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EXECUTIVE SUMMARY 
Artificial intelligence (AI) provides a transformational opportunity to 
rapidly deploy new clean energy, secure critical grid energy assets 
from threat actors, and reduce capital and operational costs of 
next-generation energy technologies and the connected systems 
that embody the demand side of the transformation. The United 
States will need to invest trillions of dollars in energy infrastructure 
to reach the nation’s clean, resilient goals by 2050. At the 
Department of Energy (DOE) national laboratories, AI has 
incredible potential across nuclear, renewable, and carbon 
management domains due to the ability to represent 
unprecedented system model sizes, provide intense computational 
resources, and capture knowledge from a workforce of the nation’s 
top scientists. In aggregate, AI could reduce the cost to design, 
license, deploy, operate, and maintain energy infrastructure by 
hundreds of billions of dollars if the following applied energy 
challenges are realized. 

AI provides a breakthrough opportunity to accelerate the design, 
deployment, and licensing of new energy capacity. Commercial powerplant design and licensing are a multi-year effort that 
can account for up to 50% of time to market for new energy deployments. DOE estimates the onboarding of 1.6 TW of new 
solar capacity and 200 GW of new nuclear capacity, while enabling hydrogen, geothermal, critical minerals, and other clean 
energy resources by 2050, with a cost that could approach trillions of dollars in national investment to meet growing global 
clean energy demand. Additionally, DOE estimates the need to reduce costs to less than $100/net metric ton of CO2 
equivalent for both carbon capture and storage to address carbon pollution. AI has the potential to reduce schedules by 
approximately 20% across new clean energy designs, with potential savings in the hundreds of billions of dollars by 2050. 
Additionally, AI can augment and extend the energy development workforce that will be in high demand. 

The energy grid’s generation capabilities and demand-side needs are experiencing rapid changes in requirements for secure, 
reliable, and resilient planning and operations controls. The increasing volumes of communications, controls, data, and 
information are growing the digital landscape, increasing flexibility and improving the reliability and agility of the grid by 
increasing visibility to operators and consumers. Integrating energy systems together across grid operations could save 
billions of dollars annually by automatically optimizing generation and demand-side needs. 

Autonomous operation technologies can provide monitoring, control, and maintenance automation across various clean 
energy technologies. Distributed, consumer-sited technologies are changing the power load with electric vehicles (EVs), 
distributed storage, smart buildings, and appliances adding new intelligence to loads while also requiring the integration of 
consumer-sited controllability. Furthermore, new advanced nuclear technologies, such as microreactors, will likely need to 
operate autonomously to realize economies of scale. Delivering AI capabilities across the operations and maintenance 
lifecycle can transform safety, efficiency, and innovation within national energy production and distribution infrastructure. 

The siting of new energy capacity is a complex challenge balancing energy generation options, community needs, 
environmental factors, and resiliency considerations. AI could aid community energy planning based on a comprehensive 
dataset and a trained community energy foundation model that captures characteristics of and interactions between physical 
infrastructure, human behavior, and climate/weather impacts. AI tools can achieve national clean energy goals by 
democratizing community-level clean energy resources and facilitating the identification of energy transition pathways that 
reflect local objectives, demographics, and legacy infrastructure. 

Natural disasters and human-caused events are occurring more frequently and with more intensity, delivering significant 
impacts to the nation. Adverse weather events are increasingly disrupting supply chains, damaging property and assets, 
and making certain areas less habitable. The U.S. experienced a record 28 unique weather/climate disasters that cost at least 
$1 billion in 2023. Climate change, urbanization, population growth, aging infrastructure, and deferred maintenance increase 
risks to communities and human survival. An AI-based, all-hazards global response system that has ingested global and 

EXEMPLAR GRAND CHALLENGES FROM THE 
CHAPTERS OF THE AI FOR ENERGY REPORT 
01 Nuclear Energy: Accelerating the Licensing and 

Regulatory Process 

02 Power Grid: Building Cyber- and All-Hazards 
Resilient and Secure Energy Systems 

03 Carbon Management: Realizing A Virtual 
Subsurface Earth Model 

04 Energy Storage: Equitable and Accessible 
Deployment 

05 Energy Materials: Advancing Beyond Material 
Properties and Performance to Achieve Lifecycle-
Aware Materials Design 
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stakeholder datasets, facilitating international preparation, response, and recovery, can enhance preparedness and resilience 
solutions and inform faster recovery. 

Science-based models enhanced with AI multi-modeling approaches can improve predictions of subsurface properties and 
systems to improve resource discovery for domestic critical materials, geothermal reservoirs, uranium, and water 
opportunities. This capability could create a national subsurface AI and data testbed to enable responsible commercial, 
regulatory, and science-based discovery and development. AI can improve the forecasting and prediction of subsurface 
properties and systems, informing and transforming our ability to reduce risks and responsibly interact with the subsurface. 

Energy material innovation is key to realizing national clean energy goals. Increasing automation in materials laboratories, 
such as autonomous laboratories, can transform the design and discovery of new materials. AI can also accelerate materials 
qualification through automation of materials testing, leading to new energy technologies such as advanced nuclear reactors 
and new battery certifications. 

In addition to these cross-cutting opportunities, there are unique use cases in nuclear, renewable, and carbon management 
energy systems. For example, while emissions, prediction, measurement, and mitigation are uniquely important to carbon 
management, the underlying computational infrastructure could be shared across grand challenges. Unattended operation of 
nuclear reactors has unique life-safety considerations; however, many plant-level digital twins of piping, valve, heat exchanger, 
and cooling towers could be shared across applied energy domains. A DOE consortium model from all energy domains, 
integrated with expertise from subject-matter experts from the laboratories, could help ensure and drive efficiency across 
research challenges. 

To accomplish these grand challenges, key developments are needed. The laboratories must establish a leadership 
computing ecosystem to train and host data and foundation models at ever-increasing scales. Fine-tuned models need to be 
developed for each domain that are coupled, where possible, with ground-truth, first-principles physics. Although the 
laboratories have hundreds of petabytes’ worth of data, only small amounts of these data are cataloged, warehoused, and 
ready for AI model ingestion. Curation of one-of-a-kind, ground-truth data coupled with energy industry data will be essential to 
building models at these scales. Most important, partnerships across laboratories, government, industry, and academia are 
essential to realizing the transformational benefits of AI for energy.  

This AI for Energy report further details grand challenges that provide significant opportunities for energy applications across 
nuclear energy, the power grid, carbon management, energy storage, and energy materials over the next decade. The main 
conclusions and opportunities from this study are available in the Key Findings section of this report. 
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INTRODUCTION 
An important aspect of the U.S. Department of Energy’s 
(DOE) mission is to ensure the nation’s energy independence 
and security both in the short and long term. Key to meeting 
this challenge are continued advancements in artificial 
intelligence (AI), especially in the context of energy. As an 
initial step toward addressing these challenges, a group of 
about 100 experts on AI/machine learning (ML) and applied 
energy convened at Argonne National Laboratory in 
December 2023 over the course of two days to map out 
future needs related to utilizing AI. The goal of the meeting 
was to detail pressing technical challenges and propose AI-
assisted solutions. Five domain areas were identified 
(detailed below), along with potential paths forward. 

DOE is ideally positioned to address challenges associated 
with energy independence and security due to its unique set 
of assets. These assets include a highly skilled workforce 
with relevant domain expertise (nuclear engineering, 
chemistry, materials science, networked systems, etc.), and 
an array of world-leading experimental facilities for making 
advances in materials, chemistry, etc. These include 
synchrotron light sources, nanocenters, high-performance 
computing resources, and autonomous laboratories. By 
integrating these resources with other AI capabilities outlined 
in the previous AI for Science, Energy, and Security (AI4SES) 
report, the DOE can leverage AI to stay at the forefront of the 
rapidly evolving landscape. The applied energy focus 
described in this report centers on five areas vital to the 
energy future of the U.S., as well as underscores the critical 
role that AI can play in shaping our world—highlighting the 
urgency and importance of being leaders in AI to ensure 
impactful solutions to global energy needs. These areas 
include Nuclear Power, Power Grid, Carbon Management, 
Energy Storage, and Energy Materials. It will be essential to 
integrate these together and with other efforts in AI for 
science and technology. Complexity, the large-scale effort 
involved, real-time decision making required, robustness of 
systems, and safety implications all pose extra challenges. 
The grand challenges described in this report span multiple 
disciplines and have not been solved by conventional 
methods. The power of AI for solving such problems lies in its 
capacity to simultaneously handle multiple system 
characteristics while incorporating both data and specific 
domain (e.g., physics, chemistry, etc.) models and to do so 
on a scale and at a complexity otherwise not possible. 

Nuclear energy plays a pivotal role in the clean energy 
landscape of the U.S., representing about half of its clean 
electricity generation. To achieve its full potential, the nuclear 
industry must adopt and, where required, advance the latest 
AI tools and technologies. AI’s transformative potential is 
particularly relevant in methodologies which could drastically 

improve the economics of nuclear system design and 
operation. These challenges span multiple scientific and 
engineering disciplines and require AI’s unique ability to 
process vast amounts of data and integrate physics models 
on a scale previously unattainable. This integration must be 
carried out in a seamless manner. AI can facilitate this 
coordination, potentially reducing costs significantly 
compared to traditional nuclear energy development and 
deployment approaches. Recent Generation III reactor 
commissionings have experienced notable delays and cost 
overruns, often due to premature construction starts. AI, 
developed under science and technology initiatives, can 
mitigate such issues by enhancing design completion and 
process efficiency. The intricate interdependencies within the 
nuclear energy sector pose challenges well-suited for AI 
solutions. While teams of experts might struggle with the 
breadth and depth of necessary knowledge — hampered by 
limitations such as succession planning and individual bias — 
AI offers unparalleled knowledge capture and the capability to 
discern cross-disciplinary connections. This advantage is 
critical in three specific challenge areas where AI/ML can 
surpass the performance of human teams: (1) streamlining 
the licensing and regulatory process; (2) accelerating 
deployment; and (3) facilitating unattended operation. 
Embracing and extending AI capabilities could significantly 
enhance the nuclear industry’s efficiency and innovation, all 
while continuing to improve safety. 

The global energy system, which powers the world’s 
economy, is currently experiencing a transformation 
unparalleled since the introduction of electricity over a 
century ago. This evolution encompasses the shift toward a 
grid, characterized by enhanced computer control, 
communication, information exchange, and data analytics. 
Concurrently, there is a surge in smart, distributed 
technologies, exemplified by the widespread adoption of 
electric vehicles, photovoltaics, local energy storage 
solutions, and intelligent buildings and appliances. This 
transition is further complicated by increasing electrification 
and a significant shift in the primary energy mix toward more 
variable renewable energy sources, such as wind and solar 
power. The future management of the power grid introduces 
a level of uncertainty, particularly as parts of the grid come 
under diverse ownership and jurisdictional control, 
complicating future planning and operations. Recent 
developments in AI offer promising solutions to manage the 
future grid’s intricacies. AI's potential to revolutionize energy 
system operations is vast, including by enabling proactive, 
real-time management; enhancing resilience and security 
against cyber and all other hazards; and facilitating the 
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design and planning of a 100% clean electricity system by 
2035. 

In terms of carbon management, DOE’s Office of Fossil 
Energy and Carbon Management (FECM) is dedicated to 
pioneering technologies aimed at reducing carbon emissions 
and lessening the environmental footprint of fossil fuel 
generation and usage. In pursuit of these goals, several 
grand challenges have been identified, including developing 
"disCO2ver," a dynamic digital system designed for multi-
scale simulation and forecasting to support interoffice and 
extramural collaborations. This test bed is crucial for 
speeding up the U.S. shift toward a carbon-neutral economy 
by improving greenhouse gas (GHG) mitigation and 
enhancing the resilience of energy infrastructure. Another 
significant initiative is the push to create a virtual subsurface 
digital twin, using AI to find, aggregate, and improve access 
to multi-modal data This endeavor will enable more 
environmentally friendly, clean energy resource extraction 
and secure waste and emissions storage. Additionally, efforts 
are focused on hastening the development and selection of 
optimal materials for large-scale carbon capture and removal. 
Where the transition to renewables will be more challenging 
(e.g., heavy industry), tools are needed for GHG emissions 
prediction, measurement, and mitigation. A future need 
highlighted is the ambition to render the earth "transparent" 
through AI and multi-modal data. The proposed solution 
encompasses utilizing a broad array of geophysical 
techniques to gather diverse data sets, employing AI to 
enhance sensor design and data collection, and leveraging AI 
for subsurface characterization. 

Energy storage, independent of its source, whether 
renewable, nuclear, or carbon management, will continue to 
play a crucial role in future energy systems. The demand for 
improved (including much larger capacity) energy storage 
systems will necessitate diverse technologies to meet the 
varied requirements across different societal segments. The 
complexity and breadth of these requirements present a 
significant challenge in developing new solutions and doing 
so on the required accelerated time scale. As a result of the 
scale of the problem and the complex coordination required 
to develop and deploy these systems, traditional processes 
are too slow to respond to ambitious timelines. The 
challenges discussed in this document include accelerating 
the development of energy storage technologies; ensuring 
efficient deployment, operation, and control of energy storage 
systems; and guaranteeing that deployment is equitable and 
accessible to all. 

Advances in materials science for energy applications are 
needed for generating, storing, and utilizing energy efficiently, 
encompassing storage materials, photovoltaics, 
thermoelectrics, catalysts, and advanced alloys. These 
materials are crucial for driving forward U.S. objectives in 
clean energy, economic growth, and energy justice, aiming to 
reduce reliance on nonrenewable resources and lessen 
environmental impacts. To meet the U.S. targets in 
sustainability and clean energy by 2050, there is an urgent 
need to hasten the discovery, design, production, and 
certification of energy materials with tailored properties and 
performance. This process involves navigating vast 
parameter spaces, far beyond manual exploration 
capabilities, and developing cost-effective, sustainable 
production methods while addressing durability and lifecycle 
management challenges. AI is significantly impacting energy 
materials research by accelerating material discovery and 
design, enhancing laboratory automation for quicker 
synthesis and testing, and facilitating the transition to 
industrial-scale application. AI's role is transformative, 
promising to lead to the discovery of new materials, predict 
their properties, and achieve breakthroughs to overcome 
energy sector challenges. Success in this domain could 
cement U.S. leadership in developing high-performance, 
safe, and environmentally friendly energy materials, 
supporting a shift toward a circular economy. The focus areas 
in this report include improving energy generation, storage, 
and conversion efficiency; enhancing environmental 
sustainability and scalability; and reducing energy production 
and use impacts. Addressing these needs requires new 
scientific and technological breakthroughs to accelerate 
material discovery, enhance predictive design, and bridge the 
gap from laboratory research to industrial application, moving 
beyond traditional trial-and-error methods for rapid material 
deployment. 

