numerical process we use. Below we show that
this type of DAE can be used with IMEX schemes.
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Hessenberg Index-2 DAE

This DAE has the form

= f(t,u,z)
0=h(t,u)

Notice that the constraint equation h is not a function of the constraint variable z. This means that we
cannot naively invert as we did in the index-1 case. Our strategy will be to convert this into an index-1 DAE
using a time derivative, which loosely corresponds to the idea of an index being the number of derivatives
necessary to get back to an ODE. If we differentiate the constraint equation with respect to time, we can
use the ODE to simplify it,

0 = h(t,u)
_an, on
" du ot
dh Oh
- diuf(tfufaz)—’_a

If the Jacobian %% is non-singular, then we have precisely a semi-explicit index-1 DAE, and we can once
again use the PETSc IMEX tools to solve it. A common example of an index-2 DAE is the incompressible
Navier-Stokes equations, since the continuity equation V-u = 0 does not involve the pressure. Using PETSc
IMEX with the above conversion then corresponds to the Segregated Runge-Kutta method applied to this

equation [ColomesB16].

2.5.3 Using Implicit-Explicit (IMEX) Methods

For “stift” problems or those with multiple time scales F'() will be treated implicitly using a method suitable
for stiff problems and G() will be treated explicitly when using an IMEX method like TSARKIMEX. F()
is typically linear or weakly nonlinear while G() may have very strong nonlinearities such as arise in non-
oscillatory methods for hyperbolic PDE. The user provides three pieces of information, the APIs for which
have been described above.

e “Slow” part G(t,u) using TSSetRHSFunction().
o “Stiff” part F(t,u, ) using TSSetIFunction().
e Jacobian F, + oF, using TSSetIJacobian().

The user needs to set TSSetEquationType() to TS EQ IMPLICIT or higher if the problem is implicit;
e.g., F(t,u,4) = Mu — f(t,u), where M is not the identity matrix:

o the problem is an implicit ODE (defined implicitly through TSSetIFunction()) or
e a DAE is being solved.
An IMEX problem representation can be made implicit by setting TSARKIMEXSetFullyImplicit().

In PETSc, DAEs and ODEs are formulated as F(t,u,u) = G(t,u), where F() is meant to be integrated
implicitly and G() explicitly. An IMEX formulation such as Mu = f(t,u) + g(¢,u) requires the user to
provide M ~1g(t,u) or solve g(t,u) — Mz = 0 in place of G(t,u). General cases such as F(t,u,u) = G(t,u)
are not amenable to IMEX Runge-Kutta, but can be solved by using fully implicit methods. Some use-case
examples for TSARKIMEX are listed in Table 2.12 and a list of methods with a summary of their properties
is given in IMEX Runge-Kutta schemes.
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Table 2.12: Use case examples for TSARKIMEX

. o Flhow =@
u=g(t,u nonsti
g G(t,u) = g(t, u)
Ft,u,0) =1
M = g(t,u) nonstiff ODE with mass )
matrix G(t,u) = M~ g(t,u)
F(t,u, i) =0 — f(t,u)
= f(t, tiff ODE
= f(t,u) sti Gltu) = 0
Mu = f(t,u) stiff ODE with mass ma-
trix G(t,u) =0
Flt,u,u) = u— f(L
= f(t,u)+ g(t,u) stiff-nonstiff ODE () =i = f (¢ u)
G(t,u) =g(t u)
F(tvuvu):Mu_f(tvu)
Mu = f(t,u) + g(t,u) stiff-nonstiff ODE with .
mass matrix G(t,u) = M~ g(t,u)
i fus) Fgtus) | Pt = (00 )
0= ht semi-explicit index-1 h(t,u, z)
=My DAE G(t,u) = g(t, u)
F t? ) ! = t? b !
flt,u, ) =0 fully implicit (b, @) = (. ; the user needs to set TS-
ODE/DAE G(t,u) =0

SetEquationType() to TS EQ IMPLICIT or
higher

Table 2.13 lists of the currently available IMEX Runge-Kutta schemes.

For each method, it gives the

-ts_arkimex_type name, the reference, the total number of stages/implicit stages, the order/stage-order,
the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, and dense

output (DO).
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Table 2.13: IMEX Runge-Kutta schemes

Name| Reference Stages Order IM SA | Em- DO Remarks
(IM) (Stage) bed
a2 based on CN 2 (1) 2 (2) A- yes | yes (1) | yes
Stable (2)
12 SSP2(2,2,2) 2 (2) 2 (1) L- yes | yes (1) | yes SSP
[PRO5] Stable (2) | SDIRK
ars122 | ARS122 2 (1) 3 (1) A- yes | yes (1) | yes
[ARS97] Stable (2)
2¢c [GKC13] 3(2) 2(2) L- yes | yes (1) | yes SDIRK
Stable (2)
2d [GKC13] 3(2) 2 (2) L- yes | yes (1) | yes SDIRK
Stable (2)
2e [GKC13] 3(2) 2 (2) L- yes | yes (1) | yes SDIRK
Stable (2)
prssp2 | PRS(3,3,2) 3(3) 3 (1) L- yes | no no SSP
[PRO5] Stable
3 [KC03] 4 (3) 3(2) L- yes | yes (2) | yes SDIRK
Stable (2)
bpr3 [BPR11] 5 (4) 3(2) L- yes | no no SDIRK
Stable
ars443 | [ARS97] 5 (4) 3 (1) L- yes | no no SDIRK
Stable
4 [KC03] 6 (5) 4 (2) L- yes | yes (3) | vyes SDIRK
Stable
5 [KCO03] 8 (7) 5(2) L- yes | yes (4) | yes SDIRK
Stable (3)

ROSW are linearized implicit Runge-Kutta methods known as Rosenbrock W-methods. They can accom-
modate inexact Jacobian matrices in their formulation. A series of methods are available in PETSc are listed
in Table 2.14 below. For each method, it gives the reference, the total number of stages and implicit stages,
the scheme order and stage order, the implicit stability properties (IM), stiff accuracy (SA), the existence
of an embedded scheme, dense output (DO), the capacity to use inexact Jacobian matrices (-W), and high
order integration of differential algebraic equations (PDAE).
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Table 2.14: Rosenbrock W-schemes

TS Refer- | Stages| Order | IM SA Em- DO -W PDAE | Re-
ence | (IM) (Stage) bed marks
thetal | classi- | 1(1) 1(1) L- . . . . . .
cal Stable
theta2 | classi- | 1(1) 2(2) A- . . . . . .
cal Stable
2m Zoltan | 2(2) 2(1) L- No Yes(1) | Yes(2) | Yes No SSp
Stable
2p Zoltan | 2(2) 2(1) L- No Yes(1) | Yes(2) | Yes No SSP
Stable
ra3pw | [RA05] | 3(3) 3(1) A- No Yes Yes(2) | No Yes(3) .
Stable
ra3dpw2 [RAO05] | 4(4) 3(1) L- Yes Yes Yes(3) | Yes Yes(3) .
Stable
rodas3 | [SVB+9[7]4(4) 3(1) L- Yes Yes No No Yes .
Stable
sandu3 | [SVB-+9[7]3(3) 3(1) L- Yes Yes Yes(2) | No No .
Stable
assp3p3slun- 3(2) 3(1) A- No Yes Yes(2) | Yes No SSP
pub. Stable
lassp3p4sim- 4(3) 3(1) L- No Yes Yes(3) | Yes No SSP
pub. Stable
lassp3p4s2m- 4(3) 3(1) L- No Yes Yes(3) | Yes No SSP
pub. Stable
ark3 un- 4(3) 3(1) L- No Yes Yes(3) | Yes No IMEX-
pub. Stable RK

2.5.4 GLEE methods

In this section, we describe explicit and implicit time stepping methods with global error estimation that
are introduced in [Conl6]. The solution vector for a GLEE method is either [y, §] or [y,e], where y is the
solution, 7 is the “auxiliary solution,” and ¢ is the error. The working vector that TSGLEE uses is Y = [y,7],

or [y,

e]. A GLEE method is defined by

(p,r,8): (order, steps, and stages),
~: factor representing the global error ratio,
A, U, B, V: method coefficients,

S: starting method to compute the working vector from the solution (say at the beginning of time
integration) so that Y = Sy,

F': finalizing method to compute the solution from the working vector,y = FY.
Fembed: coefficients for computing the auxiliary solution § from the working vector (§ = FempedY),
Fiorror: coeflicients to compute the estimated error vector from the working vector (¢ = FoprorY).

Serror: coefficients to initialize the auxiliary solution (¢ or €) from a specified error vector (¢). It is
currently implemented only for r = 2. We have yaux = Serror[0] * € + Serror[1] * y, where yaux is the
2nd component of the working vector Y.
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The methods can be described in two mathematically equivalent forms: propagate two components (“yg
form”) and propagating the solution and its estimated error (“ye form”). The two forms are not explicitly
specified in TSGLEE; rather, the specific values of B,U, S, F, F.,peq, and F,,.,.., characterize whether the
method is in yy or ye form.

The API used by this TS method includes:
o TSGetSolutionComponents: Get all the solution components of the working vector

ierr = TSGetSolutionComponents(TS,int*,Vec*)

Call with NULL as the last argument to get the total number of components in the working vector Y
(this is r (not 7 — 1)), then call to get the i-th solution component.

o TSGetAuxSolution: Returns the auxiliary solution § (computed as FompeaY)

ierr = TSGetAuxSolution(TS,Vec*)

o TSGetTimeError: Returns the estimated error vector e (computed as Feo Y if n = 0 or restores
the error estimate at the end of the previous step if n = —1)

‘ierr = TSGetTimeError(TS,PetscInt n,Vec*)

o TSSetTimeError: Initializes the auxiliary solution (7 or ¢) for a specified initial error.

‘ ierr = TSSetTimeError(TS,Vec)

The local error is estimated as €(n+1) —e(n). This is to be used in the error control. The error in yj GLEE
is £(n) = 1= * (§(n) — y(n)).

Note that y and § are reported to TSAdapt basic (TSADAPTBASIC), and thus it computes the local error
as €10c = (§ — y). However, the actual local error is €1oc = €py1 — €n = ﬁ $ (T = Y ns1 — (§ — Y)nl-

Table 2.15 lists currently available GL schemes with global error estimation [Conl16].

Table 2.15: GL schemes with global error estimation

TS Reference | IM/EX | (p,r,s) | v Form | Notes

TSGLEEil BE1 IM (1,3,2) | 0.5 | ye Based on backward Euler
TSGLEE23 23 EX (2,3,2) | 0 ye

TSGLEE24 24 EX (2,4,2) | 0 Yy

TSGLEE25I 251 EX (2,5,2) | 0 Yy

TSGLEE35 35 EX (3,5,2) | 0 Yy

TSGLEEEXRK2A | exrk2a EX (2,6,2) | 0.25 | ye

TSGLEERK32G1 rk32gl EX (3,8,2) | 0 ye

TSGLEERK285EX | rk285ex EX (2,9,2) | 0.25 | ye

2.5.5 Using fully implicit methods

To use a fully implicit method like TSTHETA, TSBDF or TSDIRK, either provide the Jacobian of F() (and
G() if G() is provided) or use a DM that provides a coloring so the Jacobian can be computed efficiently via
finite differences.
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2.5.6 Using the Explicit Runge-Kutta timestepper with variable
timesteps

The explicit Euler and Runge-Kutta methods require the ODE be in the form
= G(u,t).

The user can either call TSSetRHSFunction() and/or they can call TSSetIFunction() (so long as
the function provided to TSSetIFunction() is equivalent to @ + F'(t,u)) but the Jacobians need not be
provided.®

The Explicit Runge-Kutta timestepper with variable timesteps is an implementation of the standard Runge-
Kutta with an embedded method. The error in each timestep is calculated using the solutions from the
Runge-Kutta method and its embedded method (the 2-norm of the difference is used). The default method
is the 3rd-order Bogacki-Shampine method with a 2nd-order embedded method (TSRK3BS). Other available
methods are the 5th-order Fehlberg RK scheme with a 4th-order embedded method (TSRK5F), the 5th-
order Dormand-Prince RK scheme with a 4th-order embedded method (TSRK5DP), the 5th-order Bogacki-
Shampine RK scheme with a 4th-order embedded method (TSRK5BS, and the 6th-, 7th, and 8th-order robust
Verner RK schemes with a 5th-, 6th, and 7th-order embedded method, respectively (TSRK6VR, TSRK7VR,
TSRK8VR). Variable timesteps cannot be used with RK schemes that do not have an embedded method
(TSRK1FE - 1st-order, 1-stage forward Euler, TSRK2A - 2nd-order, 2-stage RK scheme, TSRK3 - 3rd-order,
3-stage RK scheme, TSRK4 - 4-th order, 4-stage RK scheme).

2.5.7 Special Cases

e U = Au. First compute the matrix A then call

TSSetProblemType(ts, TS _LINEAR);
TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);
TSSetRHSJacobian(ts,A,A,TSComputeRHSJacobianConstant,NULL) ;

or

TSSetProblemType(ts, TS LINEAR);
TSSetIFunction(ts,NULL,TSComputeIFunctionLinear,NULL);
TSSetIJacobian(ts,A,A,TSComputeIJacobianConstant,NULL);

o 4= A(t)u. Use

TSSetProblemType(ts, TS LINEAR);
TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);
TSSetRHSJacobian(ts,A,A,YourComputeRHSJacobian, &appctx);

where YourComputeRHSJacobian() is a function you provide that computes A as a function of
time. Or use

TSSetProblemType(ts, TS LINEAR);
TSSetIFunction(ts,NULL,TSComputeIFunctionLinear,NULL);
TSSetIJacobian(ts,A,A,YourComputeIJacobian, &appctx);

5 PETSc will automatically translate the function provided to the appropriate form.
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2.5.8 Monitoring and visualizing solutions

o -ts monitor - prints the time and timestep at each iteration.
o -ts adapt monitor - prints information about the timestep adaption calculation at each iteration.
o -ts monitor 1g timestep - plots the size of each timestep, TSMonitorLGTimeStep().

o -ts monitor_lg solution - for ODEs with only a few components (not arising from the dis-
cretization of a PDE) plots the solution as a function of time, TSMonitorLGSolution().

o -ts monitor lg error - for ODEs with only a few components plots the error as a function of
time, only if TSSetSolutionFunction() is provided, TSMonitorLGError().

o -ts monitor draw solution - plots the solution at each iteration, TSMonitorDrawSolu-
tion().

o -ts monitor draw error - plots the error at each iteration only if TSSetSolutionFunction()
is provided, TSMonitorDrawSolution().

o -ts monitor solution binary[:filename] - saves the solution at each iteration to a bi-
nary file, TSMonitorSolution(). Solution viewers work with other time-aware formats, e.g.,
-ts monitor solution cgns:sol.cgns, and can output one solution every 10 time steps by
adding -ts monitor solution interval 10.

o -ts monitor solution vtk <filename-%03D.vts> - saves the solution at each iteration to a
file in vtk format, TSMonitorSolutionVTK().

2.5.9 Error control via variable time-stepping

Most of the time stepping methods avaialable in PETSc have an error estimation and error control mech-
anism. This mechanism is implemented by changing the step size in order to maintain user specified abso-
lute and relative tolerances. The PETSc object responsible with error control is TSAdapt. The available
TSAdapt types are listed in the following table.

Table 2.16: TSAdapt: available adaptors

ID NameNotes

TSADAPT} none no adaptivity

NONE

TSADAPT} ba- | the default adaptor

BASIC sic

TSADAPT} glee extension of the basic adaptor to treat Toly and Tolg as separate criteria. It can also
GLEE control global erorrs if the integrator (e.g., TSGLEE) provides this information

When using TSADAPTBASIC (the default), the user typically provides a desired absolute Tola or a relative
Tolg error tolerance by invoking TSSetTolerances() or at the command line with options -ts_atol
and -ts rtol. The error estimate is based on the local truncation error, so for every step the algorithm
verifies that the estimated local truncation error satisfies the tolerances provided by the user and computes
a new step size to be taken. For multistage methods, the local truncation is obtained by comparing the
solution y to a lower order p = p — 1 approximation, ¥, where p is the order of the method and p the order
of 7.

The adaptive controller at step n computes a tolerance level

Tol,(i) = Tola(7) + max(yn (%), Yn (7)) Tolr (),
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and forms the acceptable error level

L= [ lyn(@) = 920
1 n— N
wite m ; Tol(7)

where the errors are computed componentwise, m is the dimension of y and -ts adapt wnormtype is 2
(default). If -ts_adapt wnormtype is infinity (max norm), then

wlten = max == 00

The error tolerances are satisfied when wlte < 1.0.