In this report, the several recurring themes that have 
emerged include: 

 The need for rapid and accurate in silico design and testing 
from materials, chemistry, and storage systems. 

 The need for improved methods of quantifying 
uncertainties in predictions and system performance. 

 The need for the use of AI to integrate multimodal data for 
both scientific and technological advances as well as for 
industry policy design, energy, and environmental justice. 
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KEY FINDINGS FOR ESTABLISHING THE CROSS-CUTTING 
ASPECTS OF AI SUPREMACY NEEDED TO ENSURE SUCCESS 
IN ENERGY MISSION AREAS 
The energy mission areas — fossil, carbon management, 
nuclear, renewable, and energy efficient usage and delivery 
— have crosscutting needs for artificial intelligence (AI) 
technology. The nature of these needs is anchored in the 
high-consequence environment, the urgency, and the 
complexity of the systems involved. Establishing mission-
ready technology in these areas builds a more robust and 
trustworthy capability that matures the baseline capability 
necessary to support exploratory research. 

The five areas discussed during the AI for Energy workshop 
and consequent report cover large portions of the energy 
space and surface a robust set of capabilities that will also 
support the broader agenda. The primary conclusions 
include: 

1. The potential for AI to have transformative impact on the 
energy mission critical to U.S. economic security is high. 

2. It is critical for the energy communities to include research 
into AI technology development in order to cultivate the 
appropriate talent that can respond to crises that may 
emerge in the field and require interdisciplinary expertise 
to address. 

3. The energy community needs are largely aligned with the 
six areas identified in the AI@DOE roundtable, as follows: 
energy efficient AI; intrinsically explainable AI; scientific 
generative AI; safe, secure, and trustworthy AI; AI for 
prevention, preparedness, and responding to national 
emergencies; and AI for automation. 

4. Ensuring safe, secure, and trustworthy solutions has 
elevated importance in the energy mission areas, and 
rigorously assessing, documenting, and certifying AI 
technologies regarding these concerns are important 
differentiators from scientific discovery applications. 

5. Investments in these general areas need to be pursued in 
an environment of use anchored in energy application 
areas to address the unique features of the energy area, 
and doing so will inherently increase the robustness of 
solutions applied in the science and security arenas. Such 
an environment can be created through a coordinated 
structure that combines the underlying crosscutting 
research with end-use applications. 

In contrast to a traditional research environment, it will not be 
sufficient to employ a method that appears to work well — 
obtaining a good performance score on a battery of tests is 
not the endgame. The stakes are high enough in the energy 
space that we need methods that do not just work well but 

can be: (1) demonstrated to be provably correct, with known 
conditions of when they will break; (2) understood well 
enough to inspire confidence in the performance; and 
(3) supported by a workforce that can diagnose and correct 
problems. Solving this set of challenges ultimately supports 
security and discovery tasks, as well.  

Success across the five energy spaces covered in this report 
will involve success in the areas of high-consequence, 
urgency, and complexity. 

High-Consequence 
HIGH-CONSEQUENCE DECISIONS AND CRITICAL 
OPERATIONS 
 Planning, permitting, and design efforts span the energy 

areas and have implications for a decadal or longer 
timescale. The basis for decision support spans large 
amounts of legacy data (e.g., codes, standards, the 

CROSSCUTTING ASPECTS NEEDED IN 
ENERGY MISSION AREAS 
The following must be pursued across the five energy 
areas of nuclear energy, power grid, carbon 
management, energy storage, and energy materials  

High-Consequence 
 High-Consequence Decisions and Critical Operations 

 Accreditation of AI Methods 

 Trustworthiness and Verification and Validation 
(V&V) 

 Development and Maintenance of Talent to Respond 
to AI Implications 

Urgency 
 Move at Speed of Field; Micro-Revolutions vs. 

Incrementalism 

 Mission Imperative 

Complexity 
 Inverse Problems  

 Robustness to Changing Environments 

 Multimodal and Scalable  
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existing built environment) that need to be aggregated with 
future resource and state estimates and policy drivers. 
These legacy data need decision coaches, that is, large 
language model (LLM)-like constructs that can handle 
natural language and scientific data. They would treat 
uncertainty and trade-offs as first-class constructs. They 
also don’t hallucinate. 

 Autonomous operations — of the grid, reactors, power 
plants, etc. — have no tolerance for failure. We need to 
reimagine control strategies based on methods that can 
provide guarantees. Core mathematics needs to catch up 
to heuristics for formalized design so that we encourage a 
different objective function, as in: “99% accurate 80% of 
the time, 50% accurate balance” is less desirable than 
“80% accurate 99% of the time.”  

 Low power solutions — for edge deployment (near 
instruments, field installations with limited connectivity, 
power-constrained applications). 

 Scalable and distributed — grid operation and 
management of grid connected assets, as well as large 
fleets of deployed energy assets, have varying levels of 
connectivity and an intrinsic local versus global tension. 

ACCREDITATION OF AI METHODS 
 For practitioners to understand and document the 

performance of AI methods so that policymakers with a 
broader perspective can understand the implications of 
adoption of a particular method will require going beyond 
heuristics.  

 Can we identify a scientific approach to AI methods 
development? 

TRUSTWORTHINESS AND VERIFICATION AND 
VALIDATION (V&V) 
 Robust methods for discovering vulnerabilities in a 

controlled and reproducible environment — such as 
deployment in DOE testbeds, white-hat adversarial AI, and 
standardized tests that benchmark performance — can 
leverage DOE’s existing testbeds and facilities. 

 Mathematics — formal methods, convergence guarantees 
—can be used to guide acquisition of expensive data. 
Imaging, sampling, and edge processing infrastructure are 
all very expensive in the energy world. Another question is: 
How much data is enough? This facet builds on DOE’s 
commitment and track record of applying science expertise 
and understanding to chemical, biological, radiological, and 
nuclear (CBRN) threats, with technology specifically 
customized for the applied energy mission.  

 Frameworks are needed for assessing data quality — in 
contrast to designed experiments, much of the data in the 
energy space is real-world observational. AI tools for 

assessing AI data, called cleaning, is a critical part of the 
chain in this area. 

DEVELOPMENT AND MAINTENANCE OF TALENT 
TO RESPOND TO AI IMPLICATIONS 
 We will need to maintain a talent pool involved in core 

research — the development of AI methods — with 
sufficient expertise to understand and correct 
vulnerabilities and shortcomings. 

Urgency 
MOVE AT SPEED OF FIELD; MICRO-REVOLUTIONS 
VS. INCREMENTALISM 

AI research and development (R&D) tends to occur in 
microrevolutions; these are difficult for a workforce to track. 
In AI and ML, the methods tend to change rapidly. Many of 
the most popular approaches today didn’t exist even a few 
short years ago. It would not be surprising if today’s 
methods are overtaken by quite different ones in the very 
near future. The workshop explored how to conduct R&D 
and deploy the latest methods to energy applications in this 
rapidly changing environment – how to constantly retool 
the workforce. As the energy space needs solutions *now*: 
being a “slow fast follower” of the tech industry doesn’t 
work. One challenge is how do we build the skillset that 
transcends the AI methods of the day and cultivate the 
expertise such that AI research advances innovation? 

MISSION IMPERATIVE 
 American jobs, economic security, and building the 

infrastructure to support high-quality way of life depend on 
safe secure and resilient energy supplies. Investment 
decisions are being made now that will persist for a 
generation. However, this pursuit of AI supremacy is not a 
long-term research project for energy — we need solutions 
now. 

 Deployable AI technologies that leverage DOE’s strong 
history of industry partnership are critical. The impact 
potential of AI for energy involves control of processes and 
infrastructure operated by private entities that may not 
have sufficient AI expertise to develop and correct 
problems with AI algorithms in the field. It is therefore 
necessary to accelerate the development-deployment-
improvement cycle through AI algorithms that can be 
packaged for broad deployment outside of government. 
Such AI algorithms will minimize risk and self-identify 
improvement opportunities or possess self-healing 
capabilities, enabling close collaboration between DOE 
researchers and end users.  

 Targeted discovery programs, such as catalyst 
development and alternatives to critical energy materials 
that relieve supply chain constraints for energy storage and 
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power electronics, can benefit from transformative 
productivity improvements with AI-guided material design 
and selection. 

Complexity 
INVERSE PROBLEMS 
 Energy problems (e.g., subsurface sampling; storage 

device performance management; grid state; nuclear 
energy reactors) often allow for limited observations. Thus, 
there is a need to make decisions about the development 
of upstream and downstream infrastructure and 
deployment informed by information that requires solving 
inverse problems. 

ROBUSTNESS TO CHANGING ENVIRONMENTS 
 Truly autonomous operation — of grid resources, energy 

storage, and reactors — will inevitably put AI control 
algorithms in off-design conditions. The key features of 
prospective AI control systems are building in the ability to 
revert to “safe” behavior, calling for human intervention, 
and gathering the necessary data to enable rational 
decision-making. 

 Methods that are robust to emergent behavior and 
incorporate robust uncertainty management to deal with 
situations where prior experience provides little guidance 
are needed. 

MULTIMODAL AND SCALABLE 
 The source data for energy problems is nearly always 

multimodal, such that the following must be brought 
together: time series, geographic information systems 
(GIS), network, natural language, and imaging; two-
dimension (2D), 3D, and higher-dimension field data; and 
combinatorial data.  

 Energy challenges often operate at time (ns – decades) 
and system scales (hundreds of millions of devices and 
sensor data streams) that preclude data aggregation and 
centralized training or inference. AI systems must be able 
to balance semiautonomous training and inference with 
coherence.  
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01. NUCLEAR ENERGY 
To remain competitive in the electricity generation market and 
attract investment, nuclear power must embrace AI 
technology and innovation. As other market sectors adopt 
this technology, Nuclear Energy (NE) risks becoming less 
competitive. AI has the power to transform industries, so it 
follows that plans for the adoption of AI need to be on a 
commensurate scale. The approach in NE is to define grand 
challenge problems, those problems that are intractable using 
existing methods and whose solution will significantly alter 
the economics of the design and operation of nuclear 
systems. A grand challenge problem spans multiple 
disciplines and cannot be solved by conventional methods. 
The power of AI for solving such problems lies in its capacity 
to simultaneously countenance multiple system 
characteristics while incorporating both data and physics 
models and to do so on a scale not humanly possible. That is 
the setting considered for the nuclear energy space. 

1.1 Grand Challenges 
The lifecycle of a nuclear reactor is composed of multiple 
phases, each associated with activities that involve different 
skill sets, as shown in Figure 1-1. Each skill set is grounded 
in an engineering or science discipline with a knowledge base 
matured through decades of operational experience and 
documented in various formats (e.g., manuals, data sheets, 
textbooks, etc.). Although most of those activities are 
performed independently, the skillsets required are 
multidisciplinary. By seamlessly managing and coordinating 
these couplings, a substantial reduction in costs compared to 
existing expenditures for developing and deploying nuclear 
energy can be achieved [1]. In the recent commissioning of 
Generation III reactors, significant delays and cost overruns 
were encountered [2]. Some of the delays resulted from 
construction beginning before the design was completed [3], 
which could be mitigated using AI technology developed 
through the FASST initiative. These interdependencies and 
the challenges that they present are eminently addressable 
using AI. While a team of individuals could, in principle, 
maintain an exacting knowledge and awareness of the 
complex interdependencies in Figure 1-1, the task is 
challenging, both in terms of the expanse and depth of the 
information and factors such as succession planning and 
individual bias, all of which combine to test the limits of 
human cognition. AI offers an essentially limitless capability 
to store knowledge and the ability to recognize connections 
across disciplines where subject matter experts are inherently 
limited [4]. Three challenge problems have been identified 
where the power of AI/ML can potentially best what human 
teams might deliver. 

CHALLENGE 1: ACCELERATING THE LICENSING 
AND REGULATORY PROCESS 
The deployment of advanced nuclear reactors in the 
United States, crucial for achieving our clean energy goals, 
faces a major hurdle: a slow, expensive, and convoluted 
regulatory process. From design and construction to 
operations and eventual decommissioning, every phase of a 
nuclear reactor project undergoes rigorous scrutiny from the 
regulator, who is charged with providing reasonable 
assurance of adequate protection of public health and safety 
[5]. Moreover, the currently mandated process to obtain a 
construction permit and operating license for a new reactor in 
the United States can drag on for 5+ years, sometimes even 
decades if including preapplication engagement by the 
licensee, while incurring costs that can escalate to hundreds 
of millions of dollars.  

For example, the most recent approval of a NuScale US600 
Small Modular Reactor, with a rated thermal output of 
160 MWt and electrical output of 50 MWe, was received after 
8 years of preapplication engagement and a subsequent 
6 years of a formal review of the application [6]. The company 
had to invest more than $500 million and 2 million labor-hours 
to prepare its licensing application, which encompassed a 
staggering 12,000 pages, 14 separate topical reports, and 
more than 2 million pages of supporting documentation for 
U.S. Nuclear Regulatory Commission (NRC) audits [7].  

Furthermore, the current regulatory process, designed and 
evolved for the traditional light-water reactors, may not 
adequately account for the unique features, design 
innovations, and safety considerations pursued for advanced 
reactors [8]. Additionally, regulators have a need to acquire 
new subject matter experts (SMEs) and expertise on 
technical issues beyond their current scope of understanding 
the traditional light-water reactor fleet. New advanced reactor 
designs would introduce technical aspects that are largely 
unfamiliar to the reviewing staff, potentially increasing the 
number and frequency of requests for additional information 
and therefore, significantly delaying regulatory decision-
making. 

The current excessively prolonged and expensive licensing 
approval process will act as a significant barrier to entry for 
new companies developing the next generation of designs 
and innovative technologies [9], ultimately hindering the 
development and deployment of advanced nuclear reactors 
in the United States and adversely impacting the society’s 
clean energy ambitions and set goals. 