The next step size is based on this error estimate, and determined by

Atnew(t) =  Atorq min(aimax, max(aimim, 8(1/wlte) 77)) | (2.5)

where o, =-ts_adapt clip[0] and ama.x=-ts_adapt clip[l] keep the change in At to within a
certain factor, and 8 < 1 is chosen through -ts adapt safety so that there is some margin to which the
tolerances are satisfied and so that the probability of rejection is decreased.

This adaptive controller works in the following way. After completing step k, if wltex;1 < 1.0, then the step
is accepted and the next step is modified according to eq:hnew; otherwise, the step is rejected and retaken
with the step length computed in (2.5).

TSADAPTGLEE is an extension of the basic adaptor to treat Toly and Tolg as separate criteria. it can also
control global errors if the integrator (e.g., TSGLEE) provides this information.

2.5.10 Handling of discontinuities

For problems that involve discontinuous right hand sides, one can set an “event” function ¢(¢, u) for PETSc
to detect and locate the times of discontinuities (zeros of g(t,u)). Events can be defined through the event
monitoring routine

TSSetEventHandler (TS ts,PetscInt nevents,PetscInt *direction,PetscBool *terminate,
—PetscErrorCode (*eventhandler)(TS,PetscReal,Vec,PetscScalar*,void* eventP),
—PetscErrorCode (*postevent)(TS,PetscInt,PetscInt[],PetscReal,Vec,PetscBool,void*
—.eventP),void *eventP);

Here, nevents denotes the number of events, direction sets the type of zero crossing to be detected for
an event (+1 for positive zero-crossing, -1 for negative zero-crossing, and 0 for both), terminate conveys
whether the time-stepping should continue or halt when an event is located, eventmonitor is a user-
defined routine that specifies the event description, postevent is an optional user-defined routine to take
specific actions following an event.

The arguments to eventhandler() are the timestep context, current time, input state u, array of event
function value, and the (optional) user-provided context eventP.

The arguments to postevent () routine are the timestep context, number of events occurred, indices of
events occured, current time, input state u, a boolean flag indicating forward solve (1) or adjoint solve (0),
and the (optional) user-provided context eventP.
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2.5.11 Explicit integrators with finite element mass matrices

Discretized finite element problems often have the form M = G(¢,u) where M is the mass matrix. Such
problems can be solved using DMTSSetIFunction() with implicit integrators. When M is nonsingu-
lar (i.e., the problem is an ODE, not a DAE), explicit integrators can be applied to @ = M ~'G(t,u) or
w=M"1G (t,u), where M is the lumped mass matrix. While the true mass matrix generally has a dense in-
verse and thus must be solved iteratively, the lumped mass matrix is diagonal (e.g., computed via collocated
quadrature or row sums of M). To have PETSc create and apply a (lumped) mass matrix automatically,
first use DMTSSetRHSFunction()™ to specify :math: G° and set a " "PetscFE® using
" "DMAddField() and DMCreateDS(), then call either DMTSCreateRHSMassMatrix () or DMTSCre-
ateRHSMassMatrixLumped() to automatically create the mass matrix and a KSP that will be used to
apply M ~!. This KSP can be customized using the "mass " prefix.

2.5.12 Performing sensitivity analysis with the TS ODE Solvers

The TS library provides a framework based on discrete adjoint models for sensitivity analysis for ODEs and
DAEs. The ODE/DAE solution process (henceforth called the forward run) can be obtained by using either
explicit or implicit solvers in TS, depending on the problem properties. Currently supported method types
are TSRK (Runge-Kutta) explicit methods and TSTHETA implicit methods, which include TSBEULER and
TSCN.

Using the discrete adjoint methods
Consider the ODE/DAE

F(tvyvyap) = 07 y(tO) = yO(p) tO S 4 S tF

and the cost function(s)

tp
¥i(yo,P) =‘I>z'(yF,p)+/ ri(y(t),p,)dt i =1,..., Neost-

to

The TSAdjoint routines of PETSc provide

ov;
Yo
and
ov; Yo
= ; )\i ——).
op Mt ( ap)

To perform the discrete adjoint sensitivity analysis one first sets up the TS object for a regular forward run
but with one extra function call

TSSetSaveTrajectory (TS ts),

then calls TSSolve() in the usual manner.

One must create two arrays of neest vectors A and p (if there are no parameters p then one can use NULL
for the p array.) The X vectors are the same dimension and parallel layout as the solution vector for the
ODE, the p vectors are of dimension p; when p is small usually all its elements are on the first MPI process,
while the vectors have no entries on the other processes. A; and pu; should be initialized with the values
d®;/dy|t=+, and d®;/dp|i—t, respectively. Then one calls

2.5. TS: Scalable ODE and DAE Solvers 147



PETSc/TAO Users Manual, Release 3.20.1

TSSetCostGradients(TS ts,PetscInt numcost, Vec *lambda,Vec *mu);

where NnUMCOSt denotes ncost. If F() is a function of p one needs to also provide the Jacobian —F), with

TSSetRHSJacobianP (TS ts,Mat Amat,PetscErrorCode (*fp)(TS,PetscReal,Vec,Mat,void*),
~void *ctx)

or

TSSetIJacobianP (TS ts,Mat Amat,PetscErrorCode (*fp)(TS,PetscReal,Vec,Vec,PetscReal,
—Mat,void*),void *ctx)

or both, depending on which form is used to define the ODE.

The arguments for the function fp() are the timestep context, current time, y, and the (optional) user-
provided context.

If there is an integral term in the cost function, i.e. r is nonzero, it can be transformed into another ODE
that is augmented to the original ODE. To evaluate the integral, one needs to create a child TS objective by
calling

TSCreateQuadratureTS(TS ts,PetscBool fwd,TS *quadts);

and provide the ODE RHS function (which evaluates the integrand r) with

TSSetRHSFunction(TS quadts,Vec R,PetscErrorCode (*rf)(TS,PetscReal,Vec,Vec,void*),
—void *ctx)

Similar to the settings for the original ODE, Jacobians of the integrand can be provided with

TSSetRHSJacobian(TS quadts,Vec DRDU,Vec DRDU,PetscErrorCode (*drdyf)(TS,PetscReal,Vec,
~Vec*,void*),void *ctx)

TSSetRHSJacobianP (TS quadts,Vec DRDU,Vec DRDU,PetscErrorCode (*drdyp)(TS,PetscReal,
~Vec,Vec*,void*),void *ctx)

where drdyf = dr/dy, drdpf = dr/dp. Since the integral term is additive to the cost function, its gradient
information will be included in A and p.

Lastly, one starts the backward run by calling

TSAdjointSolve(TS ts).

One can obtain the value of the integral term by calling

TSGetCostIntegral(TS ts,Vec *q).

or accessing directly the solution vector used by quadts.

The second argument of TSCreateQuadratureTS() allows one to choose if the integral term is evalu-
ated in the forward run (inside TSSolve()) or in the backward run (inside TSAdjointSolve()) when
TSSetCostGradients() and TSSetCostIntegrand() are called before TSSolve(). Note that this
also allows for evaluating the integral without having to use the adjoint solvers.

To provide a better understanding of the use of the adjoint solvers, we introduce a simple example, corre-
sponding to T'S Power Grid Tutorial ex3sa. The problem is to study dynamic security of power system when
there are credible contingencies such as short-circuits or loss of generators, transmission lines, or loads. The
dynamic security constraints are incorporated as equality constraints in the form of discretized differential
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equations and inequality constraints for bounds on the trajectory. The governing ODE system is

¢ = wp(w — wg)
2H Jws W' = DPm — Pmazsin(¢) — D(w —wg), to <t <tp,

where ¢ is the phase angle and w is the frequency.

The initial conditions at time tqy are

#(to) = arcsin (pm/Pmaz) »

DPmaz 18 a positive number when the system operates normally. At an event such as fault incidence/removal,
DPmaz Will change to 0 temporarily and back to the original value after the fault is fixed. The objective is
to maximize p,, subject to the above ODE constraints and ¢ < ¢g during all times. To accommodate the
inequality constraint, we want to compute the sensitivity of the cost function

tp
U(ps &) = —p + ¢ / (max(0, 6 — ¢s))? dt

to
with respect to the parameter p,,. numcost is 1 since it is a scalar function.

For ODE solution, PETSc requires user-provided functions to evaluate the system F(t,y,y,p) (set by TS-
SetIFunction() ) and its corresponding Jacobian Fy, + o Fy (set by TSSetIJacobian()). Note that the
solution state y is [¢ w]” here. For sensitivity analysis, we need to provide a routine to compute f, = [0 1]7 us-
ing TSASetRHSJacobianP (), and three routines corresponding to the integrand r = ¢ (max(0, ¢ — ¢5))2,
rp = [00]T and r, = [2¢ (max(0, ¢ — ¢s)) 0]7 using TSSetCostIntegrand().

In the adjoint run, A and y are initialized as [0 0] and [—1] at the final time t. After TSAdjointSolve(),
the sensitivity of the cost function w.r.t. initial conditions is given by the sensitivity variable A (at time tp)
directly. And the sensitivity of the cost function w.r.t. the parameter p,, can be computed (by users) as

T
S o) + Moy LA

For explicit methods where one does not need to provide the Jacobian F), for the forward solve one still does
need it for the backward solve and thus must call

TSSetRHSJacobian(TS ts,Mat Amat, Mat Pmat,PetscErrorCode (*f)(TS,PetscReal,Vec,Mat,
~Mat,void*),void *fP);

Examples include:

o discrete adjoint sensitivity using explicit and implicit time stepping methods for an ODE problem TS
Tutorial ex20adj,

o an optimization problem using the discrete adjoint models of the ERK (for nonstiff ODEs) and the
Theta methods (for stiff DAEs) T'S Tutorial ex20opt_ic and TS Tutorial ex20opt_p,

e an ODE-constrained optimization using the discrete adjoint models of the Theta methods for cost
function with an integral term TS Power Grid Tutorial ex3opt,

« discrete adjoint sensitivity using the Crank-Nicolson methods for DAEs with discontinuities T'S Power
Grid Stability Tutorial ex9busadj,

e a DAE-constrained optimization problem using the discrete adjoint models of the Crank-Nicolson
methods for cost function with an integral term T'S Power Grid Tutorial ex9busopt,

« discrete adjoint sensitivity using the Crank-Nicolson methods for a PDE problem TS Advection-
Diffusion-Reaction Tutorial exbadj.
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Checkpointing

The discrete adjoint model requires the states (and stage values in the context of multistage timestepping
methods) to evaluate the Jacobian matrices during the adjoint (backward) run. By default, PETSc stores
the whole trajectory to disk as binary files, each of which contains the information for a single time step
including state, time, and stage values (optional). One can also make PETSc store the trajectory to memory
with the option -ts _trajectory type memory. However, there might not be sufficient memory capacity
especially for large-scale problems and long-time integration.

A so-called checkpointing scheme is needed to solve this problem. The scheme stores checkpoints at selective
time steps and recomputes the missing information. The revolve library is used by PETSc TSTrajec-
tory to generate an optimal checkpointing schedule that minimizes the recomputations given a limited
number of available checkpoints. Omne can specify the number of available checkpoints with the option
-ts_trajectory max_cps _ram [maximum number of checkpoints in RAM]. Note that one
checkpoint corresponds to one time step.

The revolve library also provides an optimal multistage checkpointing scheme that uses both
RAM and disk for storage. This scheme is automatically chosen if one uses both the option
-ts trajectory max _cps ram [maximum number of checkpoints in RAM] and the option
-ts trajectory max cps disk [maximum number of checkpoints on disk].

Some other useful options are listed below.
o -ts trajectory view prints the total number of recomputations,

o -ts monitor and -ts_adjoint monitor allow users to monitor the progress of the adjoint work
flow,

o -ts trajectory type visualization may be used to save the whole trajectory for visualiza-
tion. It stores the solution and the time, but no stage values. The binary files generated can be read into
MATLAB via the script $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.
m.

2.5.13 Using Sundials from PETSc

Sundials is a parallel ODE solver developed by Hindmarsh et al. at LLNL. The TS library provides an
interface to use the CVODE component of Sundials directly from PETSc. (To configure PETSc to use
Sundials, see the installation guide, installation/index.htm.)

To use the Sundials integrators, call

TSSetType(TS ts,TSType TSSUNDIALS);

or use the command line option -ts_ type sundials.

Sundials’ CVODE solver comes with two main integrator families, Adams and BDF (backward differentiation
formula). One can select these with

TSSundialsSetType(TS ts,TSSundialsLmmType [SUNDIALS ADAMS, SUNDIALS BDF]);

or the command line option -ts sundials type <adams,bdf>. BDF is the default.

Sundials does not use the SNES library within PETSc for its nonlinear solvers, so one cannot change the
nonlinear solver options via SNES. Rather, Sundials uses the preconditioners within the PC package of
PETSc, which can be accessed via

TSSundialsGetPC(TS ts,PC *pc);
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The user can then directly set preconditioner options; alternatively, the usual runtime options can be em-
ployed via -pC_XXX.

Finally, one can set the Sundials tolerances via

TSSundialsSetTolerance(TS ts,double abs,double rel);

where abs denotes the absolute tolerance and rel the relative tolerance.

Other PETSc-Sundials options include

TSSundialsSetGramSchmidtType(TS ts,TSSundialsGramSchmidtType type);

where type is either SUNDIALS MODIFIED GS or SUNDIALS UNMODIFIED GS. This may be set via the
options data base with -ts sundials gramschmidt type <modifed,unmodified>.

The routine

TSSundialsSetMax1(TS ts,PetscInt restart);

sets the number of vectors in the Krylov subpspace used by GMRES. This may be set in the options database
with -ts sundials maxl maxl.

2.5.14 Using TChem from PETSc

TChem® is a package originally developed at Sandia National Laboratory that can read in CHEMKIN
data files and compute the right hand side function and its Jacobian for a reaction ODE system. To
utilize PETSc’s ODE solvers for these systems, first install PETSc with the additional configure option
--download-tchem. We currently provide two examples of its use; one for single cell reaction and one for
an “artificial” one dimensional problem with periodic boundary conditions and diffusion of all species. The
self-explanatory examples are the The TS tutorial extchem and The TS tutorial extchemfield.

2.6 Solving Steady-State Problems with Pseudo-
Timestepping

Simple Example: TS provides a general code for performing pseudo timestepping with a variable timestep
at each physical node point. For example, instead of directly attacking the steady-state problem

we can use pseudo-transient continuation by solving
ur = G(u).

Using time differencing

un-{—l _ un
dtn

’U/ti

with the backward Euler method, we obtain nonlinear equations at a series of pseudo-timesteps

1

73 n+l _  n — n+1.
B - ) = G

6 bitbucket.org/jedbrown/tchem
7 en.wikipedia.org/wiki/ CHEMKIN
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For this problem the user must provide G(u), the time steps dt" and the left-hand-side matrix B (or
optionally, if the timestep is position independent and B is the identity matrix, a scalar timestep), as well
as optionally the Jacobian of G(u).

More generally, this can be applied to implicit ODE and DAE for which the transient form is
F(u,u) = 0.
For solving steady-state problems with pseudo-timestepping one proceeds as follows.

e Provide the function G(u) with the routine

TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void,
~*fP);

The arguments to the function f() are the timestep context, the current time, the input for the
function, the output for the function and the (optional) user-provided context variable fP.

o Provide the (approximate) Jacobian matrix of G(u) and a function to compute it at each Newton
iteration. This is done with the command

TSSetRHSJacobian(TS ts,Mat Amat, Mat Pmat,PetscErrorCode (*f)(TS,PetscReal,Vec,
—Mat,Mat,void*),void *fP);

The arguments for the function f () are the timestep context, the current time, the location where the
Jacobian is to be computed, the (approximate) Jacobian matrix, an alternative approximate Jacobian
matrix used to construct the preconditioner, and the optional user-provided context, passed in as TP.

The user must provide the Jacobian as a matrix; thus, if using a matrix-free approach, one must create
a MATSHELL matrix.

In addition, the user must provide a routine that computes the pseudo-timestep. This is slightly different
depending on if one is using a constant timestep over the entire grid, or it varies with location.

e For location-independent pseudo-timestepping, one uses the routine

TSPseudoSetTimeStep (TS ts,PetscInt(*dt)(TS,PetscReal*,void*),void* dtctx);

The function dt is a user-provided function that computes the next pseudo-timestep. As a default one
can use TSPseudoTimeStepDefault (TS, PetscReal*,void*) for dt. This routine updates the
pseudo-timestep with one of two strategies: the default

S, E @]
dt" = dtinerement * dt" 7t x L1
ereme [ (um)]|
or, the alternative,
||F ()]
dt" = dtincrcmcnt * dto * o o
|| (u)]

which can be set with the call

TSPseudoIncrementDtFromInitialDt(TS ts);

or the option -ts_pseudo_increment dt from initial dt. The value dtincroment is by default
1.1, but can be reset with the call

TSPseudoSetTimeStepIncrement (TS ts,PetscReal inc);

or the option -ts pseudo_increment <inc>.

e For location-dependent pseudo-timestepping, the interface function has not yet been created.
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2.7 TAO: Optimization Solvers

The Toolkit for Advanced Optimization (TAQO) focuses on algorithms for the solution of large-scale opti-
mization problems on high-performance architectures. Methods are available for

e Nonlinear Least-Squares

e Quadratic Solvers

e Unconstrained Minimization

e Bound-Constrained Optimization
e Generally Constrained Solvers

e Complementarity

e PDE-constrained Optimization

2.7.1 Getting Started: A Simple TAO Example

To help the user start using TAO immediately, we introduce here a simple uniprocessor example. Please
read TAO Algorithms for a more in-depth discussion on using the TAO solvers. The code presented below
minimizes the extended Rosenbrock function f : R™ — R defined by

Ju

m—

f@) =Y (almairs —a3,)* + (1 = 22:)°) ,

=0

where n = 2m is the number of variables. Note that while we use the C language to introduce the TAO
software, the package is fully usable from C++ and Fortran. PETSc for Fortran Users discusses additional
issues concerning Fortran usage.

The code in the example contains many of the components needed to write most TAO programs and thus
is illustrative of the features present in complex optimization problems. Note that for display purposes
we have omitted some nonessential lines of code as well as the (essential) code required for the rou-
tine FormFunctionGradient, which evaluates the function and gradient, and the code for FormHes -
sian, which evaluates the Hessian matrix for Rosenbrock’s function. The complete code is available in
$TAO_DIR/src/unconstrained /tutorials /rosenbrockl.c. The following sections annotate the lines of code in
the example.

Listing: src/tao/unconstrained/tutorials/rosenbrockl.c

#include <petsctao.h>

typedef struct {
PetscInt n; /* dimension */
PetscReal alpha; /* condition parameter */
PetscBool chained;

} AppCtx;

YA User-defined routines ---------- */
PetscErrorCode FormFunctionGradient(Tao, Vec, PetscReal *, Vec, void *);
PetscErrorCode FormHessian(Tao, Vec, Mat, Mat, void *);

int main(int argc, char **argv)

{

PetscReal zero = 0.0;

(continues on next page)
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(continued from previous page)

Vec X; /* solution vector */
Mat H;
Tao tao; /* Tao solver context */

PetscBool flg, test lmvm = PETSC FALSE;
PetscMPIInt size; /* number of processes running */

AppCtx user; /* user-defined application context */
KSP ksp;

PC pc;

Mat M;

Vec in, out, out2;

PetscReal mult solve dist;

/* Initialize TAO and PETSc */

PetscFunctionBeginUser;

PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));

PetscCallMPI(MPI_Comm size(PETSC_COMM WORLD, &size));

PetscCheck(size == 1, PETSC_COMM WORLD, PETSC ERR WRONG MPI SIZE, "Incorrect number,
—0f processors");

/* Initialize problem parameters */

user.n 2;

user.alpha 99.0;

user.chained PETSC FALSE;

/* Check for command line arguments to override defaults */
PetscCall(PetscOptionsGetInt(NULL, NULL, "-n", &user.n, &flg));
PetscCall(PetscOptionsGetReal (NULL, NULL, "-alpha", &user.alpha, &flg));
PetscCall(PetscOptionsGetBool (NULL, NULL, "-chained", &user.chained, &flg));
PetscCall(PetscOptionsGetBool(NULL, NULL, "-test lmvm", &test lmvm, &flg));

/* Allocate vectors for the solution and gradient */
PetscCall(VecCreateSeq(PETSC _COMM SELF, user.n, &x));
PetscCall(MatCreateSeqBAIJ(PETSC COMM SELF, 2, user.n, user.n, 1, NULL, &H));

/* The TAO code begins here */

/* Create TAO solver with desired solution method */
PetscCall(TaoCreate(PETSC COMM SELF, &tao));
PetscCall(TaoSetType(tao, TAOLMVM));

/* Set solution vec and an initial guess */
PetscCall(VecSet(x, zero));
PetscCall(TaoSetSolution(tao, x));

/* Set routines for function, gradient, hessian evaluation */
PetscCall(TaoSetObjectiveAndGradient(tao, NULL, FormFunctionGradient, &user));
PetscCall(TaoSetHessian(tao, H, H, FormHessian, &user));

/* Test the LMVM matrix */
if (test lmvm) PetscCall(PetscOptionsSetValue(NULL, "-tao type", "bgnktr"));

/* Check for TAO command line options */
PetscCall(TaoSetFromOptions(tao));

/* SOLVE THE APPLICATION */
PetscCall(TaoSolve(tao));

(continues on next page)
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(continued from previous page)

/* Test the LMVM matrix */
if (test lmvm) {
PetscCall(TaoGetKSP(tao, &ksp));
PetscCall(KSPGetPC(ksp, &pc));
PetscCall(PCLMVMGetMatLMVM(pc, &M));
PetscCall(VecDuplicate(x, &in));
PetscCall(VecDuplicate(x, &out));
PetscCall(VecDuplicate(x, &out2));
PetscCall(VecSet(in, 1.0));
PetscCall(MatMult(M, in, out));
PetscCall(MatSolve(M, out, out2));
PetscCall(VecAXPY(out2, -1.0, in));
PetscCall(VecNorm(out2, NORM 2, &mult solve dist));
if (mult_solve dist < l.e-11) {
PetscCall(PetscPrintf(PetscObjectComm( (PetscObject)tao), "error between LMVM,
—MatMult and MatSolve: < 1l.e-11\n"));
} else if (mult solve dist < l.e-6) {
PetscCall(PetscPrintf(PetscObjectComm( (PetscObject)tao), "error between LMVM,
—MatMult and MatSolve: < 1l.e-6\n"));
} else {
PetscCall(PetscPrintf(PetscObjectComm( (PetscObject)tao), "error between LMVM,
—~MatMult and MatSolve: %e\n", (double)mult solve dist));
}
PetscCall(VecDestroy(&in));
PetscCall(VecDestroy(&out))
PetscCall(VecDestroy(&out2)
}

);

PetscCall(TaoDestroy (&t
PetscCall(VecDestroy(&
&

ao));
X)) ;
PetscCall(MatDestroy(&H));

PetscCall(PetscFinalize());
return ierr;}

2.7.2 TAO Workflow

Many TAO applications will follow an ordered set of procedures for solving an optimization problem: The
user creates a Tao context and selects a default algorithm. Call-back routines as well as vector (Vec) and
matrix (Mat) data structures are then set. These call-back routines will be used for evaluating the objective
function, gradient, and perhaps the Hessian matrix. The user then invokes TAO to solve the optimization
problem and finally destroys the Tao context. A list of the necessary functions for performing these steps
using TAO is shown below.

TaoCreate(MPI_Comm comm, Tao *tao);

TaoSetType(Tao tao, TaoType type);

TaoSetSolution(Tao tao, Vec x);

TaoSetObjectiveAndGradient(Tao tao, Vec g, PetscErrorCode (*FormFGradient)(Tao, Vec,,
—PetscReal*, Vec, void*), void *user);

TaoSetHessian(Tao tao, Mat H, Mat Hpre, PetscErrorCode (*FormHessian)(Tao, Vec, Mat, |,
~Mat, void*), void *user);

TaoSolve(Tao tao);

TaoDestroy(Tao tao);
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Note that the solver algorithm selected through the function TaoSetType() can be overridden at runtime
by using an options database. Through this database, the user not only can select a minimization method
(e.g., limited-memory variable metric, conjugate gradient, Newton with line search or trust region) but
also can prescribe the convergence tolerance, set various monitoring routines, set iterative methods and
preconditions for solving the linear systems, and so forth. See TAO Algorithms for more information on the
solver methods available in TAO.

Header File

TAO applications written in C/C++ should have the statement

#include <petsctao.h>

in each file that uses a routine in the TAO libraries.

Creation and Destruction

A TAO solver can be created by calling the

TaoCreate(MPI_Comm, Tao*);

routine. Much like creating PETSc vector and matrix objects, the first argument is an MPI communicator.
An MPI' communicator indicates a collection of processors that will be used to evaluate the objective
function, compute constraints, and provide derivative information. When only one processor is being used,
the communicator PETSC_COMM_SELF can be used with no understanding of MPI. Even parallel users need
to be familiar with only the basic concepts of message passing and distributed-memory computing. Most
applications running TAO in parallel environments can employ the communicator PETSC_COMM_WORLD to
indicate all processes known to PETSc in a given run.

The routine

TaoSetType(Tao, TaoType);

can be used to set the algorithm TAQO uses to solve the application. The various types of TAO solvers and the
flags that identify them will be discussed in the following sections. The solution method should be carefully
chosen depending on the problem being solved. Some solvers, for instance, are meant for problems with no
constraints, whereas other solvers acknowledge constraints in the problem and handle them accordingly. The
user must also be aware of the derivative information that is available. Some solvers require second-order
information, while other solvers require only gradient or function information. The command line option
-tao_type followed by a TAO method will override any method specified by the second argument. The
command line option -tao type bqgnls, for instance, will specify the limited-memory quasi-Newton line
search method for bound-constrained problems. Note that the TaoType variable is a string that requires
quotation marks in an application program, but quotation marks are not required at the command line.

Each TAO solver that has been created should also be destroyed by using the

TaoDestroy(Tao tao);

command. This routine frees the internal data structures used by the solver.

I For more on MPI and PETSc, see Running PETSc Programs.
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Command-line Options

Additional options for the TAO solver can be be set from the command line by using the

TaoSetFromOptions(Tao)

routine. This command also provides information about runtime options when the user includes the -help
option on the command line.

In addition to common command line options shared by all TAO solvers, each TAO method also implements
its own specialized options. Please refer to the documentation for individual methods for more details.

Defining Variables

In all the optimization solvers, the application must provide a VecC object of appropriate dimension to
represent the variables. This vector will be cloned by the solvers to create additional work space within the
solver. If this vector is distributed over multiple processors, it should have a parallel distribution that allows
for efficient scaling, inner products, and function evaluations. This vector can be passed to the application
object by using the

TaoSetSolution(Tao, Vec);

routine. When using this routine, the application should initialize the vector with an approximate solution
of the optimization problem before calling the TAO solver. This vector will be used by the TAO solver to
store the solution. Elsewhere in the application, this solution vector can be retrieved from the application
object by using the

TaoGetSolution(Tao, Vec*);

routine. This routine takes the address of a Vec in the second argument and sets it to the solution vector
used in the application.

User Defined Call-back Routines

Users of TAO are required to provide routines that perform function evaluations. Depending on the solver
chosen, they may also have to write routines that evaluate the gradient vector and Hessian matrix.

Application Context

Writing a TAO application may require use of an application context. An application context is a structure
or object defined by an application developer, passed into a routine also written by the application developer,
and used within the routine to perform its stated task.

For example, a routine that evaluates an objective function may need parameters, work vectors, and other
information. This information, which may be specific to an application and necessary to evaluate the
objective, can be collected in a single structure and used as one of the arguments in the routine. The address
of this structure will be cast as type (void*) and passed to the routine in the final argument. Many
examples of these structures are included in the TAO distribution.

This technique offers several advantages. In particular, it allows for a uniform interface between TAO and
the applications. The fundamental information needed by TAO appears in the arguments of the routine,
while data specific to an application and its implementation is confined to an opaque pointer. The routines
can access information created outside the local scope without the use of global variables. The TAO solvers
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and application objects will never access this structure, so the application developer has complete freedom
to define it. If no such structure or needed by the application then a NULL pointer can be used.

Objective Function and Gradient Routines

TAO solvers that minimize an objective function require the application to evaluate the objective function.
Some solvers may also require the application to evaluate derivatives of the objective function. Routines
that perform these computations must be identified to the application object and must follow a strict calling
sequence.

Routines should follow the form

PetscErrorCode EvaluateObjective(Tao, Vec, PetscReal*, void*);

in order to evaluate an objective function f : R™ — R. The first argument is the TAO Solver object, the
second argument is the n-dimensional vector that identifies where the objective should be evaluated, and
the fourth argument is an application context. This routine should use the third argument to return the
objective value evaluated at the point specified by the vector in the second argument.

This routine, and the application context, should be passed to the application object by using the

TaoSetObjective(Tao, PetscErrorCode(*)(Tao,Vec,PetscReal*,void*), void*);

routine. The first argument in this routine is the TAO solver object, the second argument is a function
pointer to the routine that evaluates the objective, and the third argument is the pointer to an appropriate
application context. Although the final argument may point to anything, it must be cast as a (void*)
type. This pointer will be passed back to the developer in the fourth argument of the routine that evaluates
the objective. In this routine, the pointer can be cast back to the appropriate type. Examples of these
structures and their usage are provided in the distribution.

Many TAO solvers also require gradient information from the application The gradient of the objective
function is specified in a similar manner. Routines that evaluate the gradient should have the calling
sequence

PetscErrorCode EvaluateGradient(Tao, Vec, Vec, void*);

where the first argument is the TAO solver object, the second argument is the variable vector, the third
argument is the gradient vector, and the fourth argument is the user-defined application context. Only the
third argument in this routine is different from the arguments in the routine for evaluating the objective
function. The numbers in the gradient vector have no meaning when passed into this routine, but they
should represent the gradient of the objective at the specified point at the end of the routine. This routine,
and the user-defined pointer, can be passed to the application object by using the

TaoSetGradient(Tao, Vec, PetscErrorCode (*)(Tao,Vec,Vec,void*), void*);

routine. In this routine, the first argument is the Tao object, the second argument is the optional vector
to hold the computed gradient, the third argument is the function pointer, and the fourth object is the
application context, cast to (void*).

Instead of evaluating the objective and its gradient in separate routines, TAO also allows the user to evaluate
the function and the gradient in the same routine. In fact, some solvers are more efficient when both function
and gradient information can be computed in the same routine. These routines should follow the form

PetscErrorCode EvaluateFunctionAndGradient(Tao, Vec, PetscReal*, Vec, void*);
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where the first argument is the TAO solver and the second argument points to the input vector for use in
evaluating the function and gradient. The third argument should return the function value, while the fourth
argument should return the gradient vector. The fifth argument is a pointer to a user-defined context. This
context and the name of the routine should be set with the call

TaoSetObjectiveAndGradient(Tao, Vec PetscErrorCode (*)(Tao,Vec,PetscReal*,Vec,void*), |
—void*);

where the arguments are the TAO application, the optional vector to be used to hold the computed gradient,
a function pointer, and a pointer to a user-defined context.

The TAO example problems demonstrate the use of these application contexts as well as specific instances
of function, gradient, and Hessian evaluation routines. All these routines should return the integer 0 after
successful completion and a nonzero integer if the function is undefined at that point or an error occurred.

Hessian Evaluation

Some optimization routines also require a Hessian matrix from the user. The routine that evaluates the
Hessian should have the form

PetscErrorCode EvaluateHessian(Tao, Vec, Mat, Mat, void*);

where the first argument of this routine is a TAO solver object. The second argument is the point at which
the Hessian should be evaluated. The third argument is the Hessian matrix, and the sixth argument is
a user-defined context. Since the Hessian matrix is usually used in solving a system of linear equations,
a preconditioner for the matrix is often needed. The fourth argument is the matrix that will be used for
preconditioning the linear system; in most cases, this matrix will be the same as the Hessian matrix. The fifth
argument is the flag used to set the Hessian matrix and linear solver in the routine KSPSetOperators().

One can set the Hessian evaluation routine by calling the

TaoSetHessian(Tao, Mat, Mat, PetscErrorCode (*)(Tao,Vec,Mat,Mat,void*), void*);

routine. The first argument is the TAO Solver object. The second and third arguments are, respectively, the
Mat object where the Hessian will be stored and the Mat object that will be used for the preconditioning
(they may be the same). The fourth argument is the function that evaluates the Hessian, and the fifth
argument is a pointer to a user-defined context, cast to (void*).