Emerging AI technology, particularly the multi-modal LLMs, 
offers a powerful solution to these challenges. Trained on 
vast datasets of scientific literature, technical documents, and  
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operational data, LLMs can acquire remarkable capabilities 
that can substantially streamline and expedite the nuclear 
regulatory licensing and compliance process and make it 
much more cost effective for both the licensee and the 
regulator. By implementing LLMs as “virtual SMEs," the 
regulator can free up staff time for more critical tasks, 
improve communication, and prioritize safety by identifying 
risks earlier. 

Dedicated public foundation LLMs can be developed, which 
are meticulously trained on curated datasets of publicly 
available information for advanced reactors that are being 
pursued in the United States. Such datasets would 
encompass resources from the U.S. Department of Energy 
(DOE), the NRC, broader scientific literature, and even data 
available from decommissioned reactors for operational 
insights. Such a foundation model would serve as a shared 
resource accessible to both regulators and applicants. Its 
capabilities could be further augmented through fine-tuning it 
with controlled, proprietary, or application-specific 
information. This allows the foundation model to cater to 
specific licensing cases or address unique safety issues, 
leading to enhanced confidence and more quantitatively 
accurate findings [10]. 

Once the AI foundational model is qualified and accepted for 
use, such a foundation model could have significant positive 
impacts in: 

 Automating repetitive tasks: Handling the time-consuming 
burden of document review, information retrieval, and 
processing the reasoning of safety arguments; and 
significantly reducing the time and manpower required for 
reviewing applications. 

 Bridging the communication gap: Translating complex 
technical safety arguments into relevant insights and 
fostering better communication between the regulators and 
applicants, which leads to faster resolution of ambiguities 
and streamlined interactions. 

 Proactively identifying risks: Analyzing vast amounts of 
data from existing reactors and recorded historical events, 
pinpointing potential safety risks specific to novel designs 

or unique features, and enabling proactive mitigation 
strategies. 

 Applying risk-Informed regulations: Analyzing existing 
regulations and identifying inconsistencies or gaps, 
facilitating the application of flexible and adaptable risk-
informed performance-based regulatory frameworks 
specifically tailored to advanced reactor technologies. 

The nuclear regulatory licensing and compliance process can 
be dramatically transformed by leveraging the power of 
LLMs, particularly a public foundation model. This 
transformation will significantly reduce time and cost, paving 
the way for the accelerated deployment of advanced nuclear 
reactors and a sustained clean energy future.  

CHALLENGE 2: ACCELERATING DEPLOYMENT 
Nuclear energy currently accounts for approximately half of 
all clean energy electricity generation in the United States 
[11]. Many of the current fleet of nuclear reactors were built 
decades ago. In fact, the average age of a nuclear power 
plant is 42 years old [12], whereas they were designed to 
operate for up to 40 years. Service beyond this lifetime leads 
to accumulated component damage and the need for more 
frequent maintenance. The DOE Loan Programs Office 
(LPO) estimates that the "United States will likely need 
200 gigawatts of new nuclear generation by 2050 to meet 
national decarbonization targets" [13]. Even if all 200 GW of 
generation are fulfilled solely by large reactors, reaching this 
level of output would require the design and deployment of 
hundreds of new reactors over the next ~25 years. More 
likely, a combination of large, small, and microreactors will be 
used to meet this generation need. 

The study, "Incorporating Digital Twins In Early Research and 
Development of Megaprojects To Reduce Cost and Schedule 
Risk," analyzed the benefit of digital engineering and digital 
twinning technologies as applied to nuclear power plant 
design and construction. It found a ~21% reduction in the 
probability of schedule delays [14]. Moreover, this study was 
authored prior to the release of new generative AI tools such 
as ChatGPT [15], which can serve as an adjunct to the 

 
Figure 1-1: Cradle-to-grave lifecycle for a nuclear facility. Green denotes those phases and associated activities selected 
for transformational change through AI/ML. 
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design process. LLMs such as ChatGPT have already made 
inroads aiding in human–other endeavors [16] [17]. 

The design and deployment of new nuclear reactors are 
considered megaprojects as their budgets typically surpass 
$1 billion. Additionally, the time to design and deploy new 
nuclear reactors is expected to exceed 10 years. Of this 
schedule, approximately half of that time is spent in studies, 
licensing, and design activities [18]. Generative AI and digital 
engineering technologies (digital tools and software used to 
design, build, and analyze engineering systems) could 
dramatically reduce the time and cost prior to construction 
and reduce the probability of errors during the construction 
phase. 

A new generative AI tool that can design a nuclear power 
plant could perform many key functions. AI models could 
autonomously generate the outlines, descriptions, and key 
artifacts needed early in the nuclear power plant development 
lifecycle to support environmental, stakeholder, and 
engineering document development. Furthermore, computer-
aided design (CAD) drawings can be automatically developed 
from stakeholder input. Importantly, this AI-generated output 
can be validated with existing national laboratory–based, 
high-fidelity, multi-physics tools. These tools, representations 
of the laws of nature, can provide a cross-check on the 
physical reasonableness of an AI-generated design. 

AI can potentially reduce future power needs by optimizing 
the planning and deployment of power generation. Site 
selection requirements may also be optimized using AI, such 
as regarding space requirements, local and regional 
ordinances, and available geographic landscapes, such as 
the amount of water needed to operate efficiently. 

Using AI in the design and deployment process, it is possible 
that hundreds of billions of dollars could be saved during the 
design, development, and deployment of 200 GW of new 
nuclear capacity. It is estimated that a “well-executed first-of-
a-kind nuclear construction project is ~$6,200 per kW” [19]. 
Given the 200 GW needed, this could represent a total cost 
of almost $1 trillion. Digital twins and AI can reduce delays by 
~21%, potentially saving hundreds of billions of U.S. energy 
development dollars by 2050.  

CHALLENGE 3: FACILITATING AUTONOMOUS 
OPERATION AND MAINTENANCE 
The staffing requirement for the operation of a nuclear power 
plant in the U.S. presents a challenge compared to other 
electricity-generating sectors [20]. A modern 1100 MWe 
natural gas plant has 35 employees, a relatively low staffing 
requirement attributed to the use of data analytics and 
automation [21], which compares with 800 at a comparably 
sized nuclear site [22]. Given recent developments in AI, the 
opportunity exists to rework the human resource allocation 
problem that puts nuclear energy at a disadvantage. AI can 

substitute for human presence for a wide range of tasks in a 
nuclear plant. 

The objective is to move toward the semi-autonomous 
operation and maintenance of a nuclear facility. That is, using 
AI will minimize the need for direct human involvement by 
simultaneously carrying out complex cognitive tasks involving 
many engineering disciplines [23]. The unattended mode of 
operation introduces the possibility for a new level of 
operational efficiency with the possibility of coordinating and 
managing monitoring [24], control [25] [26], and maintenance 
[27] activities across multiple plants at a single remote center. 
One envisions semi-autonomous operation where a plant 
meets its operating objectives through monitoring [28] and 
control [29] tasks performed by AI to deliver the electric 
power demanded. AI can assist in explaining a fault diagnosis 
to mitigate complex system failures by leveraging physics-
based knowledge [30] [26]. 

This new paradigm can be regarded as the analog of the 
edge computing problem, defined as having physical 
computers at the edge, where the AI performs these lower-
level tasks locally at the plant. Higher-level tasks are 
outsourced to the remote center where the results of the 
lower-level “edge computing” tasks provide input to tasks for 
maintenance scheduling, supply chain management, and 
issuance of electric power demand. 

The concept of a remote center powered by AI admits a 
higher level of autonomy, that of managing and coordinating 
a collection of nuclear and other generating assets. This 
problem exists where the grid interfaces with individual 
generating assets. AI has a role to play in this setting in 
scheduling these assets to ensure that electricity demand at 
the grid level is met in a manner that is optimal for cost and 
reliability. This coordination, which involves the collective 
management of generation, plant outages, and maintenance 
activities, is a problem that presently requires reserve 
capacity to meet scheduled and unscheduled disruptions to 
generation. AI, with its ability to analyze and predict with 
greater speed, precision, and awareness than a human, can 
improve economic margins by reducing the need for reserve 
generation. All the while, AI facilitates human understanding 
of the state of the individual plants and the integrated plant 
system it manages. 

The economics of performing maintenance improves by using 
AI to support several tasks [27]. Physical activities do not go 
away. Rather, algorithmic activities are substituted in place of 
human cognitive activities. AI can monitor equipment 
performance continuously, predict potential malfunctions, and 
conduct maintenance before failures occur, improving plant 
reliability and safety. AI can be used to optimize nuclear 
power systems and plant operations, reducing downtime, 
improving efficiency, and increasing the safety and reliability 
of the plant. AI can also analyze large amounts of sensor 
data and other plant data [31] to identify patterns, trends, and 
anomalies [32] [33] that signal potential problems or 
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maintenance needs so they may be corrected before an 
outage or failure occurs [34] [35].  

The workforce problem that becomes solvable with AI goes 
deeper than just improving the efficiency of deployed human 
resources. Experienced nuclear plant operators are scarce 
[36]. Even if there is success in accelerating all of the 
upstream processes that lead to many new plants being built, 
there is a looming shortage of qualified nuclear plant 
operators [37]. Operators are scarce because it is a tough 
job, and so are working conditions. Extensive certifications 
are required [38], and often, plant sites are in remote 
locations, which limits the labor pool from which operators 
can be drawn. Remote monitoring enabled by AI equates to 
lower labor costs, better safety, and greater workforce 
sustainability. 

Having presented the value proposition, the focus turns to 
how AI can be used to this end and how it should be 
deployed. AI can see connections in data where the human is 
challenged, given the size and dimensions of the data and 
information. The key is to harness that unique capability to 
complement the human and deliver a solution that coheres 
across the breadth and depth of the engineering disciplines 
involved in an operating nuclear reactor.  

1.2 Advances in the Next Decade 
With the advancement of AI, it is possible to containerize all 
that mankind has learned about nuclear energy to make it 
more widely accessible, while also critically restricting 
information appropriately. With decades’ worth of 
accumulated data and knowledge, it is possible to design one 
AI model that can capture public and private information 
(including restricted domain) and perform all activities over 
the life cycle of a nuclear plant. The AI model feeds the data 
in various formats, including text, tables, figures, images, 
video, and experimental or operational measurements, and 
consolidates the available human history of nuclear energy 
knowledge in a single model. This model could perform any 
of the nuclear reactor lifecycle functions, such as designing a 
new reactor while considering constraints from operations, 
deployment, commissioning, etc. It will be able to modify and 
optimize various activities as new findings are obtained by 
using the suite of development tools developed under the 
general initiative, eventually becoming a nuclear energy 
expert with a knowledge base that exceeds the capabilities of 
a human. 

Developments are needed in five areas to advance this 
proposition, from concept to delivery. Below, we assess the 
current status, and in Section 1.3, we describe how to 
accelerate the needed developments. 

ADVANCEMENT 1: FORMULATE A LEADERSHIP 
COMPUTING CAPABILITY ECOSYSTEM 
The AI4E initiative is to deliver AI hubs that can solve grand 
challenge problems in energy. It envisions an ecosystem of 
high-performance computing (HPC) capabilities that 
supplants the current collection of individual machines, each 
deployed as a stand-alone computing resource. The current 
generation of stand-alone HPCs built on networked graphical 
processing units (GPUs) would be transformed into a next-
generation network of coupled HPC machines, with 
applicable edge computing devices for downstream tasks. 
The result would be an increase in computational capability 
over what exists now as stand-alone machines are an 
underutilized capability. An objective is to solve problems in 
nuclear energy that are presently beyond the reach of any 
single HPC machine. 

To achieve this advance, high-speed data pipes and data 
centers are needed to facilitate communication and 
algorithms to coordinate tasks and to seamlessly exchange 
data among HPC machines. 

ADVANCEMENT 2: EXPAND ON BASE 
FOUNDATIONAL MODELS TO INCLUDE NE 
Nuclear energy, along with the other four topics ‒ power grid, 
carbon management, energy storage, and energy materials ‒ 
have their own specialized domain knowledge which is not 
well represented in existing foundation models. Existing 
models were created with commercial applications in mind 
and so target a different user than the science and 
engineering subject matter expert that the AI for Energy 
initiative aims to enable. So, in general, the existing 
foundation models have not been trained on the knowledge 
that is fundamental to our applications. 

A foundation model suitable for nuclear energy must include 
the specialized engineering and science data and information 
that subject matter experts have developed. That time 
stretches back to the genesis of the peaceful use of nuclear 
energy in the 1950s, and it includes technical reports, 
literature publications, and all manner of archived materials 
related to the peaceful use of nuclear energy. 

Further, the foundation model must be capable of 
representing the time-varying nature of nuclear systems 
whose dynamic characteristics are essential to operation and 
safety [39]. However, the typical LLM-based models are not 
suited for capturing this behavior. Additionally, there is 
insufficient data at large to sufficiently populate this space 
adequately for training a model. 

One solution is to complement the foundation model with 
fundamental physics-based information cast in a form used to 
represent the laws of nature [40]. For example, in predicting 
the operating behavior of a nuclear reactor core, equations 
that describe heat generation and neutron multiplication are 
solved for the reactor's state. So, the foundation model will 
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include such equations and their solution data as generated 
by a simulation code that solves these equations [41]. 
Further, if the problem involves sensor data, then this data 
must additionally be included [42]. Incorporating physics-
based models, which represent the laws of nature, into the 
foundation model, in combination with sensor data can, in 
principle, result in a more reliable and robust model than 
found in a purely data-driven model, as is demonstrated 
in [40]. 

ADVANCEMENT 3: ENSURE THAT THE AI 
ENABLING TECHNOLOGIES AND TOOLS ARE 
AVAILABLE FOR NUCLEAR 
The current development of AI for nuclear is application-
oriented and confined to the needs of subject matter experts 
without regard necessarily for what a larger enabling 
ecosystem might look like [43]. New tools are needed in this 
envisioned larger cross-disciplinary space [44]. 

Nuclear energy has unique security and safety issues that 
are not adequately addressed by current AI environments. 
Models must operate in software frameworks and data 
infrastructures that support large-scale workflows, all with 
physical security, cybersecurity, and operational security in 
mind. Some specific requirements are listed here. 

1. A software framework that supports workflows and the 
inclusion of physics models that constrain solutions to 
those physically realizable. 

2. A basic infrastructure that is sound. If a system using AI 
performs a critical function, that function should not be 
compromised should the AI fail for whatever reason. 

3. A means to judge what is a permissible use of AI in a 
particular application from the standpoint of security and 
safety and what are needed layers of protection. 

4. A way to enable transfer from private companies’ reactor 
data that may be proprietary and to create appropriate 
assurances. 

5. A means to qualify the AI with respect to reliability, 
robustness, security, and utility when it is drawn from all 
types of information. 

ADVANCEMENT 4: PROVIDE FOR TESTBEDS FOR 
VALIDATING AND EVALUATING AI METHODS 
FOR NE 
To realize the inherent power of AI systems, it will be 
necessary to train on a platform with the richest scientific 
datasets. With the high standard for AI model qualification in 
the nuclear energy domain, this platform ideally would involve 
a physical testbed. A testbed provides a direct means to 
address issues associated with AI interacting with a physical 
plant with its attendant safety and operating performance 
objectives. For example, the value proposition of AI for 
nuclear energy will almost certainly involve improving the 

efficiency of plant operations and maintenance of equipment, 
something whose qualification can be explicitly addressed 
using a physical testbed. 

In one approach, AI could be exercised on a semi-scale 
engineering facility, such as that for testing nuclear plant 
components. Ideally such a facility would support operation 
outside of “normal” to test the various contingencies that the 
AI would need to have built in and include digital components 
to enable a comprehensive environment for testing (for 
instance, as described in [45]). 

As is the case with all nuclear industry software deployed in 
operations, earlier stage development requires shakedown 
tests on an engineering simulator. The development then 
progresses to use for training nuclear plant operators and for 
testing operating procedures. 

Other approaches to accelerate initial qualification are to train 
AI on a history of data from commercial reactors and see how 
it performs versus that history. This approach addresses such 
questions as: does the AI run a facility better than the 
humans did and how close does it get? Such approaches 
also point to the need for rich data sets and an associated 
data management infrastructure that complements testbeds. 

ADVANCEMENT 5: INTEGRATE EXISTING 
INFRASTRUCTURE TO TRANSFORM INTO A 
NATION-WIDE RESEARCH RESOURCE 
To create unprecedented data and experimental resources 
for advancing AI research in the nuclear domain, we can 
begin by integrating the knowledge and infrastructure 
expertise across the DOE complex. 

In the knowledge domain, many researchers in NE see 
publishing their work as the end game without necessarily 
pursuing synergies across other NE subject matter domains. 
Instead, a new mindset that aims to spur collaboration would 
better fit an environment where AI is expected to house all 
that mankind has learned about nuclear energy. An inter-
Office consortium model where subject matter experts are 
brought together from across DOE Offices to solve a 
challenge problem could facilitate this. 

In the infrastructure domain, work could start in a bootstrap 
fashion beginning with the collection of related systems and 
the training of each independent of the others; and then later, 
when the AI infrastructure has sufficiently evolved/developed 
to support integration, they are trained together. 

Regarding facilitation, DOE needs to provide incentives for 
sharing data and collaborating and provide DOE-sponsored 
mentorships. 



 

01. NUCLEAR ENERGY 

AI FOR ENERGY  

13 

1.3 Accelerating Development 
1.3.1 CENTRALIZING DATA AND FACILITATING 
ACCESS 
While data is abundant, its format, availability, and 
provenance are highly inconsistent and cover a broad range 
of scenarios. Therefore, a critical first step is to create a 
comprehensive data repository and develop an ecosystem 
around it. This ecosystem should utilize the DOE 
infrastructure, which offers one of the most powerful 
computational capabilities in the nation and is well-positioned 
to take on this challenge ‒ see two advancements in 
Section 1.2, Formulate a Leadership Computing Capability 
Ecosystem and Integrate Existing Infrastructure to Transform 
into a Nation-Wide Research Resource. It should integrate 
the knowledge, data, and resources available across the 
DOE complex and solicit participation from the private sector. 
Power and communication infrastructure should be 
considered as a supplemental but key part of a data pipeline. 
A dedicated infrastructure task team is needed to develop 
this ecosystem. Furthermore, given the highly diverse nature 
of the data, a dedicated data task team is needed to develop 
and implement a strategy to collect for data collection and 
organization. 

1.3.2 NEW METHODS 
A significant and essential component of nuclear energy data 
and knowledge is manifest as the output of computer codes 
that represent the physics of a nuclear system. AI needs to 
access this information if it is to have its own internal and 
accurate representation of the physical system. New methods 
based more on the models that generate the code output 
would better serve as a canonical representation [40], 
especially considering the multitudinous and diverse nature of 
the spatial and temporal resolutions. 

With their physical models, these computer codes make 
predictions of physical quantities in time whose evolution is 
not directly observable in measurements. But they also yield 
a time-integrated behavior to produce a measurable 
observable, such as mechanical damage to a nuclear 
structure. Methods are needed [46] to meld these 
observables, as found in experiment and industry datasets, 
with the aforementioned models for enhanced predictive 
power. 

Additionally, there are hybrid data forms that involve 
qualitative and quantitative descriptions and inhomogeneous 
data (i.e., a combination of text, time series, images or 
figures, etc.). Current methods have only targeted subsets of 
those characteristics. The performance of the AI in terms of 
reliability, robustness, and validity hinges on providing a 
comprehensive description of the model's training. 

With the increasing amount of data and knowledge to be 
captured, these proposed new methods need mechanisms to 

understand the evolution of knowledge and possible 
conflicting insights and findings. They also need the means to 
understand when insufficient data is provided, such in first-of-
a-kind designs, and to decide and highlight areas of future 
research to close scientific and engineering gaps or perform 
self-guided simulations using available tools to close any gap. 

1.3.3 NEW TYPES OF MODELS, NEW TOOLS, 
AND NEW WORKFLOWS 
The methods should be able to convert their knowledge into 
surrogate models and tools to meet functional requirements 
in every phase of the mentioned cycle. Those tools can be 
self-validated by high-fidelity tools and self-tuned as new 
information becomes available that either confirms or refutes 
its comprehension or predictions of certain phenomena. They 
can also be shared with a human counterpart for additional 
validation and as a tool to advance science and technology. 

1.3.4 CONNECTIONS TO EXPERIMENT, 
SIMULATION, AND THEORY 
In parallel to data collection and methods development, a test 
platform is needed to evaluate and tune the models and tools 
before their deployment. The methods should be able to mine 
through the data for existing validation data and experiments 
before suggesting a target validation experiment in the test 
bed. The test bed design should be broad enough to cover all 
phases and aspects of nuclear energy (Figure 1-1). It should 
replicate the tools and processes performed in every stage of 
a reactor’s development and deployment. Given the depth of 
the test-bed role, it is envisioned that it will be distributed into 
multiple facilities that compose the main test bed and 
leverage existing DOE infrastructure when available.  

To speed up the testing and validation of models or even 
model components, it is likely that experimentation on 
purpose-built testbeds will need to be conducted. Physical 
implementations allow for quicker development through more 
efficient validation of software models as potential problems 
can be more easily identified and tested. 

1.3.5 SCALE OF MODEL BUILDING AND 
COMPUTING NEEDED 
Advanced reactor developers have lamented the wealth of 
experimental data that reaches back to the early days of the 
development of the peaceful use of nuclear energy — but 
that is largely inaccessible. On an individual company basis, 
they do not have the resources to retrieve and order the data 
in a form ready for use. 

There is, however, a scenario under which HPC and LLM 
technologies supported by federal funding can be leveraged 
to address this problem and provide an even richer solution 
than what was imagined by these developers, which was 
before the advent of ChatGPT. 
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The power of LLM to capture enormous troves of data and 
search out cross-data connections and relationships on a 
scale that is almost beyond human-like capability has been 
demonstrated in the private sector [47]. The largest HPC 
machines at the national laboratories have a computational 
capability of comparable scale. They should be used to 
create LLMs that are analogous to those in the private sector 
but serve the public good. Making all engineering and 
scientific data produced to date available in an LLM would 
serve the specialized needs of the nuclear energy 
community. The case in point is accessibility to all nuclear 
energy records, as mentioned above. 

1.3.6 SCALE OF TEAMS NEEDED TO HAVE 
CONFIDENCE OF SIGNIFICANT PROGRESS 
Given the scale of skills and effort required to collect all 
relevant nuclear energy data, curate and prepare the data, 
label it when needed, process it, and structure or model it, a 
team needs to be assembled with a skillset representative of 
the various Figure 1-1 phases of nuclear reactor 
development. The team should be familiar with the types, 
locations, forms, validity, fidelity, and depth available in both 
the public and private domains and would interface with the 
private sector to discuss the expectations and benefits of 
accessing the data. 

A separate methods-focused team would also need to be 
assembled with an understanding of state-of-the-art AI 
models and how they are used. The team would be exposed 
to the nuclear energy acquired data and will develop a plan 
and execute it to achieve the objectives discussed earlier. 

A third team will be assembled to test the models developed. 
This team would be composed of independent developers 
and potential users. Initially, they would need to design the 
needed testbed requirements and survey potential facilities 
that can meet parts of the testbed objectives. The team would 
also integrate the various roles and connect to create a 
validation and testing process and infrastructure. This team 
will also work with the methods and data teams to design 
benchmarking and evaluation scenarios and how they would 
be incorporated into the models being tested. 

Given the extensive reliance on information technology (IT) 
infrastructure to establish the discussed ecosystem, a 
dedicated team is proposed to establish the data storage, 
data analysis, and communication pipeline infrastructures 
and implement the needed safeguards and cybersecurity 
measures. This team will also decide how to leverage 
external and internal IT resources and the optimal means to 
achieve that. 

The four main teams (for data, methods, testing, and 
infrastructure) would be supported by essential organizations, 
such as legal, to ensure that data sharing is compliant with 
laws and establish agreements with private industry 
stakeholders when needed. 

1.3.7 DEPLOYMENT OF MODELS AND 
APPLICATIONS 
As a new and relatively untested technology with few time-
proven applications, AI and its deployment best proceed in a 
bootstrap fashion. Supervised learning in the initial stages 
provides a trained model with well-defined boundaries of 
applicability and validity. As confidence in an adjacent and 
parallel reinforcement learning model is gained, NE users can 
gradually transition to the latter (trained model). So in this 
approach, the former is accepted as the initial operational 
solution while the latter is carried along for continued 
development and qualification to eventually become the 
accepted solution. Or more generally, different elements can 
be enabled and change over time, leading to progressively 
greater autonomy in training and adaptation to a changing 
environment [10]. 

AI systems need to be routinely monitored and adapted to a 
changing environment. In one existing deployment in the 
nuclear industry [48], new data becomes available 
periodically, is uploaded to the cloud [16], and models are 
updated to maintain concurrency. 

1.3.8 CRITICAL PARTNERSHIPS 
The potential benefits of integrating existing infrastructure 
across the national laboratories into a single, highly effective 
resource were described in Section 1.2. 

Across the different Offices of DOE, there is the need for 
partnerships. Each Office brings with it a unique subject 
matter domain. Bringing all of this knowledge under one LLM 
model is critical to the advances sought under the grand 
challenge problems. The different Offices need to collaborate 
on all aspects of building an inclusive LLM model including 
data curation, data formatting, model architecture, training, 
and deployment. 

1.3.9 RISKS, SAFEGUARDS, AND SECURTY 
REQUIREMENTS 
If this model is to develop and deploy reactors and then 
operate them, it needs to be secured, qualified, credited, and 
validated according to the industry’s norms, policies, 
regulations, and laws. 

Modern artificial intelligence approaches are stochastic, 
meaning the system is intentionally designed to be able to 
react in unpredictable ways to create novel output. This 
aspect can be adjusted and is referred to as the model 
“temperature.” This design inherently means that security and 
safeguards measures must be put in place to account for the 
unpredictable behavior of a given model. Considerations 
specific to nuclear (regulatory, security, etc.) may require 
development of approaches for explainable and trustworthy 
AI and qualifying the methods for nuclear applications, and 
further research will be needed to adapt AI approaches to 
account for these concerns. 
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Experts in AI will need to be aware of the potential threat 
vectors that can be used against the developed model so 
they can incorporate security into the design from the ground 
up, and also build in cybersecurity plans throughout the 
development lifecycle to prevent misuse of the training data 
and vulnerabilities in the model, as well as safe operation 
throughout its lifecycle. 

1.3.10 WORKFORCE AND TRAINING 
REQUIREMENTS 
A foundation model capable of accelerating the deployment 
of nuclear power facilities will require experts in many subject 
areas that require extensive education in fields such as 
algorithms, uncertainty analysis, process engineering, 
networking, databases, computer communication, 
visualization, human factors, facility operations, and more. 
With these positions in high demand in many fields due to the 
recent sensationalism on large language models, it is 
imperative to identify and develop methods to attract and 
develop talent within our academic institutions, universities, 
and national laboratories. A sponsored mentorship program 
in AI is needed for those disciplines with the greatest demand 
for labor and that are expected to have the highest growth 
rates. A study could be performed to identify those areas. 

1.4 Expected Outcomes 
A solution to the grand challenge problems and the 
development of associated methods and software will provide 
a transformational national capability while leveraging the 
knowledge, skills, facilities, and resources based at the 
national labs and universities. For these communities, a 
common resource platform will be needed for development 
and validation tools/training to streamline and maximize 
AI benefits.  

The goal is to put foundational tools in the hands of advanced 
reactor developers for advancing the performance of nuclear 
systems and putting these tools into the hands of regulators 
for their acceptance for use in safety-related applications. 
This effort will enable the ultimate goal of optimizing the 
development, deployment, and operation of nuclear power 
generation using AI. 

The timeline is 10 years to establish a foundation for AI 
methods where the unique capabilities and potential are 
recognized and adopted by advanced reactor developers. In 
the interim, there may be an advantage to proving and 
demonstrating AI technologies in the existing reactor fleet or 
at DOE facilities. 
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02. POWER GRID 
The energy system, which runs the world’s economy, is 
becoming increasingly complex and undergoing a transition 
not seen since the advent of electricity over 100 years ago 
[1]. Grid balance and stability now rely on digitized control 
and increased reliance on communications, information 
exchange, and data. The amount of smart, distributed 
technologies is increasing exponentially through the 
deployment of electric vehicles, rooftop photovoltaics, local 
energy storage, and smart building technologies. Additionally, 
there is an increasing amount of electrification and significant 
changes in the primary energy mix to more variable and 
distributed renewable energy technologies, such as wind and 
solar. This transition, which is required to decarbonize the 
energy sector, is happening at an unprecedented speed and 
scale in the energy sector [2], changing from the known 
generation and demand patterns that were used as the basis 
for managing the grid. These changes impose a level of 
uncertainty in operating distributed energy systems, requiring 
higher spatial and temporal resolution of monitoring, 
forecasting, and control. Increasingly, parts of the grid are 
managed by multiple owners and jurisdictions imposing 
challenges in data sharing, planning, and operations. There is 
also a level of uncertainty about how these emerging, new 
kinds of power will be managed in the future; and, as 
increasing parts of the grid are under multiple owners and 
jurisdictions, this situation creates an ever more uncertain 
future in planning and operations. While our knowledge about 
how to handle complex systems is continually increasing, 
artificial intelligence (AI) is starting to show promising 
solutions for making the complexity of the data-rich future grid 
more manageable. 