Finite Differences

Finite-difference approximations can be used to compute the gradient and the Hessian of an objective func-
tion. These approximations will slow the solve considerably and are recommended primarily for checking
the accuracy of hand-coded gradients and Hessians. These routines are

TaoDefaultComputeGradient(Tao, Vec, Vec, void*);

and

TaoDefaultComputeHessian(Tao, Vec, Mat*, Mat*,void*);

respectively. They can be set by using TaoSetGradient() and TaoSetHessian() or through the
options database with the options -tao fdgrad and -tao_fd, respectively.

2.7. TAO: Optimization Solvers 159




PETSc/TAO Users Manual, Release 3.20.1

The efficiency of the finite-difference Hessian can be improved if the coloring of the matrix is known. If the
application programmer creates a PETSc MatFDColoring object, it can be applied to the finite-difference
approximation by setting the Hessian evaluation routine to

TaoDefaultComputeHessianColor(Tao, Vec, Mat*, Mat*, void*);

and using the MatFDColoring object as the last (void *) argument to TaoSetHessian().

One also can use finite-difference approximations to directly check the correctness of the gradient and/or
Hessian evaluation routines. This process can be initiated from the command line by using the special TAO
solver tao_ fd test together with the option -tao test gradient or -tao test hessian.

Matrix-Free Methods

TAO fully supports matrix-free methods. The matrices specified in the Hessian evaluation routine need not
be conventional matrices; instead, they can point to the data required to implement a particular matrix-free
method. The matrix-free variant is allowed only when the linear systems are solved by an iterative method in
combination with no preconditioning (PCNONE or -pc_type none), a user-provided preconditioner matrix,
or a user-provided preconditioner shell (PCSHELL). In other words, matrix-free methods cannot be used if a
direct solver is to be employed. Details about using matrix-free methods are provided in the User-Guide.

TAO Optimization Solvers

(Unconstrained, Bound, Least Squares, Complementarity)

< User code <> TAO code <) Interface to external
linear algebra tools

Fig. 2.5: Tao use of PETSc and callbacks
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Constraints

Some optimization problems also impose constraints on the variables or intermediate application states. The
user defines these constraints through the appropriate TAO interface functions and call-back routines where
necessary.

Variable Bounds

The simplest type of constraint on an optimization problem puts lower or upper bounds on the variables.
Vectors that represent lower and upper bounds for each variable can be set with the

TaoSetVariableBounds(Tao, Vec, Vec);

command. The first vector and second vector should contain the lower and upper bounds, respectively.
When no upper or lower bound exists for a variable, the bound may be set to PETSC_INFINITY or
PETSC NINFINITY. After the two bound vectors have been set, they may be accessed with the command
TaoGetVariableBounds().

Since not all solvers recognize the presence of bound constraints on variables, the user must be careful to
select a solver that acknowledges these bounds.

General Constraints

Some TAO algorithms also support general constraints as a linear or nonlinear function of the optimization
variables. These constraints can be imposed either as equalities or inequalities. TAO currently does not
make any distinctions between linear and nonlinear constraints, and implements them through the same
software interfaces.

In the equality constrained case, TAO assumes that the constraints are formulated as c.(x) = 0 and requires
the user to implement a call-back routine for evaluating c.(z) at a given vector of optimization variables,

PetscErrorCode EvaluateEqualityConstraints(Tao, Vec, Vec, void*);

As in the previous call-back routines, the first argument is the TAO solver object. The second and third
arguments are the vector of optimization variables (input) and vector of equality constraints (output),
respectively. The final argument is a pointer to the user-defined application context, cast into (void*).

Generally constrained TAO algorithms also require a second user call-back function to compute the constraint
Jacobian matrix Vc.(z),

PetscErrorCode EvaluateEqualityJacobian(Tao, Vec, Mat, Mat, void*);

where the first and last arguments are the TAO solver object and the application context pointer as before.
The second argument is the vector of optimization variables at which the computation takes place. The
third and fourth arguments are the constraint Jacobian and its pseudo-inverse (optional), respectively. The
pseudoinverse is optional, and if not available, the user can simply set it to the constraint Jacobian itself.

These call-back functions are then given to the TAO solver using the interface functions

TaoSetEqualityConstraintsRoutine(Tao, Vec, PetscErrorCode (*)(Tao,Vec,Vec,void*),
—void*);

and
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TaoSetJacobianEqualityRoutine(Tao, Mat, Mat, PetscErrorCode (*)(Tao,Vec,Mat,Mat,
ovoid*), void*);

Inequality constraints are assumed to be formulated as ¢;(x) < 0 and follow the same workflow as equality
constraints using the TaoSetInequalityConstraintsRoutine() and TaoSetJacobianInequal-
ityRoutine() interfaces.

Some TAO algorithms may adopt an alternative double-sided ¢; < ¢;(z) < ¢, formulation and require
the lower and upper bounds ¢; and ¢, to be set using the TaoSetInequalityBounds(Tao,Vec,Vec)
interface. Please refer to the documentation for each TAO algorithm for further details.

Solving

Once the application and solver have been set up, the solver can be

TaoSolve(Tao);

routine. We discuss several universal options below.

Convergence

Although TAO and its solvers set default parameters that are useful for many problems, the user may need
to modify these parameters in order to change the behavior and convergence of various algorithms.

One convergence criterion for most algorithms concerns the number of digits of accuracy needed in the
solution. In particular, the convergence test employed by TAO attempts to stop when the error in the
constraints is less than €.+, and either

||g(X)H S €gatol,
Hg(XOI/IF(X)] < €greor, or
Hg(XN/lg(Xo)l < €gtror,

where X is the current approximation to the true solution X* and X is the initial guess. X™* is unknown, so
TAO estimates f(X)— f(X*) with either the square of the norm of the gradient or the duality gap. A relative
tolerance of €f,4o; = 0.01 indicates that two significant digits are desired in the objective function. Each solver
sets its own convergence tolerances, but they can be changed by using the routine TaoSetTolerances().
Another set of convergence tolerances terminates the solver when the norm of the gradient function (or
Lagrangian function for bound-constrained problems) is sufficiently close to zero.

Other stopping criteria include a minimum trust-region radius or a maximum number of iterations. These
parameters can be set with the routines TaoSetTrustRegionTolerance() and TaoSetMaximumIt-
erations() Similarly, a maximum number of function evaluations can be set with the command TaoSet -
MaximumFunctionEvaluations(). -tao max it, and -tao max funcs.

Viewing Status

To see parameters and performance statistics for the solver, the routine

TaoView(Tao tao)

can be used. This routine will display to standard output the number of function evaluations need by the
solver and other information specific to the solver. This same output can be produced by using the command
line option -tao view.
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The progress of the optimization solver can be monitored with the runtime option -tao _monitor. Although
monitoring routines can be customized, the default monitoring routine will print out several relevant statistics
to the screen.

The user also has access to information about the current solution. The current iteration number, objec-
tive function value, gradient norm, infeasibility norm, and step length can be retrieved with the following
command.

TaoGetSolutionStatus(Tao tao, PetscInt* iterate, PetscReal* f,
PetscReal* gnorm, PetscReal* cnorm, PetscReal* xdiff,
TaoConvergedReason* reason)

The last argument returns a code that indicates the reason that the solver terminated. Positive numbers
indicate that a solution has been found, while negative numbers indicate a failure. A list of reasons can be
found in the manual page for TaoGetConvergedReason().

Obtaining a Solution

After exiting the TaoSolve () function, the solution and the gradient can be recovered with the following
routines.

TaoGetSolution(Tao, Vec*);
TaoGetGradient(Tao, Vec*, NULL, NULL);

Note that the Vec returned by TaoGetSolution() will be the same vector passed to TaoSetSolu-
tion(). This information can be obtained during user-defined routines such as a function evaluation and
customized monitoring routine or after the solver has terminated.

Special Problem structures

Certain special classes of problems solved with TAO utilize specialized code interfaces that are described
below per problem type.

PDE-constrained Optimization

TAO solves PDE-constrained optimization problems of the form

min f(u,v)

u,v

subject to  g(u,v) =0,

where the state variable u is the solution to the discretized partial differential equation defined by g and
parametrized by the design variable v, and f is an objective function. The Lagrange multipliers on the
constraint are denoted by y. This method is set by using the linearly constrained augmented Lagrangian
TAO solver tao_lcl.

We make two main assumptions when solving these problems: the objective function and PDE constraints
have been discretized so that we can treat the optimization problem as finite dimensional and V,g(u,v) is
invertible for all u and v.

Unlike other TAO solvers where the solution vector contains only the optimization variables, PDE-
constrained problems solved with tao 1cl combine the design and state variables together in a monolithic
solution vector 7 = [uT,vT]. Consequently, the user must provide index sets to separate the two,
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TaoSetStateDesignIS(Tao, IS, IS);

where the first IS is a PETSc IndexSet containing the indices of the state variables and the second IS the
design variables.

PDE constraints have the general form g(x) = 0, where ¢ : R™ — R™. These constraints should be specified
in a routine, written by the user, that evaluates g(x). The routine that evaluates the constraint equations
should have the form

PetscErrorCode EvaluateConstraints(Tao, Vec, Vec, void*);

The first argument of this routine is a TAO solver object. The second argument is the variable vector at
which the constraint function should be evaluated. The third argument is the vector of function values g(x),
and the fourth argument is a pointer to a user-defined context. This routine and the user-defined context
should be set in the TAO solver with the

TaoSetConstraintsRoutine(Tao, Vec, PetscErrorCode (*)(Tao,Vec,Vec,void*), void*);

command. In this function, the first argument is the TAO solver object, the second argument a vector
in which to store the constraints, the third argument is a function point to the routine for evaluating the
constraints, and the fourth argument is a pointer to a user-defined context.

The Jacobian of g(z) is the matrix in R™*™ such that each column contains the partial derivatives of g(x)
with respect to one variable. The evaluation of the Jacobian of g should be performed by calling the

PetscErrorCode JacobianState(Tao, Vec, Mat, Mat, Mat, void*);
PetscErrorCode JacobianDesign(Tao, Vec, Mat*, void*);

routines. In these functions, The first argument is the TAO solver object. The second argument is the
variable vector at which to evaluate the Jacobian matrix, the third argument is the Jacobian matrix, and
the last argument is a pointer to a user-defined context. The fourth and fifth arguments of the Jacobian
evaluation with respect to the state variables are for providing PETSc matrix objects for the preconditioner
and for applying the inverse of the state Jacobian, respectively. This inverse matrix may be PETSC_NULL,
in which case TAO will use a PETSc Krylov subspace solver to solve the state system. These evaluation
routines should be registered with TAO by using the

TaoSetJacobianStateRoutine(Tao, Mat, Mat, Mat,
PetscErrorCode (*)(Tao,Vec,Mat,Mat,void*),
void*);

TaoSetJacobianDesignRoutine(Tao, Mat,
PetscErrorCode (*)(Tao,Vec,Mat*,void*),
void*);

routines. The first argument is the TAO solver object, and the second argument is the matrix in which the
Jacobian information can be stored. For the state Jacobian, the third argument is the matrix that will be
used for preconditioning, and the fourth argument is an optional matrix for the inverse of the state Jacobian.
One can use PETSC_NULL for this inverse argument and let PETSc apply the inverse using a KSP method,
but faster results may be obtained by manipulating the structure of the Jacobian and providing an inverse.
The fifth argument is the function pointer, and the sixth argument is an optional user-defined context. Since
no solve is performed with the design Jacobian, there is no need to provide preconditioner or inverse matrices.
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Nonlinear Least Squares

For nonlinear least squares applications, we are solving the optimization problem
1 2
min () 3
x

For these problems, the objective function value should be computed as a vector of residuals, (), computed
with a function of the form

PetscErrorCode EvaluateResidual(Tao, Vec, Vec, void*);

and set with the

TaoSetResidualRoutine(Tao, PetscErrorCode (*)(Tao,Vec,Vec,void*), void*);

routine. If required by the algorithm, the Jacobian of the residual, J = dr(x)/dz, should be computed with
a function of the form

PetscErrorCode EvaluateJacobian(Tao, Vec, Mat, void*);

and set with the

TaoSetJacobianResidualRoutine(Tao, PetscErrorCode (*)(Tao,Vec,Mat,void*), void *);

routine.

Complementarity

Complementarity applications have equality constraints in the form of nonlinear equations C'(X) = 0, where
C : R™ — R™. These constraints should be specified in a routine written by the user with the form

PetscErrorCode EqualityConstraints(Tao, Vec, Vec, void*);

that evaluates C'(X). The first argument of this routine is a TAO Solver object. The second argument is the
variable vector X at which the constraint function should be evaluated. The third argument is the output
vector of function values C(X), and the fourth argument is a pointer to a user-defined context.

This routine and the user-defined context must be registered with TAO by using the

TaoSetConstraintRoutine(Tao, Vec, PetscErrorCode (*)(Tao,Vec,Vec,void*), void*);

command. In this command, the first argument is TAO Solver object, the second argument is vector in
which to store the function values, the third argument is the user-defined routine that evaluates C'(X), and
the fourth argument is a pointer to a user-defined context that will be passed back to the user.

The Jacobian of the function is the matrix in R™*" such that each column contains the partial derivatives
of f with respect to one variable. The evaluation of the Jacobian of C' should be performed in a routine of
the form

PetscErrorCode EvaluateJacobian(Tao, Vec, Mat, Mat, void*);

In this function, the first argument is the TAO Solver object and the second argument is the variable vector at
which to evaluate the Jacobian matrix. The third argument is the Jacobian matrix, and the sixth argument
is a pointer to a user-defined context. Since the Jacobian matrix may be used in solving a system of linear
equations, a preconditioner for the matrix may be needed. The fourth argument is the matrix that will
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be used for preconditioning the linear system; in most cases, this matrix will be the same as the Hessian
matrix. The fifth argument is the flag used to set the Jacobian matrix and linear solver in the routine
KSPSetOperators().

This routine should be specified to TAO by using the

TaoSetJacobianRoutine(Tao, Mat, Mat, PetscErrorCode (*)(Tao,Vec,Mat,Mat,void*), ,
—void*);

command. The first argument is the TAO Solver object; the second and third arguments are the Mat objects
in which the Jacobian will be stored and the Mat object that will be used for the preconditioning (they may
be the same), respectively. The fourth argument is the function pointer; and the fifth argument is an optional
user-defined context. The Jacobian matrix should be created in a way such that the product of it and the
variable vector can be stored in the constraint vector.

2.7.3 TAO Algorithms

TAO includes a variety of optimization algorithms for several classes of problems (unconstrained, bound-
constrained, and PDE-constrained minimization, nonlinear least-squares, and complementarity). The TAO
algorithms for solving these problems are detailed in this section, a particular algorithm can chosen by
using the TaoSetType() function or using the command line arguments -tao_type <name>. For those
interested in extending these algorithms or using new ones, please see Adding a Solver for more information.

Unconstrained Minimization

Unconstrained minimization is used to minimize a function of many variables without any constraints on
the variables, such as bounds. The methods available in TAO for solving these problems can be classified
according to the amount of derivative information required:

1. Function evaluation only — Nelder-Mead method (tao_nm)

2. Function and gradient evaluations — limited-memory, variable-metric method (tao_lmvm) and non-
linear conjugate gradient method (tao_cqg)

3. Function, gradient, and Hessian evaluations — Newton Krylov methods: Netwon line search (tao_nls),
Newton trust-region (tao_ntr), and Newton trust-region line-search (tao ntl)

The best method to use depends on the particular problem being solved and the accuracy required in the
solution. If a Hessian evaluation routine is available, then the Newton line search and Newton trust-region
methods will likely perform best. When a Hessian evaluation routine is not available, then the limited-
memory, variable-metric method is likely to perform best. The Nelder-Mead method should be used only as
a last resort when no gradient information is available.

Each solver has a set of options associated with it that can be set with command line arguments. These
algorithms and the associated options are briefly discussed in this section.
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Newton-Krylov Methods

TAO features three Newton-Krylov algorithms, separated by their globalization methods for unconstrained
optimization: line search (NLS), trust region (NTR), and trust region with a line search (NTL). They are
available via the TAO solvers TAONLS, TAONTR and TAONTL, respectively, or the -tao_type nls/ntr/ntl
flag.