2.1 Grand Challenges 
Herein we describe three grand challenges in the transition of 
the Energy System that AI can help solve over the next 
decade (Figure 2-1): 

 Realizing proactive, real-time energy system operations 

 Building cyber- and all-hazards resilient and secure energy 
systems 

 Designing and planning a 100% clean electricity system by 
2035 

 
Figure 2-1. Grand Challenges for Power Grids 

CHALLENGE 1: REALIZING PROACTIVE, REAL-
TIME ENERGY SYSTEM OPERATIONS 
The growing complexity of the grid is making it increasingly 
difficult to operate efficiently. Operators are expecting 
orders-of-magnitude increases in the number of smart 
devices interconnecting with the grid [3] by 2050. 
Technologies such as electric vehicles and chargers, smart 
buildings and appliances, roof-top photovoltaics, large-scale 
solar and wind plants, energy storage, and smart meters are 
all being rapidly deployed because of relatively low costs and 
the ability of these devices to increase customer satisfaction 
around energy use. This significant paradigm shift from a 
centralized system of large plants providing the bulk of 
electricity to a more distributed generation model with 
resources sited near customers — as well as the increased 
intelligence required to support smart loads — will strain the 
ability of grid operators to maintain reliable operations. The 
need both to process vast amounts of information, 
measurements, and data to better estimate the state of the 
grid and to create forecasts to proactively improve grid 
operations continues to grow. In the future, grid operation will 
need to estimate load composition and settings at the 
customer level and compute many more supervisory control 
signals to be tracked by the distributed resources, probably 
by factors of 100 to 1,000. Solving the resulting estimation 
and control problem in a timely manner under the uncertainty 
of environmental states and system settings (the latter 
needed to estimate the flexibility potential as well as transient 
response) requires the latest advances in AI techniques, 
which can analyze vast amounts of information, identify 
patterns, and create forecasts in real time [4]. 

Revolutionizing grid operation by providing support for the 
proactive operation and predictive online control of the power 
grid to achieve improved efficiency, reliability, and resilience 
will require new foundation models. Proactive operation will 
be enabled by four capabilities: (1) handling the massive 
amounts of real-time measurements at different temporal and 
spatial resolutions such as phasor measurement units 
(PMUs), point-on-wave sensors, supervisory control and data 
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acquisition (SCADA), advanced metering infrastructure (AMI), 
etc. (the measurements, including both electrical and 
environmental information as well as states of other energy 
infrastructures, will be fused and curated for different 
purposes); (2) increasing the data-driven predictive capability 
at timescales ranging from sub-seconds and seconds for the 
incipient failures and dynamics and stability assessment 
associated with the inverter-based resources (IBRs) and 
conventional generators to short-term (hours and days) 
locational forecast of the correlated renewable generation 
and demand and impacts of hazardous weather events; 
(3) enabling the prognosis, diagnosis, identification, and 
locating of disturbances and the online prescription of optimal 
control design for stabilization and service restoration based 
on the combined information of the grid’s real-time and 
predicted operational conditions; and (4) enabling AI-based 
sub-hourly energy scheduling and dispatching for optimal 
operating points of the power grid based on the grid status 
and predictive capabilities of generation, demand, and 
stability margin. 

CHALLENGE 2: BUILDING CYBER- AND ALL-
HAZARDS RESILIENT AND SECURE ENERGY 
SYSTEMS 
The nation’s aging infrastructure, extreme weather events, 
and the grid’s increasing complexity are impacting robust 
management of system reliability and resilience; meanwhile, 
our reliance on electricity has been increasing for everything 
from transportation to communication and home appliances 
[5]. Additionally, cybersecurity vulnerabilities exist across all 
digital components of the grid. All hazards (human-made, 
cyber, and natural threats) are increasing and driving broad 
disruptions across the U.S. Harnessing AI provides the best 
opportunity to achieve a cyber- and all-hazards resilient and 
secure grid by reducing blackouts and brownouts and 
ensuring that all communities have access to affordable, 
reliable, and clean electricity. 

Traditional approaches like grid modeling and planning are 
not enough to protect against complex and coordinated 
threats/attacks. AI and data fusion from disparate data 
sources can be effectively used to detect and mitigate 
complex disruptions (e.g., winter storm) anomalies in ways 
that existing methods or human operators are not able to do 
[6]. A foundation model using sensor data with other 
intelligence information could diagnose the cause of the 
impairment and neutralize its effect rapidly, increasing 
resilience by providing real-time prevention and mitigation of 
disruption due to extreme events, whether natural or human 
caused. AI could diagnose and generate real-time 
recommendations for actions that should be taken in 
response to attacks, failures, or other impairments. 
Malevolent actors will employ AI to find and exploit unknown 
vulnerabilities, while grid operators will also need AI to find 
and fix vulnerabilities before they can be exploited. AI models 
can also be used to cost-effectively inform emergency 

response and resource needs at the community level during 
extreme weather events and/or power outages, which makes 
them especially useful for disadvantaged communities.  

CHALLENGE 3: DESIGNING AND PLANNING A 
100% CLEAN ELECTRICITY GRIDS BY 2035 
Achieving a 100% clean electrical grid by 2035 and all 
domestic energy use by 2050, while maintaining today’s 
reliability and perhaps improving it considerably, will require 
multiple technological leaps. Industry operators need to plan, 
site, review, and permit unprecedented amounts of 
generation capacity as well as extensive transmission and 
distribution infrastructure. These needs are complicated by 
the fact that these reviews and approvals are spread across 
thousands of federal, state, and local jurisdictions. One of the 
inherent difficulties in the designing and planning process is 
understanding the languages used among different entities, 
which can be facilitated and streamlined by using large 
language models. As planning, siting, and permitting actions 
increase with growing amounts of variable generation, 
operators will need significantly more accurate weather and 
climate forecasts to understand the impacts on generation 
and consumption, while still being able to balance supply and 
demand on multiple time scales at the required reliability. The 
declining proportion of dispatchable resources, reducing both 
the controllability and inertia of the system, will require greatly 
improved load estimation approaches, in combination with 
the deployment of smart grid and advanced technologies 
such as storage. Operators will not be able to address the 
complexities and accuracy margins of forecasting, planning, 
and operating reliably under such uncertainty without artificial 
intelligence technology. 

In fact, AI can change the planning paradigm for the future 
power grid by providing fast and efficient surrogates, high-
fidelity scenarios, and stochastic optimization schemes for 
large-scale integrated energy systems. AI-based, multi-fidelity 
surrogate models for dynamic components need to be 
designed, built, and integrated to implement a large-scale 
dynamic emulator with uncertainty quantification for the 
planning of the power grid. The AI-based or hybrid grid 
emulator can be used to replace the existing numerical 
methods-based simulation tools such that steady-state and 
dynamic contingency analysis of utility-scale systems can be 
performed both online and offline. Moreover, improved long-
term planning can be achieved only by using more realistic 
scenarios projected for the planning horizon. Such scenarios 
could be developed using AI and historical data to account for 
both technological evolution and climate changes while 
quantifying the associated uncertainties.  

2.2 Advances in the Next Decade 
While AI holds great promise in this area, grid operations 
have a set of very specific requirements that AI, to date, has 
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not been able to satisfy. Scheduling and dispatching activities 
need to satisfy very complex constraints, such as line and 
voltage limits, which are both coupled through power flow and 
have a very high number of dimensions (including safety). 
While this constraint can be formally addressed by a 
reinforcement training metric, the outcomes typically do not 
have the required accuracy (which is much more stringent in 
constraint satisfaction than in optimality). Moreover, the 
complexity of optimization algorithms tends to be different for 
this circumstance. Recently, significant progress has been 
made through embedded AI, which aims to capture a latent 
representation of the decision space combined with a 
projection over the feasible space [7]. Another difficulty 
concerns AI used in the loop when it concerns the stability 
guarantees of closed loop systems. Many AI methods (such 
as the ones trying to approximate the autoregressive maps of 
physical systems) typically lack the ability to preserve / 
guarantee stability because they do not rely on the same 
algebraic principles. Determining AI structures that 
intrinsically preserve stability (e.g., by ensuring monotonicity 
over certain variable ranges) is a crucial endeavor for 
ensuring their stable and safe operation in this area. To 
improve the system’s reliability and resilience, any AI tools 
that are adopted will need to: 

 Provide stochastic, robust design for a system operating 
under increased uncertainty. 

 Predict vulnerabilities and biases at community and district 
levels considering equity, social-economic factors, and 
condition(s) of the infrastructure. 

 Predict equipment degradation and failure so as to propose 
maintenance, repair, or replacement. 

 Perform real-time event and disturbance classification, with 
online dynamic contingency analysis. 

 Provide decision-support algorithms for predicting and 
preparing for rare and extreme events. 

Maintaining the stability of the power grid is crucial to its 
reliability and security. It is important to note that, as many 
events are not foreseeable (such as wildlife and weather 
causing short-circuits), operators aim to have not only real-
time stability but also virtual stability against events that have 
not occurred but might. Historically, this is carried offline on a 
limited number of scenarios, and conservative operational 
margins are prescribed (for example on intertie flow limits) to 
help ensure stability, resulting in both increased cost and 
reduced flexibility, and potentially, reliability. Thus, one 
advance that is highly needed is to provide a sharp stability 
margin in real time, which is fundamentally a complex 
mapping between the system state and its transient 
characteristics and is thus ideally suited for real-time 
calculations. For example, approximate synthetic energy 
functions are suitable only when there are small-noise limits 
in calculating stability [8]. AI-based energy functions have the 
potential to provide far more accurate and valid energy 

functions to obtain a sharper approximation of stability and 
security, thus reducing cost and improving flexibility. A related 
issue is that of rapid propagation of the state uncertainty 
through the transients, particularly in the context of 
preventing cascading failure and away from the large 
deviation/small noise approximation. An AI effort may vastly 
accelerate recently proposed ideas to use machine learning 
to approximate the Fokker-Planck equation [9]. 

In the power grid setting, using advanced large language 
models could help human teams converse with one another 
and remove ambiguity. Interacting as an effective human-
machine team could improve the coordination between 
operator teams with varying skill sets, efficiencies, and 
expectations. This improved coordination may also become 
one of the most impactful benefits of natural language 
processing in terms of opportunity cost, because it affects 
organizations at all levels – especially grid operations and 
planning staff. 

For foundation models to be used in high-consequence 
systems, we need a provable understanding of its bounds. 
For example, a significant challenge in predicting rare events 
is the issue of data disparity. This refers to the situation 
where there is a disproportionately low number of instances 
of rare events (positive examples) compared to regular 
events (negative examples) within the dataset. As a result, AI 
algorithms may develop a bias toward the more frequent 
case, leading to the overlooking or incorrect categorization of 
the less common event. Overcoming this bias will require 
new approaches so that foundation models can address 
scenarios beyond the “average” case to include different 
distributions, such as black swan events. New research is 
needed for explainable and trustworthy AI that is verifiable for 
safety and security. In order to improve cyber-physical 
security through AI’s application, operators will require the 
ability to: 

 Design our system around bad actors (moving target 
defense, robust design, etc.). 

 Rapidly vet anomalous activity in broader contexts. 

 Observe disparate data streams to assess the cyber-
physical threat posture of the grid or other infrastructure. 

 Autonomously detect network intrusions and physical asset 
attack posture. 

 Identify vulnerabilities before they can be discovered by 
bad actors. 

The area of weather forecasting and climate modeling poses 
a set of both important challenges and opportunities. The 
area is remarkable in that most of the data are publicly 
available and the physical processes describing its evolution 
are mostly known. The state space, however, is enormous; 
and the intrinsic chaotic behavior of this system results in the 
necessity of representing forecasts through probability 
distributions as opposed to point estimates. Many climate 
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models are available to produce quality estimates of the 
distribution of atmospheric variables at scales of hundreds of 
kilometers; and while they are validated on a monthly or 
seasonal timescale, they generally produce hourly time series 
of the distributions, which is compatible with many of the 
tasks needed to carry out 2035 energy assessments. The 
energy infrastructure, however, interacts on scales of about 
10 meters, such as at the scale of buildings, for example. 
Obtaining accurate distributions for atmospheric variables at 
a 10-meter scale and at subhourly resolution, as required for 
suitable characterization of renewable generation and 
demand. This is a grand challenge ideally suited to being 
addressed through an AI approach. At a conceptual level, the 
challenge is to create the map between climate-scale 
modeling (meshes of a few hundred kilometers, and 
every-hour time scales) and the target scales (10 m and a 
few minutes); as such, an AI-based endeavor could “crack 
the code” of this problem. Because most existing 
downscaling hypotheses assume this map to be stationary, at 
least starting from a sufficiently fine level, it can in principle 
be learned from existing data and applied to future climate 
simulations. We note that AI already had a stunning success 
with fourcastnet [10] when a Fourier Neural Operator trained 
with reanalysis data provided a forecast as accurate as one 
obtained through numerical weather forecasting but with 
10,000 times better energy efficiency. In turn, it rapidly 
became the production forecaster of the European Centre for 
Medium-Range Weather Forecasts (ECMWF). The same 
approach can in principle be used with downscaling and 
would vastly improve energy efficiency. 

2.3 Accelerating Development 
NEW DATA 
With respect to data needs — which implies data sharing 
among the hundreds of entities in the energy sector — 
substantial investments are needed in state-of-the-art data 
infrastructure that includes advanced sensing technologies, 
smart meters, secure cloud storage solutions, and data 
processing capabilities that can scale with demand. 
Automated tools for data cleaning and preprocessing, 
including anonymization, are essential to maintaining data 
privacy, data quality, error correction, and the ability to handle 
messy operational data sets of different spatial and temporal 
resolutions. Also, promoting interoperable data standards 
within the sector can dramatically improve the technical ease 
with which data are shared and integrated across various 
platforms and organizations. On the legal front, creating, 
motivating, and securing clear data-sharing agreements and 
mechanisms, including nondisclosure agreements (NDAs) 
and data access agreements, should be part of the proposed 
solution. These agreements must articulate the terms of data 
use, responsibilities, rights to modification, and redistribution, 
and must provide measures of confidence to the utilities and 

other entities for sharing proprietary or sensitive data [11]. At 
the same time, the data solution must ensure that practices 
are compliant with industry regulations, such as North 
American Electric Reliability Corporation (NERC) Critical 
Infrastructure Protection (CIP) standards.  

For example, with the data that federal agencies need to 
comply with the National Environmental Policy Act (and 
related reviews like the Endangered Species Act, Clean 
Water Act, National Historic Preservation Act), there is little 
consistency in where or how the data are stored as well as 
incredible heterogeneity (which increases complexity) in the 
document structures themselves. For utility-scale wind and 
solar, there are perhaps 3000 relevant authorities having 
jurisdiction (AHJs). For devices such as battery storage, 
electric vehicle (EV) chargers, energy efficiency building 
codes, etc., there are ~28,000. Not all of them are fully 
digitized. Around 3,000 localities have ordinances and codes 
available through one of three or four aggregator services.  

For each of the grand challenges described, many different 
types of data will be required: 

 Geospatial geographic information system (GIS) 
information about grid data, including information about 
locations and types of critical infrastructure, land use 
information, aerial imagery, and other data. 

 Data-driven, high-fidelity, black-box models of critical 
assets (e.g., inverters, relays) where vendors are gradually 
moving toward standardizing hardware and customizing 
software where possible. 

 Customer behavior data to understand and forecast energy 
use. 

 Historical climate/weather and outage data and staff logs 
for improving situational awareness. 

Improvements in AI technologies could be substantially 
assisted with the gathering, organizing, and processing of the 
data. 

NEW METHODS 
Storage is a key component of a reliable future energy 
operations scenario driven by variable renewable resources, 
but it is not a panacea. There is a goal to achieve improved 
reliability in a future grid with far less control of the generation 
and reduced inertia requires extracting the maximum amount 
of flexibility from distributed resources and coordinating many 
more and smaller systems. It has been amply demonstrated 
that inverter resources can be driven to express both virtual 
inertia and storage functions, and this expanded flexibility is 
in principle usable to compensate for the reduction in 
dispatchability due to the retirement of classical generation 
[12]. Achieving an integrated solution across grid balancing 
areas, however, requires solving a gigantic state estimation, 
control, and optimization problem online. AI techniques are 
ideally suited to producing the coordination signals for all 
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these resources to offer the transient stability and balancing 
the robustness needed to achieve improved reliability with the 
far fewer dispatchable resources available in 2035.  

One of the key challenges in planning can be the inconsistent 
interpretation of the same requirement by different 
stakeholders. These interpretations may be motivated by 
drivers such as cost, revenue, policy, etc. A planning-tuned 
foundation model could be used to normalize these biases by 
training on the performance / restrictions of the stakeholders 
and to help the planners prepare a better "bare-bones” 
solution (a quick first draft) or negotiate more effectively on 
changes. For example, the next revision of a distributed 
energy resource interconnection standard may start with poll 
results from all the different stakeholders — which will then 
be fed into AI — to review and identify the sections that are 
likely to create the most/least conflict and then proceed from 
there. The first poll itself may be drafted based on the entire 
log from kickoff to final ballot to help identify the most crucial 
or comprehensive set of questions. 

It should be emphasized that the chaotic nature of weather 
systems makes impossible the validity of point estimation; 
therefore, any forecasting system must be able to produce 
calibrated uncertainty sets for its forecasts. A consequence of 
this observation, before even stating the need for AI to 
produce uncertainty distributions and not just point estimates, 
is that the loss functions will typically be much more 
expensive to compute between prediction and data, typically 
having an n2 computational complexity flavor [13]. New loss 
functions that are scalable for distribution prediction are 
needed. 

Following are descriptions of several other classes of 
methods that are required from foundation models.  

Quantifying the characteristics of clean energy resources 
through advanced forecasting techniques for wind, solar, and 
precipitation, which are pivotal for planning and development, 
is crucial. Such forecasting is also critical for inverse design 
system optimization. Operational (minutes-hours-day ahead), 
site-specific, and high-resolution resource forecasting for 
predictive dispatch control of clean energy generation and 
variable load resources are also needed to achieve system 
load balance and dynamic stability. 

Equally important is improving load prediction accuracy, 
especially during extreme weather events, where behaviors 
of consumers in fulfilling essential needs — such as the 
increased use of air-conditioning during a heatwave — must 
be anticipated. This need can be described as forecasting 
and state estimation for better look-ahead loads and variable 
generation with (1) improved state estimation and prediction 
of grid conditions, and (2) outlook for anomalies that could 
impact operations. 

Methods that more accurately forecast demand increases 
prompted by technology adoption and policy regulations are 
also needed. This encompasses decarbonization efforts, 

such as the retrofit of buildings for energy efficiency, and the 
increasing electrification of transportation, building, and other 
industry sectors. Accurate forecasts at the transformer and 
substation levels are critical for informed decision-making 
regarding the necessary upgrades to distribution systems. 

We also identify the development of methods that establish 
and update improved default designs to meet regulation and 
performance requirements as a key needed advancement. 
Such methods will enable a more efficient response to issues 
raised during design and project reviews, both internally and 
externally.  

Additionally, prediction of demand flexibility from building 
loads, EV charging, and the utilization of distributed energy 
resources (DERs), such as photovoltaics and storage, 
requires consideration of customer behavior, grid pricing 
signals, incentives, and local weather conditions, as well as 
the advancements and adoption of technologies. Demand 
flexibility is recognized as a pivotal mechanism to mitigate 
peak grid demand and to facilitate cost-effective and 
emissions-reducing operations. 

The adoption of continual learning methods that assist 
operator-in-the-loop systems is another need, using real 
operational data for the development, implementation, and 
operation of these systems, thus supporting operators more 
effectively.  

Last, facilitating the review and approval processes of new 
renewable energy projects by learning from past projects and 
databases has been proposed. AI-based assistance could 
significantly expedite these processes, reducing both costs 
and the potential loss of opportunities. Multimodal LLMs 
trained on data from thousands of past environmental and 
permitting reviews could also be developed to improve and 
expedite those process, similar to the foundation models 
discussed for improving the nuclear regulatory process in 
Section 1.1. 

Connections to Experiment, Simulation, and Theory 

Sophisticated control methods are essential to managing 
both the generation of energy and its consumption within the 
grid, whether that is directly at the point of connection or 
across the integrated system. These require considering the 
dynamic coupling of base and dispatchable generation 
(nuclear, hydro, geothermal, hydrogen), variable generation 
(solar, wind, wave), variable load (fuel, ammonia, hydrogen, 
etc., production), and battery storage operated as a single 
integrated system for dispatchable generation through 
coupled AI systems. To accurately predict and optimize the 
performance of this integrated energy system, foundation 
model-scale surrogates are needed for modeling and 
simulation of aggregated renewable generation components 
(wind, solar, marine hydrokinetics) as a single generator 
system operating in complex (temporal and spatial) 
probabilistic resource environments. These models must 
account for the varying and unpredictable nature of 



 

02. POWER GRID 

AI FOR ENERGY  

23 

renewable resources over time and space. At the plant level, 
adaptive, surrogate models based on real-time 
measurements are needed to enable rapid adjustments to the 
system controls, which is essential for managing the 
changing dynamics of energy supply and demand. This high-
fidelity, system-level digital-twin model could facilitate 
continuous system performance assessment, including of 
power grids and urban load centers and operations based on 
data and feedback control. The following are additional needs 
and connections between experiment, simulation, and theory 
to support future U.S. power grid needs:  

 AI design tools derived from high-fidelity modeling (HFM) 
numerical simulation and field operational data. 

 AI replacement modules in HFM simulations to accelerate 
processing and replace lower-fidelity empirical formulations 
and look-up tables. 

 Digital twin and surrogate models for performance 
monitoring, operations and maintenance (O&M), and 
coupled edge computing for active and closed-loop control. 

 AI orchestration in multiple-scenario digital twins to run 
simultaneously. 

NEW TYPES OF MODELS, TOOLS, OR 
WORKFLOWS 
Leveraging foundation models for planning, operating, and 
securing the power grid of the future will depend on the 
development of new tools and workflows. Workflows need to 
be modernized to allow for providing AI assistance to 
operators in a semi-autonomous fashion for emergency 
control to manage critical functions like load shedding and 
islanding during outages. These systems must respond in 
real time to prevent widespread disruptions, and, given the 
high-consequence nature of this system, a trusted AI-
assisted operator workflow must be part of the solution. 
Moreover, this workflow needs to facilitate faster identification 
and correction of faults. A component of this need is a unified 
communication framework linking control centers to 
distributed energy resources so that geographically and 
functionally distributed elements can effectively relay 
information, optimizing real-time responsiveness and 
coordination. 

A tool that is critical to any use of AI for power grid planning, 
operations, or security is an explainable and trustworthy 
interpretable AI-enabled decision support system. This 
capability must also be coupled with robust tools for their 
verification and validation (V&V). Tools are needed that not 
only perform tasks but also provide insights into their 
decision-making processes, a capability that is crucial for 
sustaining trust and reliability.  

SCALE OF TEAMS NEEDED TO HAVE 
CONFIDENCE OF SIGNIFICANT PROGRESS 
Developing and operationalizing foundation models to 
support planning, operation, and security for the U.S. power 
grid — a complex and critical infrastructure — requires an 
interdisciplinary and well-coordinated effort. The scale and 
types of teams needed can be broken down into several key 
areas: 

 AI and Data Scientists (~100 professionals): A team of AI 
and data scientists will be essential to developing, training, 
fine-tuning, and maintaining foundation models. These 
professionals should have expertise in machine learning 
and deep learning and in developing safe, secure, and 
trustworthy AI. 

 Power System Engineers and Analysts 
(~100 professionals): An equal number of electrical 
engineers and energy system analysts with domain 
knowledge will be crucial for framing problems in a way 
that AI can address them and having a deep understanding 
of the U.S. grid’s intricacies. They provide insight into the 
operational, planning, and regulatory nuances of the power 
grid and will help guide and ensure that relevant 
transformational AI is developed and deployed. 

 Software Engineers and System Integrators 
(~200 professionals): To ensure that foundation models 
are implemented effectively, skilled software engineers and 
system integrators are needed. They will be responsible for 
embedding AI models into existing infrastructure and 
helping to design grid infrastructure. These professionals 
must develop software and systems that are safe, secure, 
and trustworthy and, given the various grid management 
systems (existing and to be developed), this is a daunting 
task given the increasing complexity of edge devices and 
systems drawing load from the grid. 

 Cybersecurity Professionals (~100 professionals): 
Cybersecurity professionals must be involved to safeguard 
systems that incorporate AI against intrusion and 
tampering, ensuring the integrity and security of the grid, 
especially with the increasing reliance on automation and 
autonomy for operator assistance.  

Making significant progress in developing and 
operationalizing foundation models for the U.S. power grid 
will depend on tightly integrated teams that bring together AI 
technical knowledge and domain-specific expertise. While the 
scale of these teams will vary depending on the size and 
scope of the solution, adopting a comprehensive approach 
involving these various skill sets is necessary to building 
confidence and accelerating momentum in the progress 
being made.  
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SCALE OF MODEL BUILDING, COMPUTING, AND 
STORAGE NEEDED 
The power grid has been described as the most complicated 
machine ever built by humans. The system that was 
designed and built to run based on the physical 
characteristics of the connected devices is migrating to a 
system that runs based on the control code embedded in 
them and the software that orchestrates their operations. To 
give a sense of the state of the art today, the ExaSGD project 
has run HiOp on Frontier to solve for networks with 
10,000 buses under thousands of contingencies on parallel 
machines equipped with both AMD and NVIDIA accelerators. 
This calculation included 32 renewable energy forecast 
scenarios and 1,000 contingencies and was run on 
4,096 nodes of Frontier [14]. Advancing the development of 
new foundation models will require tens of thousands of 
GPUs and the ability to process a hundred or more petabytes 
of data. The data for training may be limited unless the 
workflows described earlier are implemented. This plan will 
enable the training of a foundation model on domain data 
(PMUs, edge data, network traffic, smart meters, and more) 
to plan, operate, secure, and manage grid assets including 
digital twins of the system that can churn through tens of 
thousands of potential scenarios and courses of action.  

DEPLOYMENT OF MODELS AND APPLICATIONS  
AI can only help in the design and operation of the power grid 
if explainable and trustworthy AI models and applications are 
built. In other words, the scenarios derived from those models 
and applications must comply with constraints and improve 
upon the confidence that other objectives will be met while 
maintaining resilience when faced with unexpected 
disruptions. Extensive evaluations will be required to verify 
the performance of models and application and thus to 
ensure operations that are fully secure and reliable. 

CRITICAL PARTNERSHIPS 
The National Oceanic and Atmospheric Administration 
(NOAA) and National Aeronautics and Space Administration 
(NASA) have some of the most crucial datasets available for 
the characterization of the atmospheric states, and most AI 
products are trained on reanalysis data that either agency 
provides. Enhancing the resolution of atmospheric forecasts 
and downscaling will greatly benefit from interaction with both 
agencies. Other critical partnerships include the utilities and 
system operators of the power grids and other energy 
infrastructure assets who have extensive data and 
information on their systems. 

RISKS, SAFEGUARDS, AND SECURITY 
REQUIREMENTS 
Integrating AI into power systems planning and operations 
can offer important benefits, such as improved efficiency, 
enhanced reliability, and greater resilience. However, it may 

also come with important risks and challenges, which need to 
be carefully and thoughtfully addressed. Energy infrastructure 
has the unique feature that, despite being physically 
connected, access to the various data sources is 
geographically and physically distributed — not least by 
ownership. Moreover, some of the data are defined by critical 
infrastructure regulation and some of its conclusions may be 
subject to security review or concerns. Among those 
concerns is preventing data access by malevolent actors 
while maintaining access among infrastructure partners. An 
important need is to consider AI that is logically coherent but 
physically distributed and for which the training data can be 
ensured to have differential privacy for the various providers. 