Newton Line Search Method (NLS)

The Newton line search method solves the symmetric system of equations
Hydy = —gx

to obtain a step di, where Hj is the Hessian of the objective function at xj and gx is the gradient of the
objective function at zp. For problems where the Hessian matrix is indefinite, the perturbed system of
equations

(Hy + pr1)dp = —gs,

is solved to obtain the direction, where pj is a positive constant. If the direction computed is not a descent
direction, the (scaled) steepest descent direction is used instead. Having obtained the direction, a Moré-
Thuente line search is applied to obtain a step length, 7%, that approximately solves the one-dimensional
optimization problem

min f(z + 7dg).
The Newton line search method can be selected by using the TAO solver tao_nls. The options available

for this solver are listed in Table 2.17. For the best efficiency, function and gradient evaluations should be
performed simultaneously when using this algorithm.

Table 2.17: Summary of nls options

Name -tao nls | Value Default | Description

ksp_type cg, nash, stcg KSPType for linear system

pc_type none, jacobi | lmvm PCType for linear system

sval real 0 Initial perturbation value

imin real 10~% Minimum initial perturbation value

imax real 100 Maximum initial perturbation value

imfac real 0.1 Gradient norm factor when initializing perturbation
pmax real 100 Maximum perturbation when increasing value
pgfac real 10 Perturbation growth when increasing value

pmgfac real 0.1 Gradient norm factor when increasing perturbation
pmin real 1012 Minimum non-zero perturbation when decreasing value
psfac real 0.4 Perturbation shrink factor when decreasing value
pmsfac real 0.1 Gradient norm factor when decreasing perturbation
nul real 0.25 vy in step update

nu2 real 0.50 vy in step update

nu3 real 1.00 v3 in step update

nu4 real 1.25 vy in step update

omegal real 0.25 wi in step update

omega?2 real 0.50 wo in step update

omega3 real 1.00 w3 in step update

continues on next page
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Table 2.17 - continued from previous page

Name -tao nls_ | Value Default | Description

omega4 real 2.00 wy in step update

omegab real 4.00 ws in step update

etal real 1071 n; in reduction update
eta2 real 0.25 7 in reduction update
eta3 real 0.50 n3 in reduction update
etad real 0.90 74 in reduction update
alphal real 0.25 a1 in reduction update
alpha2 real 0.50 as in reduction update
alpha3 real 1.00 as in reduction update
alpha4d real 2.00 ay in reduction update
alpha5 real 4.00 as in reduction update

mul real 0.10 u1 in interpolation update
mu2 real 0.50 io in interpolation update
gammal real 0.25 ~1 in interpolation update
gamma?2 real 0.50 ~v9 in interpolation update
gamma3 real 2.00 ~s in interpolation update
gamma4 real 4.00 ~v4 in interpolation update
theta real 0.05 6 in interpolation update

The system of equations is approximately solved by applying the conjugate gradient method, Nash conjugate
gradient method, Steihaug-Toint conjugate gradient method, generalized Lanczos method, or an alternative
Krylov subspace method supplied by PETSc. The method used to solve the systems of equations is specified
with the command line argument -tao _nls ksp type <cg,nash,stcg,gltr,gmres,...>; stcgis
the default. See the PETSc manual for further information on changing the behavior of the linear system
solvers.

A good preconditioner reduces the number of iterations required to solve the linear system of equations. For
the conjugate gradient methods and generalized Lanczos method, this preconditioner must be symmetric
and positive definite. The available options are to use no preconditioner, the absolute value of the diagonal
of the Hessian matrix, a limited-memory BFGS approximation to the Hessian matrix, or one of the other
preconditioners provided by the PETSc package. These preconditioners are specified by the command line
arguments -tao _nls pc type <none, jacobi,icc,ilu, Imvm>, respectively. The default is the Lmvm
preconditioner, which uses a BEFGS approximation of the inverse Hessian. See the PETSc manual for further
information on changing the behavior of the preconditioners.

The perturbation py is added when the direction returned by the Krylov subspace method is not a descent
direction, the Krylov method diverged due to an indefinite preconditioner or matrix, or a direction of negative
curvature was found. In the last two cases, if the step returned is a descent direction, it is used during the line
search. Otherwise, a steepest descent direction is used during the line search. The perturbation is decreased
as long as the Krylov subspace method reports success and increased if further problems are encountered.
There are three cases: initializing, increasing, and decreasing the perturbation. These cases are described
below.

1. If py is zero and a problem was detected with either the direction or the Krylov subspace method, the
perturbation is initialized to

pr+1 = median {imin, imfac * ||g(zx)|, imax} ,

where g(z},) is the gradient of the objective function and imin is set with the command line argument
-tao_nls_imin <real> with a default value of 10=%, imfac by -tao nls imfac with a default
value of 0.1, and imax by -tao_nls_imax with a default value of 100. When using the g1t r method
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to solve the system of equations, an estimate of the minimum eigenvalue \; of the Hessian matrix is
available. This value is used to initialize the perturbation to pr4+1 = max {pr+1, —A1} in this case.

2. If pg is nonzero and a problem was detected with either the direction or Krylov subspace method, the
perturbation is increased to

pr+1 = min {pmax, max {pgfac * pj, pmgfac * || g(zx)[/} },

where g(xy) is the gradient of the objective function and pgfac is set with the command line argument
-tao nls pgfac with a default value of 10, pmgfac by -tao nls pmgfac with a default value
of 0.1, and pmax by -tao_nls_pmax with a default value of 100.

3. If pg is nonzero and no problems were detected with either the direction or Krylov subspace method,
the perturbation is decreased to

pr+1 = min {psfac x pi, pmsfac * || g(zx) ||},

where g(z}) is the gradient of the objective function, psfac is set with the command line argument
-tao _nls psfac with a default value of 0.4, and pmsfac is set by -tao_nls_pmsfac with a
default value of 0.1. Moreover, if pxy1 < pmin, then pr1 = 0, where pmin is set with the command
line argument -tao nls_pmin and has a default value of 10712,

Near a local minimizer to the unconstrained optimization problem, the Hessian matrix will be positive-
semidefinite; the perturbation will shrink toward zero, and one would eventually observe a superlinear
convergence rate.

When using nash, stcg, or gltr to solve the linear systems of equation, a trust-region radius needs to be
initialized and updated. This trust-region radius simultaneously limits the size of the step computed and
reduces the number of iterations of the conjugate gradient method. The method for initializing the trust-
region radius is set with the command line argument -tao_nls init type <constant,direction,
interpolation>; interpolation, which chooses an initial value based on the interpolation scheme
found in [CGTO00], is the default. This scheme performs a number of function and gradient evaluations to
determine a radius such that the reduction predicted by the quadratic model along the gradient direction
coincides with the actual reduction in the nonlinear function. The iterate obtaining the best objective
function value is used as the starting point for the main line search algorithm. The constant method
initializes the trust-region radius by using the value specified with the -tao trust0 <real> command line
argument, where the default value is 100. The direction technique solves the first quadratic optimization
problem by using a standard conjugate gradient method and initializes the trust region to |/sgl|-

The method for updating the trust-region radius is set with the command line argument
-tao nls update type <step,reduction,interpolation>; step is the default. The step
method updates the trust-region radius based on the value of 7. In particular,

wimin(Ag, ||dgl]) if 7 € [0,21)
womin(Ay, ||dg|) if 7 € [v1,12)
Ak+1 = w3 A if m, € [1/2,1/3)
max(Ag,wy||dg|) if 7 € [v3,14)
max(Ag,ws||dg|) if 7 € [v4,00),

where 0 < w; < wy < w3 =1 < wy <ws and 0 < v; < 1y < v3 < vy are constants. The reduction
method computes the ratio of the actual reduction in the objective function to the reduction predicted by
the quadratic model for the full step, ki = %, where q; is the quadratic model. The radius is

then updated as

armin(Ayg, ||dill)  if ki € (—o0,m1)
aomin(Ay, ||dg|)  if kk € [m1,72)
Apy1 = s\ if kg € [772,’173)
maX(Ak, 044Hdk||) if K € [77 4)
max(Ag, as||di|]) if kg € [n4,00),
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where 0 < a1 < ag <az3=1<as <asand 0 <n; <y <13 <y are constants. The interpolation
method uses the same interpolation mechanism as in the initialization to compute a new value for the

trust-region radius.

This algorithm will be deprecated in the next version and replaced by the Bounded Newton Line Search
(BNLS) algorithm that can solve both bound constrained and unconstrained problems.

Newton Trust-Region Method (NTR)

The Newton trust-region method solves the constrained quadratic programming problem

ming
subject to

Ld" Hyd + gTd
ldll < Ag

to obtain a direction dj, where Hy is the Hessian of the objective function at xj, gx is the gradient of the
objective function at xg, and Ay is the trust-region radius. If xj + dj sufficiently reduces the nonlinear
objective function, then the step is accepted, and the trust-region radius is updated. However, if xj + dj,
does not sufficiently reduce the nonlinear objective function, then the step is rejected, the trust-region radius
is reduced, and the quadratic program is re-solved by using the updated trust-region radius. The Newton
trust-region method can be set by using the TAO solver tao_ntr. The options available for this solver are
listed in Table 2.18. For the best efficiency, function and gradient evaluations should be performed separately
when using this algorithm.

Table 2.18: Summary of ntr options

Name -tao ntr_ | Value Default Description
ksp_type nash, stcg steg KSPType for linear system
pc_type none, jacobi Imvm PCType for linear system
init type constant, direction, interpolation | interpolation | Radius initialization method
mul i real 0.35 p1 in interpolation init
mu2_ i real 0.50 w2 in interpolation init
gammal i real 0.0625 ~1 in interpolation init
gamma2_ i real 0.50 v2 in interpolation init
gamma3 i real 2.00 ~vs in interpolation init
gammad i real 5.00 v4 in interpolation init
theta 1 real 0.25 6 in interpolation init
update type step, reduction, interpolation step Radius update method
mul i real 0.35 w1 in interpolation init
mu2_1i real 0.50 w2 in interpolation init
gammal i real 0.0625 ~1 in interpolation init
gamma2_ i real 0.50 v2 in interpolation init
gamma3_ i real 2.00 ~v3 in interpolation init
gamma4d i real 5.00 ~v4 in interpolation init
theta i real 0.25 6 in interpolation init
etal real : 7 in reduction update
eta2 real 0.25 n2 in reduction update
eta3 real 0.50 n3 in reduction update
etad real 0.90 n4 in reduction update
alphal real 0.25 a1 in reduction update
alpha2 real 0.50 ap in reduction update
alpha3 real 1.00 as in reduction update
alpha4d real 2.00 ay in reduction update
alpha5 real 4.00 a5 in reduction update
continues on next page
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Table 2.18 - continued from previous page

Name -tao ntr_ | Value Default Description

mul real 0.10 w1 in interpolation update
mu?2 real 0.50 1o in interpolation update
gammal real 0.25 ~1 in interpolation update
gamma?2 real 0.50 ~2 in interpolation update
gamma3 real 2.00 ~vs in interpolation update
gamma4 real 4.00 v4 in interpolation update
theta real 0.05 f in interpolation update

The quadratic optimization problem is approximately solved by applying the Nash or Steihaug-Toint
conjugate gradient methods or the generalized Lanczos method to the symmetric system of equations
Hid = —gi. The method used to solve the system of equations is specified with the command line ar-
gument -tao ntr ksp type <nash,stcg,gltr>; stcg is the default. See the PETSc manual for
further information on changing the behavior of these linear system solvers.

A good preconditioner reduces the number of iterations required to compute the direction. For the Nash
and Steihaug-Toint conjugate gradient methods and generalized Lanczos method, this preconditioner must
be symmetric and positive definite. The available options are to use no preconditioner, the absolute value
of the diagonal of the Hessian matrix, a limited-memory BFGS approximation to the Hessian matrix, or
one of the other preconditioners provided by the PETSc package. These preconditioners are specified by
the command line argument -tao ntr pc type <none,jacobi,icc,ilu, lmvm>, respectively. The
default is the lmvm preconditioner. See the PETSc manual for further information on changing the behavior
of the preconditioners.

The method for computing an initial trust-region radius is set with the command line arguments
-tao ntr _init type <constant,direction,interpolation>; interpolation, which chooses
an initial value based on the interpolation scheme found in [CGT00], is the default. This scheme performs a
number of function and gradient evaluations to determine a radius such that the reduction predicted by the
quadratic model along the gradient direction coincides with the actual reduction in the nonlinear function.
The iterate obtaining the best objective function value is used as the starting point for the main trust-region
algorithm. The constant method initializes the trust-region radius by using the value specified with the
-tao_trust® <real> command line argument, where the default value is 100. The direction tech-
nique solves the first quadratic optimization problem by using a standard conjugate gradient method and
initializes the trust region to ||so]|.

The method for updating the trust-region radius is set with the command line arguments
-tao ntr _update type <reduction,interpolation>; reduction is the default. The reduc-
tion method computes the ratio of the actual reduction in the objective function to the reduction predicted
by the quadratic model for the full step, kx = M,

q(xr)—q(zr+dy)

is then updated as

where g is the quadratic model. The radius

almin(Ak, HdkH) if kg € (—OO,T]l)
Oszin(Ak, HdkH) if kg € [771,’172)
Apy1 = azAg if ki € [12,73)
maX(Ak, CqukH) if kg € [773,774)
max(Ag, as||di|])  if kg € [n4,00),

where 0 < a1 < as <az=1<ay <asand 0 <n; <ny <n3 < ny are constants. The interpolation
method uses the same interpolation mechanism as in the initialization to compute a new value for the
trust-region radius.

This algorithm will be deprecated in the next version and replaced by the Bounded Newton Trust Region
(BNTR) algorithm that can solve both bound constrained and unconstrained problems.
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Newton Trust Region with Line Search (NTL)

NTL safeguards the trust-region globalization such that a line search is used in the event that the step is
initially rejected by the predicted versus actual decrease comparison. If the line search fails to find a viable
step length for the Newton step, it falls back onto a scaled gradient or a gradient descent step. The trust
radius is then modified based on the line search step length.

This algorithm will be deprecated in the next version and replaced by the Bounded Newton Trust Region
with Line Search (BNTL) algorithm that can solve both bound constrained and unconstrained problems.

Limited-Memory Variable-Metric Method (LMVM)

The limited-memory, variable-metric method (LMVM) computes a positive definite approximation to the
Hessian matrix from a limited number of previous iterates and gradient evaluations. A direction is then
obtained by solving the system of equations

dek = —Vf(xk),

where Hj, is the Hessian approximation obtained by using the BFGS update formula. The inverse of Hy can
readily be applied to obtain the direction di. Having obtained the direction, a Moré-Thuente line search is
applied to compute a step length, 71, that approximately solves the one-dimensional optimization problem

min f(xg + 7dg).

The current iterate and Hessian approximation are updated, and the process is repeated until the method
converges. This algorithm is the default unconstrained minimization solver and can be selected by using
the TAO solver tao lmvm. For best efficiency, function and gradient evaluations should be performed
simultaneously when using this algorithm.

The primary factors determining the behavior of this algorithm are the type of Hessian approximation used,
the number of vectors stored for the approximation and the initialization/scaling of the approximation.
These options can be configured using the -tao lmvm _mat lmvm prefix. For further detail, we refer the
reader to the MATLMVM matrix type definitions in the PETSc Manual.

The LMVM algorithm also allows the user to define a custom initial Hessian matrix Hyj through the
interface function TaOLMVMSetHO (). This user-provided initialization overrides any other scalar or diagonal
initialization inherent to the LMVM approximation. The provided Hy ; must be a PETSc Mat type object
that represents a positive-definite matrix. The approximation prefers MatSolve() if the provided matrix
has MATOP_SOLVE implemented. Otherwise, MatMult () is used in a KSP solve to perform the inversion
of the user-provided initial Hessian.

In applications where TaoSolve () on the LMVM algorithm is repeatedly called to solve similar or related
problems, -tao_lmvm_recycle flag can be used to prevent resetting the LMVM approximation between
subsequent solutions. This recycling also avoids one extra function and gradient evaluation, instead re-using
the values already computed at the end of the previous solution.

This algorithm will be deprecated in the next version and replaced by the Bounded Quasi-Newton Line
Search (BQNLS) algorithm that can solve both bound constrained and unconstrained problems.
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Nonlinear Conjugate Gradient Method (CG)

The nonlinear conjugate gradient method can be viewed as an extension of the conjugate gradient method
for solving symmetric, positive-definite linear systems of equations. This algorithm requires only function
and gradient evaluations as well as a line search. The TAO implementation uses a Moré-Thuente line search
to obtain the step length. The nonlinear conjugate gradient method can be selected by using the TAO solver
tao_cg. For the best efficiency, function and gradient evaluations should be performed simultaneously when
using this algorithm.