WORKFORCE AND TRAINING REQUIREMENTS 
Vast amounts of knowledge on how to plan, operate, and 
secure the power grid must be transferred to the next-
generation workforce. Current workforce training programs do 
not take advantage of how AI can speed this learning and 
help system designers and planners manage a workforce that 
is experiencing rapid turnover. New training methods are 
needed to help current and future grid planners and operators 
become more cognizant of AI’s benefits and how to use AI 
applications in their field.  

2.4 Expected Outcomes 
The benefits of transforming to a clean energy system will be 
accompanied by the challenges of added complexity, 
variability, low visibility, and decentralization of the electric 
power grid. Preserving affordability and improving reliability, 
resilience, and security in the face of these challenges will 
require new thinking and approaches that would not apply to 
the centralized system of even the recent past. Selecting the 
best approaches is too complex a problem to be solved by 
human thought alone because of the number of possible 
combinations and outcomes. AI tools are needed to identify 
and select approaches that address complexity in matching 
generation to the times and places of energy demand to 
achieve an equitable energy future. 

Distributed generation and the ability to manage local 
demand sources will require AI to generate a rich set of 
signals that maximize responsiveness and fidelity to utility 
objectives of selecting the cleanest, most affordable mix of 
sources, while maintaining reliable delivery. The growing 
body of information at the distribution scale will enable AI to 
optimize the deployment of energy storage to facilitate 
decoupling the time of generation from the time of use. At the 
regional scale, AI tools will help support the expansion and 
management of transmission infrastructure to ease 
bottlenecks in getting power from areas of plentiful generation 
to areas of high demand. Securing a highly interconnected 
power grid against cyberattacks and making it resilient to all 
forms of disruption will require that AI be able to address the 
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complexities and uncertainties more rapidly than malevolent 
actors can exploit them.  

Power outages have a major economic and societal impact 
on the U.S. Additionally, an integrated system is fragile, 
leaving the system vulnerable to cyberattacks. AI-based tools 
can help improve the planning and design of the system to 
make it more robust, provide real-time detection and 
response to events, and assist with the detection of future 
vulnerabilities. For example, could AI have predicted the 
2021 winter brownouts in Texas due to the cold, or could it 
have identified future supply chain issues like the availability 
of transformers that we are currently facing? Or could it have 
identified future vulnerabilities between infrastructure assets 
such as loss of water that halts generators, or a single 
road/bridge that must be crossed for repairs, or a main 
communication path that could be cut? 

The careful, guided application of AI is the only option for 
tackling the complexity of such a large, interconnected 
system during such a profound transformation. AI will enable 
these improvements to occur much more rapidly, on timelines 
consistent with climate goals, while improving other important 
objectives such as equity and reliability. Simultaneously 
optimizing carbon emissions, reliability, equity, resilience, and 
affordability requires a level of sophistication, speed, and 
efficiency beyond current planning and balancing 
approaches. 
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03. CARBON MANAGEMENT 
Achieving America’s goal of a net-zero carbon economy by 
2050 will require developing an expansive new carbon 
management industry, one that can address mitigation of 
greenhouse gas (GHG) emissions, deployment and reuse of 
relevant infrastructure, and technical innovations that ensure 
safe and reliable implementation of these new solutions. 
These innovations must also be able to safely transport and 
securely store vast quantities of carbon dioxide (CO2). The 
technology and infrastructure we need must be deployed at 
an unprecedented pace and scale both nationally and 
globally. Success in this undertaking is an essential part of 
obtaining a secure, clean energy supply while reducing the 
climate impacts that increasingly threaten the safety, health, 
food supply, and economic security of our nation. 

To meet this GHG emissions mitigation goal by 2050, U.S. 
infrastructure for carbon capture and storage will require 
capabilities to accommodate at least 65 million tons of CO2 
per year [1] —roughly equivalent to the amount used by 
today’s CO2-enhanced oil recovery (EOR) industry, which 
took over 50 years to develop. By 2050, annual subsurface 
storage capacity to accommodate ~one billion tons of CO2 

will be required. Storing CO2 at this scale is likely to require at 
least 1,000 capture facilities, a 21,000−25,000-km network of 
interstate CO2 trunk pipelines, 85,000 km of spur pipelines to 
supply the trunklines, thousands of injection wells [1] and 
appropriate subsurface storage reservoirs to accommodate 
this need. 

Simultaneously, carbon management solutions are required 
to offset increasing demand for clean energy solutions. Clean 
energy production to address growing demand and offset 
decreasing production from conventional fossil energy 
sources are necessary [2]. Clean energy includes renewable 
energy resources, but also encompasses alternative 
resources such as unconventional critical minerals [3], 
geothermal, hydrogen, and nuclear energy. 

Developing the necessary innovations to accelerate 
commercial deployment of carbon management solutions 
within the next 20 years will require maximizing and 
expanding existing infrastructure, developing hundreds of 
new facilities, and discovering innovative and efficient 
approaches, including novel subsurface analysis tools, 
transport modes, materials, equipment, and systems. Artificial 
intelligence (AI) and machine learning (ML) are needed both 
to expedite development and optimize the performance of 
this critical infrastructure and its components. AI’s ability to 
quickly analyze complex engineered and natural systems will 
be critical for developing comprehensive carbon management 
solutions. Specifically, AI holds the potential to accelerate 
progress in our understanding of foundational science to 

identify the most important processes that affect our carbon 
budget. AI’s ability to ingest multiple data streams to refine 
forecasts is needed to accurately assess the capacity and 
long-term integrity of subsurface environments, surface and 
subsurface mineralization processes, and other potential 
carbon containment resources—and to enable a highly 
reliable transport network that efficiently connects carbon 
sources to sinks. As the transport and storage industry 
grows, AI advances in optimization can also potentially 
minimize the risks associated with early demonstration and 
deployment projects and reduce basin-scale impacts. 

3.1 Grand Challenges 
CHALLENGE 1: “DISCO2VER”  
Addressing the need for an AI-enabled digital 
planet twin to accelerate clean energy transitions 
and inform safe and enduring greenhouse gas 
mitigation approaches. 
An adaptive and integrated virtualized digital twin, data + 
models, and an enabling computational infrastructure are all 
needed to support real-time, rapid, and multi-scale simulation 
and forecasting to accelerate the U.S.’s transition to a 
carbon-neutral economy, mitigation of greenhouse gas 
emissions, and optimized security and deployment of energy 
infrastructure (Figure 3-1). 

These carbon management and energy infrastructure 
systems often coexist, now or in the future with changing 
demographics, with other complex natural and societal 
systems that current simulation approaches cannot model 
holistically. Demands placed on existing infrastructure and 
resources as global populations and human activities 
increase, compounded by climate threats and more intense 
weather events, continue to stress our ecosystems and are 
more frequently causing environmental and human health 
impacts. AI’s capabilities to bridge spatial and temporal 
scales will be critical in tackling these complex systems.  

Using AI to create an all-encompassing, evolving digital 
twin of the planet, researchers will seek to accurately 
capture the range of engineered, environmental, and social 
activities, dynamics, and interactions across the planet to 
support the visualization, predictive modeling, and 
development of holistic planning and resiliency strategies. 

If aggregated together in work on this digital planet twin, 
teams of researchers and commercial and regulatory 
stakeholders will have a better opportunity to rapidly forecast, 
simulate, and assess these complex, multidimensional, and 
multidisciplinary systems as a representative unit.   
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Presently, where data, models, and tools exist to represent 
and/or analyze this complex system, they exist separately, 
leading to both a lack of understanding of the full coupled 
energy system or significant duplication of effort to find and 
utilize these resources, and also to the potential risk that vital 
data or tools will be missed by individual users. 

While data and tools do not yet exist to create a complete 
digital planet twin, aggregation of what does exist — an 
authoritative integration — presents an opportunity to 
accelerate these goals and understand key gaps. Presently, 
existing science-based models and tools, (e.g., see some 
examples indexed on EDX disCO2ver), data and knowledge 
resources for energy sources (e.g., solar, wind, geothermal, 
natural gas, coal, critical minerals, hydrogen, and nuclear), 
emissions (e.g., CO2 and methane [CH4]), storage (surface 
and subsurface), and infrastructure (orphan, aging, and 
emerging) present a significant opportunity to serve as the 
building blocks for a comprehensive model that accelerates 
carbon management, climate, commercial, and societal 
goals. 

Individual science and sensing-based data and tools have 
been developed for systems such as the grid, CO2 
sequestration, geothermal, and individual infrastructure 
elements; but these systems have not been linked together 
for many reasons. First, even an individual system requires a 
high-fidelity model that often runs on high-performance 
computing (HPC). Second, the grand scale of a fully coupled 
model, a model of many joined models, currently requires 
significant computational resources and must be hosted in a 
virtual platform to support stakeholder benefits. Finally, 

systems typically fall within different funding agencies 
(e.g., Fossil Energy and Carbon Management [FECM], 
Nuclear Energy [NE], Energy Efficiency and Renewable 
Energy [EERE], Geothermal Technologies Office [GTO], 
U.S. Census Bureau, U.S. Department of the Interior, 
National Aeronautics and Space Administration [NASA], 
National Oceanic and Atmospheric Administration [NOAA], 
etc.) and have not been coupled together. Recent advances 
in AI-based surrogate models in the cloud and using 
advanced computing systems (e.g., HPC) have the 
potential to support development of an integrated data and 
multi-modeling coupled system, that is, a digital planet twin 
(Figure 3-1). Ultimately, such a digital planet twin would also 
support AI-accelerated discoveries, forecasting, and 
analyses such as: 

 AI models that combine existing data and simulations 
(e.g., Earth systems, human behaviors).  

 Utilization and repurposing of existing data to address new 
problems and keep computational costs low. 

 Global AI models that can inform local problems for 
infrastructure planning, disaster 
mitigation, resiliency strategies, national security, and 
more. 

Ultimately, this carbon management digital twin will support 
disCO2very of solutions that support the administration of 
clean energy and emission mitigation goals by democratizing 
disparate models and resources to better represent 
complex Earth behaviors and thus help identify more 
strategic energy transition pathways that reflect current and 

 
Figure 3-1. “disCO2ver” would produce a digital planet twin, aggregating presently separate digital resources representing energy, environmental, 
and societal systems in one virtual system to accelerate clean energy transitions. (Image source: NETL) 

https://edx.netl.doe.gov/disco2ver
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forecasted communities, environments, climates, 
and infrastructure. 

CHALLENGE 2: REALIZING A VIRTUAL 
SUBSURFACE EARTH MODEL 
Making it possible to utilize the subsurface for 
environmentally friendly extraction of resources 
and safe storage of waste and emissions. 
While complementary to the digital planet twin, the Earth’s 
subsurface remains a significant, unknown frontier due to its 
opaqueness, remoteness, and heterogeneous nature. In 
order to accurately forecast subsurface energy resources and 
emissions, models require accurate input parameters which 
are difficult to obtain due to the challenge of interrogating the 
subsurface. While a digital twin of the planet’s surface is 
viable with present knowledge and tools, exploration and 
prediction of subsurface properties and conditions poses a 
significant and complex but nevertheless addressable 
challenge. 

By leveraging the data acquired over the past 150 years of 
subsurface exploration, in combination with science-based 
models and studies of the subsurface, we have a significant 
opportunity to leverage AI-informed methods to help identify 
and fill in the gaps about this important system that hosts 
natural resources and offers significant potential to store 
energy waste and products in support of carbon mitigation 
and clean energy transition. 

The subsurface currently provides over 80% of our energy 
and over 50% of U.S. groundwater [4]. In the U.S., 4 million+ 
wellbores, resulting from drilling for hydrocarbons, now 
represent a treasure trove of direct and indirect information 
about the subsurface near each of these locations. The 
subsurface has potential to provide new, clean energy 
resources, such as geothermal, unconventional critical 
minerals, geologic hydrogen, etc. The subsurface also offers 
significant potential for the safe storage of resources 
(e.g., hydrogen [H2], compressed air, etc.), while disposing of 
carbon waste (e.g., CO2) [5] and other by-products 
(e.g., nuclear waste). 

Current geophysical techniques to interrogate the subsurface 
result in a very incomplete picture due to limited spatial 
penetration of techniques and the noisy data that are 
collected. Recent advances in AI for advanced property 
inference show promise for utilizing noisy multi-modal data, 
along with science-based models of geologic and 
geophysical systems, to improve forecasting and prediction of 
subsurface properties and systems, informing and 
transforming our ability to utilize AI to virtualize subsurface 
systems, reduce risks, and interact responsibly with the 
subsurface (Figure 3-2). 

 
Figure 3-2: Developing a more complete and assembled set of subsurface 
data, a virtual subsurface system, can help to inform, reduce risks, and 
drive better predictions using AI for aggregation of data and knowledge 
of the subsurface, and use of advanced property inference to fill in the 
gaps. (Image source: Gemini) 

CHALLENGE 3: ACCELERATING IDENTIFICATION 
OF NEW MATERIALS AND/OR MATURATION OF 
EXISTING MATERIALS  
Ensuring optimal performance and viability when 
deployed at commercial scales for carbon capture 
and removal. 
Present materials for carbon capture face a scalability barrier, 
impeding their viability for large-scale commercial 
deployment. Using detailed, lab-scale materials data 
(e.g., solubility, permeability, surface area, isotherms, 
thermogravimetric analysis), AI could identify the key factors 
for optimizing critical functional properties that maximize 
carbon capture at scale while being economically feasible 
(see these reports for specific AI methods and opportunities 
in this arena). 

In November 2021, Energy Secretary Jennifer Granholm 
announced the Carbon Negative Earthshot to remove 
gigatons of CO2 directly from the atmosphere and durably 
store it for less than $100 per ton of net CO2-equivalent. This 
target calls for an all-hands-on-deck effort to innovate and 
scale up technologies in the growing field of carbon dioxide 
removal (CDR). The U.S. Department of Energy (DOE) 
defines CDR as a “wide array of approaches that capture 
CO2 directly from the atmosphere [where CO2 accounts for 
about 420 parts per million (ppm)] and durably store it in 
geological, biobased, and ocean reservoirs or in value-added 
products to create negative emissions.” The vast majority of 
climate and energy models for achieving net-zero emissions 

https://www.energy.gov/fecm/articles/roles-artificial-intelligence-support-fecm-priorities?auHash=VQIMTzYZc4MdpN1u7kKK1JYwMsb4HVCYTOQg2nqaF6o
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by 2050 indicate the need to develop and deploy these CDR 
technologies in the near term [6]. 