Five variations are currently supported by the TAO implementation: the Fletcher-Reeves method, the
Polak-Ribiére method, the Polak-Ribiére-Plus method [NW99], the Hestenes-Stiefel method, and the Dai-
Yuan method. These conjugate gradient methods can be specified by using the command line argument
-tao _cg type <fr,pr,prp,hs,dy>, respectively. The default value is prp.

The conjugate gradient method incorporates automatic restarts when successive gradients are not sufficiently
orthogonal. TAO measures the orthogonality by dividing the inner product of the gradient at the current
point and the gradient at the previous point by the square of the Euclidean norm of the gradient at the
current point. When the absolute value of this ratio is greater than 7, the algorithm restarts using the gradient
direction. The parameter i can be set by using the command line argument -tao _cg eta <real>; 0.1is
the default value.

This algorithm will be deprecated in the next version and replaced by the Bounded Nonlinear Conjugate
Gradient (BNCG) algorithm that can solve both bound constrained and unconstrained problems.

Nelder-Mead Simplex Method (NM)

The Nelder-Mead algorithm [NMG65] is a direct search method for finding a local minimum of a function f(z).
This algorithm does not require any gradient or Hessian information of f and therefore has some expected
advantages and disadvantages compared to the other TAO solvers. The obvious advantage is that it is easier
to write an application when no derivatives need to be calculated. The downside is that this algorithm can
be slow to converge or can even stagnate, and it performs poorly for large numbers of variables.

This solver keeps a set of NV + 1 sorted vectors x1,x2,...,zn4+1 and their corresponding objective function
values f1 < fo <...< fn41. At each iteration, zy 41 is removed from the set and replaced with

N
1
a(p) = (1+ M)N Zﬂfi — WTN+1,
i=1

where £ can be one of i, 2110, 310, — 30 depending on the values of each possible f(z(u)).

The algorithm terminates when the residual fyy1 — f1 becomes sufficiently small. Because of the way new
vectors can be added to the sorted set, the minimum function value and/or the residual may not be impacted
at each iteration.

Two options can be set specifically for the Nelder-Mead algorithm:

-tao_nm_lambda <value>
sets the initial set of vectors (zo plus value in each coordinate direction); the default value is 1.

-tao nm _mu <value>
sets the value of pg; the default is pg = 1.
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Bound-Constrained Optimization

Bound-constrained optimization algorithms solve optimization problems of the form

min f(z)
T
subject to [ <z < w.
These solvers use the bounds on the variables as well as objective function, gradient, and possibly Hessian

information.

For any unbounded variables, the bound value for the associated index can be set to PETSC_INFINITY for
the upper bound and PETSC_NINFINITY for the lower bound. If all bounds are set to infinity, then the
bounded algorithms are equivalent to their unconstrained counterparts.

Before introducing specific methods, we will first define two projection operations used by all bound con-
strained algorithms.

o Gradient projection:

0 if(x<ling>0)V(x>u;ANg; <0)
g; otherwise

PB(g) = {

e Bound projection:

B(r) =1 wu; ifx;>uy
x; otherwise

Bounded Newton-Krylov Methods

TAO features three bounded Newton-Krylov (BNK) class of algorithms, separated by their globalization
methods: projected line search (BNLS), trust region (BNTR), and trust region with a projected line search
fall-back (BNTL). They are available via the TAO solvers TAOBNLS, TAOBNTR and TAOBNTL, respectively,
or the -tao_type bnls/bntr/bntl flag.

The BNK class of methods use an active-set approach to solve the symmetric system of equations,
Hypr = — gk,

only for inactive variables in the interior of the bounds. The active-set estimation is based on Bertsekas
[Ber82] with the following variable index categories:

lower bounded : L(z) = {i : z; <l;+¢€ A g(z); > 0},
upper bounded : U(z) = {i : x; >u;+e A g(x); <0},
fixed: F(z) = {i: L =uw},
active-set :  A(x) = {L(z) U U(zx) U F(x)},
inactive-set : Z(z) = {1,2,...,n}\ A(z).

At each iteration, the bound tolerance is estimated as ez 1 = min(eg, ||wg|l2) with w, = z, — B(zy —
BDrgx), where the diagonal matrix Dy, is an approximation of the Hessian inverse H, 1 The initial bound
tolerance €y and the step length 8 have default values of 0.001 and can be adjusted using -tao_bnk as_tol
and -tao_bnk as step flags, respectively. The active-set estimation can be disabled using the option
-tao _bnk as type none, in which case the algorithm simply uses the current iterate with no bound
tolerances to determine which variables are actively bounded and which are free.

BNK algorithms invert the reduced Hessian using a Krylov iterative method. Trust-region conjugate gradient
methods (KSPNASH, KSPSTCG, and KSPGLTR) are required for the BNTR, and BNTL algorithms, and recom-
mended for the BNLS algorithm. The preconditioner type can be changed using the -tao_bnk pc_type
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none/ilu/icc/jacobi/Imvm. The lmvm option, which is also the default, preconditions the Krylov so-
lution with a MATLMVM matrix. The remaining supported preconditioner types are default PETSc types. If
Jacobi is selected, the diagonal values are safeguarded to be positive. icC and ilu options produce good
results for problems with dense Hessians. The LMVM and Jacobi preconditioners are also used as the ap-
proximate inverse-Hessian in the active-set estimation. If neither are available, or if the Hessian matrix does
not have MATOP_GET DIAGONAL defined, then the active-set estimation falls back onto using an identity
matrix in place of Dy, (this is equivalent to estimating the active-set using a gradient descent step).

A special option is available to accelerate the convergence of the BNK algorithms by taking a finite number of
BNCG iterations at each Newton iteration. By default, the number of BNCG iterations is set to zero and the
algorithms do not take any BNCG steps. This can be changed using the option flag -tao_bnk max cg its
<i>. While this reduces the number of Newton iterations, in practice it simply trades off the Hessian
evaluations in the BNK solver for more function and gradient evaluations in the BNCG solver. However,
it may be useful for certain types of problems where the Hessian evaluation is disproportionately more
expensive than the objective function or its gradient.

Bounded Newton Line Search (BNLS)

BNLS safeguards the Newton step by falling back onto a BFGS, scaled gradient, or gradient steps based on
descent direction verifications. For problems with indefinite Hessian matrices, the step direction is calculated
using a perturbed system of equations,

(Hi + prD)pr = —9gx,

where py, is a dynamically adjusted positive constant. The step is globalized using a projected Moré-Thuente
line search. If a trust-region conjugate gradient method is used for the Hessian inversion, the trust radius is
modified based on the line search step length.

Bounded Newton Trust Region (BNTR)

BNTR globalizes the Newton step using a trust region method based on the predicted versus actual reduction
in the cost function. The trust radius is increased only if the accepted step is at the trust region boundary.
The reduction check features a safeguard for numerical values below machine epsilon, scaled by the latest
function value, where the full Newton step is accepted without modification.

Bounded Newton Trust Region with Line Search (BNTL)

BNTL safeguards the trust-region globalization such that a line search is used in the event that the step is
initially rejected by the predicted versus actual decrease comparison. If the line search fails to find a viable
step length for the Newton step, it falls back onto a scaled gradient or a gradient descent step. The trust
radius is then modified based on the line search step length.
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Bounded Quasi-Newton Line Search (BQNLS)

The BQNLS algorithm uses the BNLS infrastructure, but replaces the step calculation with a direct inverse
application of the approximate Hessian based on quasi-Newton update formulas. No Krylov solver is used
in the solution, and therefore the quasi-Newton method chosen must guarantee a positive-definite Hessian
approximation. This algorithm is available via tao type bgnls.

Bounded Quasi-Newton-Krylov

BQNK algorithms use the BNK infrastructure, but replace the exact Hessian with a quasi-Newton approx-
imation. The matrix-free forward product operation based on quasi-Newton update formulas are used in
conjunction with Krylov solvers to compute step directions. The quasi-Newton inverse application is used to
precondition the Krylov solution, and typically helps converge to a step direction in @(10) iterations. This
approach is most useful with quasi-Newton update types such as Symmetric Rank-1 that cannot strictly
guarantee positive-definiteness. The BNLS framework with Hessian shifting, or the BNTR framework with
trust region safeguards, can successfully compensate for the Hessian approximation becoming indefinite.

Similar to the full Newton-Krylov counterpart, BQNK algorithms come in three forms separated by the
globalization technique: line search (BQNKLS), trust region (BQNKTR) and trust region w/ line search
fall-back (BQNKTL). These algorithms are available via tao_type <bgnkls, bgnktr, bgnktl>.

Bounded Nonlinear Conjugate Gradient (BNCG)

BNCG extends the unconstrained nonlinear conjugate gradient algorithm to bound constraints via gradient
projections and a bounded Moré-Thuente line search.

Like its unconstrained counterpart, BNCG offers gradient descent and a variety of CG updates: Fletcher-
Reeves, Polak-Ribiére, Polak-Ribiére-Plus, Hestenes-Stiefel, Dai-Yuan, Hager-Zhang, Dai-Kou, Kou-Dai,
and the Self-Scaling Memoryless (SSML) BFGS, DFP, and Broyden methods. These methods can be
specified by using the command line argument -tao _bncg type <gd,fr,pr,prp,hs,dy,hz,dk, kd,
ssml _bfgs,ssml dfp,ssml_brdn> respectively. The default value is ssml_bfgs. We have scalar
preconditioning for these methods, and it is controlled by the flag tao_bncg alpha. To disable rescaling,
use @ = —1.0, otherwise a € [0,1]. BNCG is available via the TAO solver TAOBNCG or the -tao type
bncg flag.

Some individual methods also contain their own parameters. The Hager-Zhang and Dou-Kai methods have
a parameter that determines the minimum amount of contribution the previous search direction gives to
the next search direction. The flags are -tao _bncg hz eta and -tao _bncg dk eta, and by default
are set to 0.4 and 0.5 respectively. The Kou-Dai method has multiple parameters. -tao bncg zeta
serves the same purpose as the previous two; set to 0.1 by default. There is also a parameter to scale the
contribution of y,, = V f(zx) — Vf(2x—_1) in the search direction update. It is controlled by -tao_bncg xi,
and is equal to 1.0 by default. There are also times where we want to maximize the descent as measured
by Vf(zx)Tdy, and that may be done by using a negative value of &; this achieves better performance
when not using the diagonal preconditioner described next. This is enabled by default, and is controlled
by -tao bncg neg xi. Finally, the Broyden method has its convex combination parameter, set with
-tao_bncg theta. We have this as 1.0 by default, i.e. it is by default the BFGS method. One can also
individually tweak the BFGS and DFP contributions using the multiplicative constants -tao_bncg scale;
both are set to 1 by default.

All methods can be scaled using the parameter -tao_bncg alpha, which continuously varies in [0,1]. The
default value is set depending on the method from initial testing.

BNCG also offers a special type of method scaling. It employs Broyden diagonal scaling as an option for its
CG methods, turned on with the flag -tao_bncg diag scaling. Formulations for both the forward (reg-
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ular) and inverse Broyden methods are developed, controlled by the flag -tao_bncg mat_lmvm forward.
It is set to True by default. Whether one uses the forward or inverse formulations depends on the method
being used. For example, in our preliminary computations, the forward formulation works better for the
SSML_ BFGS method, but the inverse formulation works better for the Hestenes-Stiefel method. The con-
vex combination parameter for the Broyden scaling is controlled by -tao _bncg mat lmvm theta, and
is 0 by default. We also employ rescaling of the Broyden diagonal, which aids the linesearch immensely.
The rescaling parameter is controlled by -tao_bncg mat lmvm_alpha, and should be € [0,1]. One can
disable rescaling of the Broyden diagonal entirely by setting -tao_bncg mat_lmvm_sigma hist 0.

One can also supply their own preconditioner, serving as a Hessian initialization to the above diagonal scaling.
The appropriate user function in the code is Ta0BNCGSetHO (tao, HO) where HO is the user-defined Mat
object that serves as a preconditioner. For an example of similar usage, see tao/tutorials/ex3.c.

The active set estimation uses the Bertsekas-based method described in Bounded Newton-Krylov Methods,
which can be deactivated using -tao _bncg as type none, in which case the algorithm will use the
current iterate to determine the bounded variables with no tolerances and no look-ahead step. As in the
BNK algorithm, the initial bound tolerance and estimator step length used in the Bertsekas method can be
set via -tao _bncg as tol and -tao bncg as step, respectively.

In addition to automatic scaled gradient descent restarts under certain local curvature conditions, we
also employ restarts based on a check on descent direction such that Vf(zx)Tdy, € [-10'!,—1077)].
Furthermore, we allow for a variety of alternative restart strategies, all disabled by default. The
-tao _bncg unscaled restart flag allows one to disable rescaling of the gradient for gradient descent
steps. The -tao _bncg spaced restart flag tells the solver to restart every Mn iterations, where n is
the problem dimension and M is a constant determined by -tao _bncg min restart num and is 6 by
default. We also have dynamic restart strategies based on checking if a function is locally quadratic; if so,
go do a gradient descent step. The flag is -tao_bncg dynamic restart, disabled by default since the
CG solver usually does better in those cases anyway. The minimum number of quadratic-like steps before a
restart is set using -tao_bncg min_quad and is 6 by default.

Generally Constrained Solvers

Constrained solvers solve optimization problems that incorporate either or both equality and inequality
constraints, and may optionally include bounds on solution variables.

Alternating Direction Method of Multipliers (ADMM)

The TAOADMM algorithm is intended to blend the decomposability of dual ascent with the superior con-
vergence properties of the method of multipliers. [BPC-+11] The algorithm solves problems in the form

min  fa)+g(2)
subject to Ax+ Bz =c

where x € R, z € R™, A € RP*" B € RP*™_ and ¢ € RP. Essentially, ADMM is a wrapper over two TAO
solver, one for f(z), and one for g(z). With method of multipliers, one can form the augmented Lagrangian

Ly(w,z,y) = f(2) + 9(2) +y" (Az + Bz — ¢) + (p/2)|| Az + Bz — |3

Then, ADMM consists of the iterations

2T = argminL, (, 2%, y*)

k+1 k+1

z .2, y")

yk-i-l = yk +p(Axk+1 + sz+1 _ C)

= argminL,(x
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In certain formulation of ADMM, solution of z¥*! may have closed-form solution. Currently ADMM pro-

vides one default implementation for z**1, which is soft-threshold. It can be used with either Ta0ADMMSe -
tRegularizerType ADMM() or -tao admm regularizer type <regularizer soft thresh>
User can also pass spectral penalty value, p, with either TaoADMMSetSpectralPenalty() or
-tao_admm_spectral penalty. Currently, user can use

o TaoADMMSetMisfitObjectiveAndGradientRoutine()

o TaoADMMSetRegularizerObjectiveAndGradientRoutine()
o TaoADMMSetMisfitHessianRoutine()

o TaoADMMSetRegularizerHessianRoutine()

Any other combination of routines is currently not supported. Hessian matrices can either be constant or
non-constant, of which fact can be set via TaOADMMSetMisfitHessianChangeStatus(), and TaoAD-
MMSetRegularizerHessianChangeStatus(). Also, it may appear in certain cases where augmented
Lagrangian’s Hessian may become nearly singular depending on the p, which may change in the case of
-tao admm dual update <update adaptive>, <update adaptive relaxed>. This issue can
be prevented by TaoADMMSetMinimumSpectralPenalty ().

Augmented Lagrangian Method of Multipliers (ALMM)

The TAOALMM method solves generally constrained problems of the form

min flx)

subject to g(z) =0
h(z) >0
<z <u

where g(z) are equality constraints, h(x) are inequality constraints and [ and u are lower and upper bounds
on the optimization variables, respectively.

TAOALMM converts the above general constrained problem into a sequence of bound constrained problems
at each outer iteration k =1,2,...

min L(z, A\g)

subject to [ <z <wu

where L(z, A;) is the augmented Lagrangian merit function and Ay is the Lagrange multiplier estimates at
outer iteration k.

TAOALMM offers two versions of the augmented Lagrangian formulation: the canonical Hestenes-Powell
augmented Lagrangian [Hes69] [Pow69] with inequality constrained converted to equality constraints via
slack variables, and the slack-less Powell-Hestenes-Rockafellar formulation [Roc74] that utilizes a pointwise
max () on the inequality constraints. For most applications, the canonical Hestenes-Powell formulation is
likely to perform better. However, the PHR formulation may be desirable for problems featuring very large
numbers of inequality constraints as it avoids inflating the dimension of the subproblem with slack variables.

The inner subproblem is solved using a nested bound-constrained first-order TAO solver. By default,
TAOALM uses a quasi-Newton-Krylov trust-region method (TAOBQNKTR). Other first-order methods
such as TAOBNCG and TAOBQNLS are also appropriate, but a trust-region globalization is strongly rec-
ommended for most applications.
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Primal-Dual Interior-Point Method (PDIPM)

The TAOPDIPM method (-tao type pdipm) implements a primal-dual interior point method for solving
general nonlinear programming problems of the form

min f(z)

subject to g(z) =0 (2.6)
h(z) >0
T <z<zgt

Here, f(z) is the nonlinear objective function, g(z), h(x) are the equality and inequality constraints, and .~
and 7 are the lower and upper bounds on decision variables x.

PDIPM converts the inequality constraints to equalities using slack variables z and a log-barrier term, which
transforms (2.6) to

nct

min f(z) — uZlnzi
i=1

s.t. (2-7)
ce(r) =0
ci(z) —z=0
Here, ce(x) is set of equality constraints that include g(z) and fixed decision variables, i.e., v~ = x = z™.

Similarly, ci(z) are inequality constraints including h(x) and lower/upper/box-constraints on z. p is a
parameter that is driven to zero as the optimization progresses.

The Lagrangian for (2.7)) is

nct

L (2, Aees Aeiy 2) = f(2) + Moce(z) — ML (ci(z) — 2) — p Z In z (2.8)
i=1

where, A.. and A\ are the Lagrangian multipliers for the equality and inequality constraints, respectively.

The first order KKT conditions for optimality are as follows

V(@) + Vee(@)T Aee — Vei(z)T M

ce(r
VL/L('I7 Acm )\cia Z) = CZ(!L‘% _) = =0 (29)
ZAcie — e

(2.9) is solved iteratively using Newton’s method using PETSc’s SNES object. After each Newton iteration, a
line-search is performed to update x and enforce z, A.; > 0. The barrier parameter p is also updated after each
Newton iteration. The Newton update is obtained by solving the second-order KKT system Hd = —VL,,.
Here,H is the Hessian matrix of the KKT system. For interior-point methods such as PDIPM, the Hessian
matrix tends to be ill-conditioned, thus necessitating the use of a direct solver. We recommend using LU
preconditioner -pc_type lu and using direct linear solver packages such SuperLU Dist or MUMPS.
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PDE-Constrained Optimization

TAO solves PDE-constrained optimization problems of the form

min flu,v)

u,v

subject to  g(u,v) =0,

where the state variable u is the solution to the discretized partial differential equation defined by g and
parametrized by the design variable v, and f is an objective function. The Lagrange multipliers on the
constraint are denoted by y. This method is set by using the linearly constrained augmented Lagrangian
TAO solver tao 1lcl.

We make two main assumptions when solving these problems: the objective function and PDE constraints
have been discretized so that we can treat the optimization problem as finite dimensional and V,g(u,v) is
invertible for all v and v.

Linearly-Constrained Augmented Lagrangian Method (LCL)

Given the current iterate (ug, vk, yx), the linearly constrained augmented Lagrangian method approximately
solves the optimization problem

min Fr(u,v)

u,v

subject to  Ag(u —ug) + Br(v —vg) + gx =0,

where Ay = Vyg(ug,vg), Br = Vyg(uk,vi), and g = g(ug, v) and

Julu,v) = £, v) = g, 0) gk + B lg(u,0)]?

is the augmented Lagrangian function. This optimization problem is solved in two stages. The first com-
putes the Newton direction and finds a feasible point for the linear constraints. The second computes a
reduced-space direction that maintains feasibility with respect to the linearized constraints and improves the
augmented Lagrangian merit function.

Newton Step

The Newton direction is obtained by fixing the design variables at their current value and solving the
linearized constraint for the state variables. In particular, we solve the system of equations

Agdu = —gy,
to obtain a direction du. We need a direction that provides sufficient descent for the merit function

1
g, )|

That is, we require g} Axdu < 0.

If the Newton direction is a descent direction, then we choose a penalty parameter p so that du is also a
sufficient descent direction for the augmented Lagrangian merit function. We then find « to approximately
minimize the augmented Lagrangian merit function along the Newton direction.

in f d .
min fr(up, + adu, vy
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We can enforce either the sufficient decrease condition or the Wolfe conditions during the search procedure.
The new point,

Upyr = u + apdu

’Uk-+% = Uk,
satisfies the linear constraint
Ak(uk+% — uk) + Bk(vk+% — Uk) + argr = 0.

If the Newton direction computed does not provide descent for the merit function, then we can use the
steepest descent direction du = —AT gy during the search procedure. However, the implication that the
intermediate point approximately satisfies the linear constraint is no longer true.

Modified Reduced-Space Step

We are now ready to compute a reduced-space step for the modified optimization problem:

min fk(uvv)
u,v

subject to  Ap(u — ug) + Br(v — vg) + aggr = 0.
We begin with the change of variables

jnil? fk(uk + du, vg + dv)

subject to  Agdu + Brdv + apgr =0
and make the substitution
du = —A;l(Bkdv + argk).
Hence, the unconstrained optimization problem we need to solve is
rrcg)n fk(uk - A,:l(Bkdv + argr),vi + dv),
which is equivalent to
rréivn fk(uk_% — A; ' Bid, Upy 1 +dv).

We apply one step of a limited-memory quasi-Newton method to this problem. The direction is obtain by
solving the quadratic problem

1 TR =T
min 5dv dev—i—g,H%dU7

where Hj, is the limited-memory quasi-Newton approximation to the reduced Hessian matrix, a positive-
definite matrix, and g, 1 is the reduced gradient.

Jest = Vofe(upys,vpges) — Vufk(uk-i-%)Uk-f—%)A]:lBk
dpyr + ey Ay B

The reduced gradient is obtained from one linearized adjoint solve
-7
Y+l = A Ck+1
and some linear algebra

Jpvy = dpyr + y/iéBk-
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Because the Hessian approximation is positive definite and we know its inverse, we obtain the direction
— g1z
dv = k 9k+1
and recover the full-space direction from one linearized forward solve,
du = —A; ' Bydv.

Having the full-space direction, which satisfies the linear constraint, we now approximately minimize the
augmented Lagrangian merit function along the direction.

Iglzlgl Ji(ugys + Bdu, vy 1 + Bdv)
We enforce the Wolfe conditions during the search procedure. The new point is

Uky1 = Upyl + Brdu
Ukl = Upyl + Brdv.

The reduced gradient at the new point is computed from

Ye+1 = AI;Tck—i-l

g1 = diy1— iy Br,
where 41 = Vufk(Uk+17 Vgt1) and dy1 = Vo fe (ug+1, Vk+1). The multipliers y;1 become the multipliers
used in the next iteration of the code. The quantities Vpyls Vk+1, §k+%, and gx4+1 are used to update Hy,

to obtain the limited-memory quasi-Newton approximation to the reduced Hessian matrix used in the next
iteration of the code. The update is skipped if it cannot be performed.

Nonlinear Least-Squares

Given a function F': R™ — R, the nonlinear least-squares problem minimizes
fl@) =IF(@)3 =) Fi(x)*. (2.10)
i=1
The nonlinear equations F should be specified with the function TaoSetResidual().

Bound-constrained Regularized Gauss-Newton (BRGN)

The TAOBRGN algorithms is a Gauss-Newton method is used to iteratively solve nonlinear least squares
problem with the iterations

wpp1 = ok — o (S Te) T T ()
where r(x) is the least-squares residual vector, J, = Or(xy)/0x is the Jacobian of the residual, and «y, is the
step length parameter. In other words, the Gauss-Newton method approximates the Hessian of the objective

as Hy, =~ (JI'J),) and the gradient of the objective as g ~ —Jyr(xy). The least-squares Jacobian, .J, should
be provided to Tao using TaoSetJacobianResidual() routine.

The BRGN (-tao_type brgn) implementation adds a regularization term 3(x) such that
1
min J|[R)3 + A3(a),

where A is the scalar weight of the regularizer. BRGN provides two default implementations for 3(z):
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e L2-norm - 3(z) = %kaﬂg

« L2-norm Proximal Point - 3(z) = ||z — x—1]/3

o Ll-norm with Dictionary - f(z) = ||Dz||s = >, /y? + €2 — € where y = Dz and e is the smooth
approximation parameter.

The regularizer weight can be controlled with either TaoBRGNSetRegularizerWeight() or
-tao _brgn regularizer weight command line option, while the smooth approximation parameter
can be set with either TaOBRGNSetL1SmoothEpsilon() or -tao brgn 11 smooth_epsilon. For
the L1-norm term, the user can supply a dictionary matrix with TaoBRGNSetDictionaryMatrix(). If
no dictionary is provided, the dictionary is assumed to be an identity matrix and the regularizer reduces to
a sparse solution term.

The regularization selection  can be made using  the command line option
-tao brgn regularization type <12pure, 12prox, 1l1ldict, user> where the user
option allows the user to define a custom C2-continuous regularization term. This custom term can be
defined by using the interface functions:

o TaoBRGNSetRegularizerObjectiveAndGradientRoutine() - Provide user-call back for eval-
uating the function value and gradient evaluation for the regularization term.

o TaoBRGNSetRegularizerHessianRoutine() - Provide user call-back for evaluating the Hessian
of the regularization term.

POUNDERS

One algorithm for solving the least squares problem ((2.10)) when the Jacobian of the residual vector F
is unavailable is the model-based POUNDERS (Practical Optimization Using No Derivatives for sums of
Squares) algorithm (tao _pounders). POUNDERS employs a derivative-free trust-region framework as
described in [CSV09] in order to converge to local minimizers. An example of this version of POUNDERS
applied to a practical least-squares problem can be found in [KortelainenLesinskiMore+10].

Derivative-Free Trust-Region Algorithm

In each iteration k, the algorithm maintains a model my(z), described below, of the nonlinear least squares
function f centered about the current iterate xy.

If one assumes that the maximum number of function evaluations has not been reached and that
(IVmy(xr)|l2 >gtol, the next point 24 to be evaluated is obtained by solving the trust-region subproblem

min {my(x) : ||z — zkll, < Ag, }, (2.11)

where Aj is the current trust-region radius. By default we use a trust-region norm with p = oo and solve
((2.11)) with the BLMVM method described in Bound-constrained Limited-Memory Variable-Metric Method
(BLMVM). While the subproblem is a bound-constrained quadratic program, it may not be convex and the
BQPIP and GPCG methods may not solve the subproblem. Therefore, a bounded Newton-Krylov Method
should be used; the default is the BNTR, algorithm. Note: BNTR uses its own internal trust region that
may interfere with the infinity-norm trust region used in the model problem ((2.11)).

The residual vector is then evaluated to obtain F(zy) and hence f(z;). The ratio of actual decrease to
predicted decrease,

flazw) = flzy)

my(z) — mp(zy)’

Pk =
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as well as an indicator, valid, on the model’s quality of approximation on the trust region is then used to
update the iterate,

zy if pp =m
Tpye1 =< x4 10 < pp <m and valid=true
T else,

and trust-region radius,

min(y148k, Amax) if px > m and ||z — zxllp, > w1y
Apr1 =1 YAk if pp < m and valid=true
A else,

where 0 <71 < 1,0< 7 <1<, 0<w <1,and Ay, are constants.

If pr < 0and validis false, the iterate and trust-region radius remain unchanged after the above updates,
and the algorithm tests whether the direction ;. — x) improves the model. If not, the algorithm performs
an additional evaluation to obtain F'(xj + di), where dj is a model-improving direction.

The iteration counter is then updated, and the next model m;, is obtained as described next.

Forming the Trust-Region Model

In each iteration, POUNDERS uses a subset of the available evaluated residual vectors {F(y1), F(y2), -}
to form an interpolatory quadratic model of each residual component. The m quadratic models

0 (@) = Fi(en) + (e —a)"g)) + S@ — o) "H) (@ —2i),  i=1,....m (2.12)
thus satisfy the interpolation conditions

o) =Fi(y),  i=1l...omij=1,. .k
on a common interpolation set {yi,--- ,y;, } of size I € [n + 1,npmax].

The gradients and Hessians of the models in (:eg:-eq_models) are then used to construct the main model,

m

mi() = flay) + 2z = 2)" > Fila)g” + (@ —a)" > (g,i“ (6)" + E(xk)H,i")) (). (213)

i=1 =1

The process of forming these models also computes the indicator valid of the model’s local quality.

Parameters

POUNDERS supports the following parameters that can be set from the command line or PETSc options
file:

-tao _pounders delta <delta>
The initial trust-region radius (> 0, real). This is used to determine the size of the initial neighborhood
within which the algorithm should look.

-tao _pounders npmax <npmax>
The maximum number of interpolation points used (n + 2 < npmax < 0.5(n + 1)(n + 2)). This input
is made available to advanced users. We recommend the default value (npmax= 2n + 1) be used by
others.

-tao_pounders gqt
Use the gqt algorithm to solve the subproblem ((2.11)) (uses p = 2) instead of BQPIP.
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-pounders subsolver
If the default BQPIP algorithm is used to solve the subproblem ((2.11)), the parameters of the sub-
problem solver can be accessed using the command line options prefix -pounders_subsolver . For
example,

-pounders_subsolver tao gatol 1.0e-5

sets the gradient tolerance of the subproblem solver to 1075,

Additionally, the user provides an initial solution vector, a vector for storing the separable objective function,
and a routine for evaluating the residual vector F'. These are described in detail in Objective Function and
Gradient Routines and Nonlinear Least Squares. Here we remark that because gradient information is not
available for scaling purposes, it can be useful to ensure that the problem is reasonably well scaled. A simple
way to do so is to rescale the decision variables x so that their typical values are expected to lie within the
unit hypercube [0, 1]™.

Convergence Notes

Because the gradient function is not provided to POUNDERS, the norm of the gradient of the objective
function is not available. Therefore, for convergence criteria, this norm is approximated by the norm of
the model gradient and used only when the model gradient is deemed to be a reasonable approximation of
the gradient of the objective. In practice, the typical grounds for termination for expensive derivative-free
problems is the maximum number of function evaluations allowed.

Complementarity

Mixed complementarity problems, or box-constrained variational inequalities, are related to nonlinear sys-
tems of equations. They are defined by a continuously differentiable function, F' : R™ — R", and bounds,
e {RU{—o0}}" and u € {RU{o0}}", on the variables such that ¢ < u. Given this information, x* € [¢, u]
is a solution to MCP(F, ¢, u) if for each ¢ € {1,...,n} we have at least one of the following:

Fi(z*) <0 if 2} = u;.

Note that when £ = {—o00}™ and u = {00}", we have a nonlinear system of equations, and ¢ = {0}" and
u = {oo}™ correspond to the nonlinear complementarity problem [Cot64].

Simple complementarity conditions arise from the first-order optimality conditions from optimization [Kar39]
[KT51]. In the simple bound-constrained optimization case, these conditions correspond to MCP(V f, ¢, u),
where f : R™ — R is the objective function. In a one-dimensional setting these conditions are intuitive. If
the solution is at the lower bound, then the function must be increasing and V f > 0. If the solution is at
the upper bound, then the function must be decreasing and V f < 0. If the solution is strictly between the
bounds, we must be at a stationary point and V f = 0. Other complementarity problems arise in economics
and engineering [FP97], game theory [Nas50], and finance [HP9S].

Evaluation routines for F' and its Jacobian must be supplied prior to solving the application. The bounds,
[¢,u], on the variables must also be provided. If no starting point is supplied, a default starting point of all
zeros is used.
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Semismooth Methods

TAO has two implementations of semismooth algorithms [MFF+01] [DeLucaFK96] [FFK97] for solving mixed
complementarity problems. Both are based on a reformulation of the mixed complementarity problem as a
nonsmooth system of equations using the Fischer-Burmeister function [Fis92]. A nonsmooth Newton method
is applied to the reformulated system to calculate a solution. The theoretical properties of such methods are
detailed in the aforementioned references.

The Fischer-Burmeister function, ¢ : R2 — R, is defined as
¢(a,b) = \/cm-a—b.
This function has the following key property,
¢(a,b)=0 < a>0,b>0,ab=0,

used when reformulating the mixed complementarity problem as the system of equations ®(x) = 0, where
® : R™ — R". The reformulation is defined componentwise as

(ﬁ(.’L‘l — ll,Fl(J})) if —co<l; <u; = o,
—qi)(ul — X, —Fi(l‘)) if —oco=1; <u; <oo,
D, (x) =< d(x; — b, plu; — x4, —Fi(x))) if —oo <l <uy < o0,
—F;(z) if —oco=1; <u; =00,
l; — x; if —oco<l; =u; <oo.

We note that ® is not differentiable everywhere but satisfies a semismoothness property [Mif77] [Qi93] [QS93].

Furthermore, the natural merit function, ¥(z) := 1||®(z)|3, is continuously differentiable.

The two semismooth TAO solvers both solve the system ®(x) = 0 by applying a nonsmooth Newton method
with a line search. We calculate a direction, d¥, by solving the system H*d* = —®(z*), where H" is an
element of the B-subdifferential [QS93] of ® at z*. If the direction calculated does not satisfy a suitable
descent condition, then we use the negative gradient of the merit function, —V¥(z*), as the search direction.
A standard Armijo search [Arm66] is used to find the new iteration. Nonmonotone searches [GLL86] are
also available by setting appropriate runtime options. See Line Searches for further details.

The first semismooth algorithm available in TAO is not guaranteed to remain feasible with respect to the
bounds, [¢,u], and is termed an infeasible semismooth method. This method can be specified by using the
tao_ssils solver. In this case, the descent test used is that

VU (zF)Tak < —o||d¥ ).

Both § > 0 and p > 2 can be modified by using the runtime options -tao ssils delta <delta> and
-tao_ssils rho <rho>, respectively. By default, § = 1071% and p = 2.1.

An alternative is to remain feasible with respect to the bounds by using a projected Armijo line search. This
method can be specified by using the tao_ssfls solver. The descent test used is the same as above where
the direction in this case corresponds to the first part of the piecewise linear arc searched by the projected
line search. Both § > 0 and p > 2 can be modified by using the runtime options -tao_ssfls delta
<delta> and -tao _ssfls rho <rho> respectively. By default, § = 10710 and p = 2.1.

The recommended algorithm is the infeasible semismooth method, tao ssils, because of its strong global
and local convergence properties. However, if it is known that F is not defined outside of the box, [¢, u], per-
haps because of the presence of log functions, the feasibility-enforcing version of the algorithm, tao ssfls,
is a reasonable alternative.
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Active-Set Methods

TAO also contained two active-set semismooth methods for solving complementarity problems. These meth-
ods solve a reduced system constructed by block elimination of active constraints. The subdifferential in
these cases enables this block elimination.

The first active-set semismooth algorithm available in TAO is not guaranteed to remain feasible with respect
to the bounds, [¢, u], and is termed an infeasible active-set semismooth method. This method can be specified
by using the tao_asils solver.

An alternative is to remain feasible with respect to the bounds by using a projected Armijo line search. This
method can be specified by using the tao_asfls solver.

Quadratic Solvers

Quadratic solvers solve optimization problems of the form

. 1.7 T
min 5T Qr+ctx

subject to [ >z >u

where the gradient and the Hessian of the objective are both constant.

Gradient Projection Conjugate Gradient Method (GPCG)

The GPCG [MoreT91] algorithm is much like the TRON algorithm, discussed in Section Trust-Region Newton
Method (TRON), except that it assumes that the objective function is quadratic and convex. Therefore,
it evaluates the function, gradient, and Hessian only once. Since the objective function is quadratic, the
algorithm does not use a trust region. All the options that apply to TRON except for trust-region options
also apply to GPCG. It can be set by using the TAO solver tao _gpcg or via the optio flag -tao type

gpcg.
Interior-Point Newton’s Method (BQPIP)

The BQPIP algorithm is an interior-point method for bound constrained quadratic optimization. It can be
set by using the TAO solver of tao_bqpip or via the option flag -tao _type bgpip. Since it assumes
the objective function is quadratic, it evaluates the function, gradient, and Hessian only once. This method
also requires the solution of systems of linear equations, whose solver can be accessed and modified with the
command TaoGetKSP ().

Legacy and Contributed Solvers

Bundle Method for Regularized Risk Minimization (BMRM)

BMRM is a numerical approach to optimizing an unconstrained objective in the form of f(x)+ 0.5 % A||z||?.
Here f is a convex function that is finite on the whole space. A is a positive weight parameter, and ||z is
the Euclidean norm of . The algorithm only requires a routine which, given an z, returns the value of f(x)
and the gradient of f at x.
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Orthant-Wise Limited-memory Quasi-Newton (OWLQN)

OWLQN [AGO7] is a numerical approach to optimizing an unconstrained objective in the form of f(z)+A||z|1.
Here f is a convex and differentiable function, A is a positive weight parameter, and ||z||; is the ¢; norm of
x: Y, |x;|. The algorithm only requires evaluating the value of f and its gradient.

Trust-Region Newton Method (TRON)

The TRON [LMore99] algorithm is an active-set method that uses a combination of gradient projections
and a preconditioned conjugate gradient method to minimize an objective function. Each iteration of the
TRON algorithm requires function, gradient, and Hessian evaluations. In each iteration, the algorithm first
applies several conjugate gradient iterations. After these iterates, the TRON solver momentarily ignores the
variables that equal one of its bounds and applies a preconditioned conjugate gradient method to a quadratic
model of the remaining set of free variables.

The TRON algorithm solves a reduced linear system defined by the rows and columns corresponding to the
variables that lie between the upper and lower bounds. The TRON algorithm applies a trust region to the
conjugate gradients to ensure convergence. The initial trust-region radius can be set by using the command
TaoSetInitialTrustRegionRadius(), and the current trust region size can be found by using the
command TaoGetCurrentTrustRegionRadius(). The initial trust region can significantly alter the
rate of convergence for the algorithm and should be tuned and adjusted for optimal performance.

This algorithm will be deprecated in the next version in favor of the Bounded Newton Trust Region (BNTR)
algorithm.

Bound-constrained Limited-Memory Variable-Metric Method (BLMVM)

BLMVM is a limited-memory, variable-metric method and is the bound-constrained variant of the LMVM
method for unconstrained optimization. It uses projected gradients to approximate the Hessian, eliminating
the need for Hessian evaluations. The method can be set by using the TAO solver tao blmvm. For
more details, please see the LMVM section in the unconstrained algorithms as well as the LMVM matrix
documentation in the PETSc manual.

This algorithm will be deprecated in the next version in favor of the Bounded Quasi-Newton Line Search
(BQNLS) algorithm.

2.7.4 Advanced Options

This section discusses options and routines that apply to most TAO solvers and problem classes. In particular,
we focus on linear solvers, convergence tests, and line searches.

Linear Solvers

One of the most computationally intensive phases of many optimization algorithms involves the solution of
linear systems of equations. The performance of the linear solver may be critical to an efficient computation
of the solution. Since linear equation solvers often have a wide variety of options associated with them, TAO
allows the user to access the linear solver with the

TaoGetKSP(Tao, KSP *);

command. With access to the KSP object, users can customize it for their application to achieve improved
performance. Additional details on the KSP options in PETSc can be found in the User-Guide.
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Monitors

By default the TAO solvers run silently without displaying information about the iterations. The user can
initiate monitoring with the command

TaoSetMonitor(Tao, PetscErrorCode (*mon)(Tao,void*), void*);

The routine mon indicates a user-defined monitoring routine, and void* denotes an optional user-defined
context for private data for the monitor routine.

The routine set by TaoSetMonitor() is called once during each iteration of the optimization solver.
Hence, the user can employ this routine for any application-specific computations that should be done after
the solution update.

Convergence Tests

Convergence of a solver can be defined in many ways. The methods TAO uses by default are mentioned
in Convergence. These methods include absolute and relative convergence tolerances as well as a maximum
number of iterations of function evaluations. If these choices are not sufficient, the user can specify a
customized test

Users can set their own customized convergence tests of the form

PetscErrorCode conv(Tao, void*);

The second argument is a pointer to a structure defined by the user. Within this routine, the solver can be
queried for the solution vector, gradient vector, or other statistic at the current iteration through routines
such as TaoGetSolutionStatus() and TaoGetTolerances().

To use this convergence test within a TAO solver, one uses the command

TaoSetConvergenceTest(Tao, PetscErrorCode (*conv)(Tao,void*), void*);

The second argument of this command is the convergence routine, and the final argument of the convergence
test routine denotes an optional user-defined context for private data. The convergence routine receives the
TAO solver and this private data structure. The termination flag can be set by using the routine

TaoSetConvergedReason(Tao, TaoConvergedReason);

Line Searches
By using the command line option -tao ls type. Available line searches include Moré-Thuente
[MoreT92], Armijo, gpcg, and unit.

The line search routines involve several parameters, which are set to defaults that are reasonable for many
applications. The user can override the defaults by using the following options

o -tao ls max_ funcs <max>
o -tao ls stepmin <min>

o -tao ls stepmax <max>

o -tao ls ftol <ftol>

« -tao ls gtol <gtol>

o -tao ls rtol <rtol>
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One should run a TAO program with the option -help for details. Users may write their own customized
line search codes by modeling them after one of the defaults provided.

Recycling History

Some TAO algorithms can re-use information accumulated in the previous TaoSolve() call to hot-start
the new solution. This can be enabled using the -tao recycle history flag, or in code via the TaoSe-
tRecycleHistory () interface.

For the nonlinear conjugate gradient solver (TAOBNCG), this option re-uses the latest search direction from
the previous TaoSolve() call to compute the initial search direction of a new TaoSolve(). By default,
the feature is disabled and the algorithm sets the initial direction as the negative gradient.

For the quasi-Newton family of methods (TAOBQNLS, TAOBQNKLS, TAOBQNKTR, TAOBQNKTL), this option
re-uses the accumulated quasi-Newton Hessian approximation from the previous TaoSolve() call. By
default, the feature is disabled and the algorithm will reset the quasi-Newton approximation to the identity
matrix at the beginning of every new TaoSolve().

The option flag has no effect on other TAO solvers.

2.7.5 Adding a Solver

One of the strengths of both TAO and PETSc is the ability to allow users to extend the built-in solvers with
new user-defined algorithms. It is certainly possible to develop new optimization algorithms outside of TAO
framework, but Using TAO to implement a solver has many advantages,

1. TAO includes other optimization solvers with an identical interface, so application problems may
conveniently switch solvers to compare their effectiveness.

2. TAO provides support for function evaluations and derivative information. It allows for the direct
evaluation of this information by the application developer, contains limited support for finite difference
approximations, and allows the uses of matrix-free methods. The solvers can obtain this function and
derivative information through a simple interface while the details of its computation are handled
within the toolkit.

3. TAO provides line searches, convergence tests, monitoring routines, and other tools that are helpful in
an optimization algorithm. The availability of these tools means that the developers of the optimization
solver do not have to write these utilities.

4. PETSc offers vectors, matrices, index sets, and linear solvers that can be used by the solver. These ob-
jects are standard mathematical constructions that have many different implementations. The objects
may be distributed over multiple processors, restricted to a single processor, have a dense representa-
tion, use a sparse data structure, or vary in many other ways. TAO solvers do not need to know how
these objects are represented or how the operations defined on them have been implemented. Instead,
the solvers apply these operations through an abstract interface that leaves the details to PETSc and
external libraries. This abstraction allows solvers to work seamlessly with a variety of data structures
while allowing application developers to select data structures tailored for their purposes.

5. PETSc provides the user a convenient method for setting options at runtime, performance profiling,
and debugging.
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Header File

TAO solver implementation files must include the TAO implementation file taoimpl. h:

#include "petsc/private/taoimpl.h"

This file contains data elements that are generally kept hidden from application programmers, but may be
necessary for solver implementations to access.

TAO Interface with Solvers

TAO solvers must be written in C or C++ and include several routines with a particular calling sequence.
Two of these routines are mandatory: one that initializes the TAO structure with the appropriate information
and one that applies the algorithm to a problem instance. Additional routines may be written to set options
within the solver, view the solver, setup appropriate data structures, and destroy these data structures. In
order to implement the conjugate gradient algorithm, for example, the following structure is useful.

typedef struct{

PetscReal beta;
PetscReal eta;
PetscInt ngradtseps;
PetscInt nresetsteps;
Vec X old;

Vec G old;

} TAO CG;

This structure contains two parameters, two counters, and two work vectors. Vectors for the solution and
gradient are not needed here because the TAO structure has pointers to them.

Solver Routine

All TAO solvers have a routine that accepts a TAO structure and computes a solution. TAO will call this
routine when the application program uses the routine TaoSolve () and will pass to the solver information
about the objective function and constraints, pointers to the variable vector and gradient vector, and support
for line searches, linear solvers, and convergence monitoring. As an example, consider the following code
that solves an unconstrained minimization problem using the conjugate gradient method.

PetscErrorCode TaoSolve CG(Tao tao)
{
TAO CG *cg = (TAO_CG *) tao->data;
Vec x = tao->solution;
Vec g = tao->gradient;
Vec s = tao->stepdirection;
PetscInt iter=0;
PetscReal gnormPrev,gdx,f,gnorm,steplength=0;
TaoLineSearchConvergedReason 1sflag=TAO LINESEARCH CONTINUE ITERATING;
TaoConvergedReason reason=TAO_CONTINUE ITERATING;

PetscFunctionBegin;

PetscCall(TaoComputeObjectiveAndGradient(tao,x,&f,q));
PetscCall(VecNorm(g,NORM 2,&gnorm));

(continues on next page)
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(continued from previous page)

PetscCall(VecSet(s,0));

cg->beta=0;
gnormPrev = gnorm;

/* Enter loop */
while (1){

/* Test for convergence */
PetscCall(TaoMonitor(tao,iter,f,gnorm,0.0,step,&reason));
if (reason!=TAO CONTINUE ITERATING) break;

cg->beta=(gnorm*gnorm)/(gnormPrev*gnormPrev) ;
PetscCall(VecScale(s,cg->beta));
PetscCall(VecAXPY(s,-1.0,9));

PetscCall(VecDot(s,g,&gdx));

if (gdx>=0){ /* If not a descent direction, use gradient */
PetscCall(VecCopy(g,s));
PetscCall(VecScale(s,-1.0));
gdx=-gnorm*gnorm;

}

/* Line Search */

gnormPrev = gnorm; step=1.0;
PetscCall(TaoLineSearchSetInitialStepLength(tao->linesearch,1.0));
PetscCall(TaoLineSearchApply(tao->linesearch,x,&f,qg,s,&steplength,&lsflag));
PetscCall(TaoAddLineSearchCounts(tao));

PetscCall(VecNorm(g,NORM 2,&gnorm));

iter++;

}

PetscFunctionReturn(PETSC_SUCCESS);
}

The first line of this routine casts the second argument to a pointer to a TAO CG data structure. This
structure contains pointers to three vectors and a scalar that will be needed in the algorithm.

After declaring an initializing several variables, the solver lets TAO evaluate the function and gradient at the
current point in the using the routine TaoComputeObjectiveAndGradient (). Other routines may be
used to evaluate the Hessian matrix or evaluate constraints. TAO may obtain this information using direct
evaluation or other means, but these details do not affect our implementation of the algorithm.

The norm of the gradient is a standard measure used by unconstrained minimization solvers to define
convergence. This quantity is always nonnegative and equals zero at the solution. The solver will pass this
quantity, the current function value, the current iteration number, and a measure of infeasibility to TAO
with the routine

PetscErrorCode TaoMonitor(Tao tao, PetscInt iter, PetscReal f,
PetscReal res, PetscReal cnorm, PetscReal steplength,
TaoConvergedReason *reason);

Most optimization algorithms are iterative, and solvers should include this command somewhere in each
iteration. This routine records this information, and applies any monitoring routines and convergence tests
set by default or the user. In this routine, the second argument is the current iteration number, and the
third argument is the current function value. The fourth argument is a nonnegative error measure associated
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with the distance between the current solution and the optimal solution. Examples of this measure are the
norm of the gradient or the square root of a duality gap. The fifth argument is a nonnegative error that
usually represents a measure of the infeasibility such as the norm of the constraints or violation of bounds.
This number should be zero for unconstrained solvers. The sixth argument is a nonnegative steplength, or
the multiple of the step dire