DOE research to support the Carbon Negative Earthshot 
explores diverse CDR approaches, including direct air 
capture (DAC), soil carbon sequestration, biomass carbon 
removal and storage (BiCRS), enhanced mineralization, 
ocean-based CDR, and other mechanisms. Fully 
investigating and understanding these approaches will help 
decision makers select the appropriate pathways to 
effectively meet U.S. goals and a range of community needs 
while achieving equity, cost, and sustainability targets [7]. 

AI for carbon capture and materials integrity discovery can 
help drive key technology breakthroughs and identify 
deployment strategies that are fit for purposes related to 
variations in geographic and operational requirements. This 
tailoring will be key to ensuring the viability of carbon capture 
deployments at commercial scales. 

CHALLENGE 4: EMISSIONS PREDICTION, 
MEASUREMENT, AND MITIGATION  
Addressing (1) hard-to-electrify sectors, heavy 
industry, and buildings, and (2) emerging threat(s) 
from unknown (passive, inert) sources (such as 
gaining energy infrastructure, wellbores, facilities). 
Even with large-scale electrification, several hard-to-electrify 
sectors like rail, marine, and aviation and heavy industry like 
iron, steel, and cement production would continue to use 
liquid and gaseous fuels with potential for GHG emissions 
(e.g., [8]). Emissions arising from unknown sources such as 
infrastructure, historical resource, and legacy equipment 
need to be detected in a timely fashion for efficient 
abatement. Presently, there are technology gaps and other 
factors (e.g., aging infrastructure [9], weather events, etc.) 
that result in unintended and sometimes not immediately 
detected emissions (e.g., [10], [11]). Thus, a certain amount 
of GHG emissions are inevitable, while the rest could be 
stored or recycled. GC4 would feed into GC1 to develop clear 
criteria on acceptable levels of CO2 emissions for these hard-
to-electrify sectors and unknown sources. Individual tools to 
predict efficiency and emissions from these reacting flow 
systems exist for fossil-based fuels; however, they need to be 
adapted for low life-cycle carbon fuels (LLCFs) like H2, 
methanol, ammonia [NH3], and biofuels, etc. In addition, safe 
operation with these new fuels would require understanding 
and abatement of rare/catastrophic events like H2 leakage, 
flame flashback, and blow-out, etc. The occurrence of low-
probability but high-impact rare events poses critical 
challenges to performance and reliability. 

There are risks of emissions, including of methane, CO2, 
ozone, and more, from existing, aging, passive, and 
abandoned infrastructure. In the United States, natural gas 
and petroleum systems are the largest industrial source of 
methane emissions [12]. Other greenhouse gas emissions 
from industrial sources remain difficult to abate, while also 

accounting for trillions of tons of the CO2 already emitted and 
present in Earth’s atmosphere. Cumulatively, new and 
historical greenhouse gas emissions account for an 
estimated 10 gigatons of CO2 (GtCO2) globally that will need 
to be removed from the atmosphere annually by 2050, with 
up to 20 GtCO2 being removed annually by 2100 [13]. 

Active industrial sources (e.g., steel, cement, and chemical 
manufacturing), along with orphan wells (documented and 
undocumented), abandoned pipelines, and storage facilities 
pose emissions and other risks to human health and the 
environment, now and as they age. 

With land use changes, population changes, and climate 
change, the need to catalog, characterize, and forecast the 
future risks posed by these legacy elements will benefit from 
local to national-scale AI modeling. The opportunity exists for 
AI to assist with forecasting where these risks will emerge, 
particularly with changing climate and land use over time, as 
well as to predict what infrastructure is most susceptible to 
material degradation. AI will be enlisted to help model and 
discover alternative remediation technologies, such as 
wellbore plugging materials or approaches not yet viable 
commercially or technically or even discovered yet, or to help 
identify opportunities for alternative uses of some 
infrastructure to meet future needs while mitigating risks.  

These cross-cutting problems are of interest across DOE 
offices such as FECM, EERE, Vehicle Technologies Office 
(VTO), Industrial Efficiency and Decarbonization (IEDO), and 
the Building Technologies Office (BTO), etc., and across 
other agencies like NASA, Federal Aviation Agency (FAA), 
U.S. Department of Agriculture (USDA), and others. Overall, 
GC4 aspires to improve system efficiencies by 30-40% 
(depending on the sector), which will result in subsequent 
reductions in emissions [5]. Recent advances in AI and 
surrogate models, AI-based prediction, and control of 
complex engineered systems will be leveraged to achieve 
this goal.  

3.2 Advances in the Next Decade 
CHALLENGE 1: “DISCO2VER”  
Addressing the need for an AI-enabled digital 
planet twin to accelerate clean energy transitions 
and inform safe and enduring greenhouse gas 
mitigation approaches. 
Individual energy systems can provide detailed data sets that 
could be used to train large foundation models. Differential 
programming (e.g., AI for software engineering and 
programming) can be used to modify current science-based 
models of individual energy systems so that they are more 
effective within an AI model framework. Finally, a “mixture of 
expertise” model can be used to combine individual energy 
system models into a comprehensive coupled energy system 

https://www.energy.gov/fecm/carbon-negative-shot
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model that can be used by planners and decision makers to 
perform scenario analyses of the coming energy transition(s). 

CHALLENGE 2: REALIZING A VIRTUAL 
SUBSURFACE EARTH MODEL 
Making it possible to utilize the subsurface for 
environmentally friendly extraction of resources 
and safe storage of waste and emissions. 
High-resolution subsurface measurements under extreme 
conditions are now possible because of the rapid 
advancements in downhole characterization techniques, the 
advent of real-time geophysics, and new distributed sensing 
with fiber optics. These new methods produce big datasets 
that shift the data-scarcity paradigm, once very prevalent in 
subsurface science, to an emerging paradigm of multiple 
large yet noisy datasets that need to be combined and 
properly interpreted to better constrain subsurface simulation 
[4]. These geophysical techniques offer great potential but 
have economic limitations on their deployment and afford 
only indirect information about the subsurface. Reducing 
deployment and processing costs, as well as developing 
trustworthy validation approaches using science-based 
models and more sparse and directly measured data, will 
afford opportunities for AI-accelerated breakthroughs in 
improving the resolution and our understanding of the 
subsurface. AI for advanced property inference shows 
promise for combining these multi-modal data streams to 
especially key quantities of interest (e.g., the location of 
critical materials, permeability of formations, porosity, in situ 
temperature, pressure, and much more), thereby 
transforming our currently opaque view of the subsurface into 
a more transparent one.  

CHALLENGE 3: ACCELERATING IDENTIFICATION 
OF NEW MATERIALS AND/OR MATURATION OF 
EXISTING MATERIALS  
Ensuring optimal performance and viability when 
deployed at commercial scales for carbon capture 
and removal. 
Emissions mitigation and materials strategies will require both 
point-of-source and direct air capture materials solutions. 
These include activities to build upon existing research on 
point source capture (PSC) materials to accelerate 
technology deployment [5] to capture far more 
concentrated CO2 streams from power plants and industrial 
point sources than are viable to date. Large volumes of data 
on a range of materials and equipment are available (e.g., the 
National Carbon Capture Center) that can serve as 
information to drive breakthroughs in AI-informed PSC 
materials. AI modeling using this data and other resources for 
material process data from PSC could accelerate 
predictions and improve understanding of conditions, 
limitations, and process requirements of materials for DAC 
systems. AI may also help resolve how to adapt PSC 

materials (sorbents, solvents, etc.) for DAC applications. 
Designing energy-efficient systems for both PSC and DAC 
will also benefit from AI-based advanced optimization tools.  

To resolve these needs for both PSC and DAC, science-
based research and AI innovations are needed to: 

 Improve material life and performance. 

 Predict effectiveness of a material and process for specific 
site/boundary conditions. 

 Predict impacts of impurities and atmospheric conditions. 

 Predict better materials or make improvements to capture 
materials for commercial-scale operations. 

 Predict and optimize materials and designs for 
electrochemical-based systems when they are significantly 
scaled up for commercial deployment.  

 Predict costs of novel materials with scale up. 

Other similar applications are discussed in more detail in 
DOE FECM’s AI Needs in Critical Program Areas reports 
[14]. 

CHALLENGE 4: EMISSIONS PREDICTION, 
MEASUREMENT, AND MITIGATION  
Addressing (1) hard-to-electrify sectors, heavy 
industry, and buildings, and (2) emerging threat(s) 
from unknown (passive, inert) sources (such as 
gaining energy infrastructure, wellbores, facilities). 
Applied energy R&D is working to improve technologies to 
better detect, quantify, abate, and prevent methane 
emissions across the oil and gas supply chain [5]. This effort 
includes design of an Integrated Methane Monitoring Platform 
to continually collect, curate, and analyze data on 
thermogenic methane emissions. AI can transform emissions 
science because it can extract signal(s) from noisy datasets, 
thus reducing the threshold for detection and enabling more 
accurate quantification. AI can also be used to help 
decision makers with science-informed methane abatement 
and leakage prevention strategies. The platform’s centralized 
software system and AI models will curate and analyze 
methane sensor data collected across various temporal 
frequencies, altitudes, and geographical ranges (local, basin, 
regional, and national scale) along with environmental data 
(wind speed and direction) to deliver accurate estimates of 
the sector’s methane emissions. As AI tools and models in 
emissions mitigation are improved and validated, proven 
accurate, and earn industry confidence, they may inform the 
Pipeline and Hazardous Materials Safety Administration 
(PHMSA) process for developing new AGI codes and 
standards to mitigate and prevent methane leaks. 

DOE-affiliated R&D programs are also supporting research, 
development, demonstration, and deployment (RDD&D) 
activities in methane mitigation [5] on 
undocumented/orphaned wells, pipeline integrity, geologic 

https://netl.doe.gov/sites/default/files/netl-file/22CM_PSC16_Wu.pdf
https://netl.doe.gov/sites/default/files/netl-file/22CM_PSC16_Wu.pdf
https://www.energy.gov/fecm/articles/roles-artificial-intelligence-support-fecm-priorities?auHash=VQIMTzYZc4MdpN1u7kKK1JYwMsb4HVCYTOQg2nqaF6o
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storage for hydrogen, and crosscutting issues. AI and ML [14] 
can assist in developing the capabilities to achieve these 
goals and help mitigate the most severe impacts of climate 
change. 

In addition, the Exascale Computing Project (ECP) and other 
advanced computing resources (e.g., Cloud, HPC, edge 
computing) have delivered capabilities and tools that can be 
leveraged over the next decade to accelerate prediction of 
emissions from various energy systems to inform holistic and 
near-real-time understanding of sources, and how to mitigate 
these emissions. Foundational models can be generated 
from spatiotemporal evolution of the thermochemical state in 
flow systems, which can be utilized for prediction of normal 
and rare events. Rapid iterations in design processes are 
necessary with new LLCFs, which require the exploration of a 
large number of parameters, of which typically only a small 
subset of parameters have been historically modified. AI also 
offers capabilities for automated discovery and assessment 
of the underlying precursors and causalities governing rare 
events. Such capabilities are essential for the development of 
prognostic and control strategies to enable safe operation of 
these devices [15]. 

3.3 Accelerating Development 
The resources needed to accelerate carbon management 
solutions to meet 2050 goals are largely cross-cutting in 
nature. DOE FECM has evaluated and documented AI R&D 
opportunities for accelerating the needs of the four key 
carbon management challenges above [14]. Thematically, all 
four challenges align to specific areas that can be addressed 
to accelerate a safe, secure, and AI-informed clean energy 
transition. These include: 

 Data Aggregation: Many large data sets exist, but they 
need to be aggregated to enable AI training. A central 
repository that unifies the geoscience, applied materials, 
social, environmental, and other data resources that align 
to carbon management systems will help accelerate the 
research priorities described above, as well as highlight 
gaps that can be mitigated with new collection or synthetic 
data acquisition efforts. In the applied energy space, the 
Energy Data eXchange® from the National Energy 
Technology Laboratory (NETL)/FECM and several 
program-aligned renewable energy data hub platforms 
hosted by the National Renewable Energy Laboratory 
(NREL) offer more than a decade’s worth of resources 
upon which this effort can continue to build. 

 Data Veracity: We will need to further leverage ECP codes 
to develop gold-standard datasets for the full energy 
system. As necessary, high-fidelity experimental datasets 
would also need to be generated to validate the models. 
Curation of multi-modal scientific data sets, fusing 
experimental and computational data sets to develop 

surrogate models that can be used for robust design 
optimizations, would be essential. 

 Methods: Transformer and next-generation ML 
architectures must be developed that can handle very large 
context windows beyond the 100k token windows that 
state-of-the-art large language models are using in order 
develop foundation models capable of accurately 
forecasting these complex coupled energy systems. Some 
work, as with Cross-attention and Mamba, has already 
started in this direction. Key breakthroughs are needed to 
reveal the underlying causalities associated with rare 
events, including advances in the following: deep 
generative models for representation learning, 
interpretability, and uncertainty quantification (UQ) in deep 
learning to reproduce and predict rare events and improve 
model robustness and trust; causal reasoning with AI to 
understand the root causes of rare events; asynchronous 
active learning approaches to tackle data imbalance; and 
scaling of AI methods to handle large simulation and 
experimental datasets. Multi-scale sequence modeling 
architectures are also needed that can scale to diverse 
multi-modal and multi-resolution data sets. 

 Workflows: Current physics-based models will need to be 
modified with techniques such as differential programing to 
make them compatible with AI workflows. These workflows 
will need to couple disparate energy system models into a 
comprehensive digital twin of the full energy system.  

 Connections to experiment, simulation, theory: Validating 
AI models is very different from validating traditional 
physics-based simulators. In order for these models to be 
trustworthy, both theory and experiment need to be 
carefully integrated into AI workflow to both constrain and 
validate these models.  

 Test beds: The field needs to provide environments that 
support development of trustworthy, real-world applications 
of AI [16]. DOE’s applied energy labs have several existing 
test beds developed for carbon management purposes, 
including (1) DOME (Demonstration and Operation of 
Microreactor Experiments), (2) LOTUS (Laboratory for 
Operations and Testing in the U.S.) Test Bed, (3) the 
Energy Data eXchange multi-cloud and advanced 
computing system EDX++, (4) EDXSpatial, (5) Cyber 
range, and (6) the ARIES platform. 

 Scale of team: Diverse teams of experts with background 
in domain science, computational science, AI methods, 
workflow, and automation are necessary for success 
across the national lab system. Long-term (e.g., 5–10 year) 
investments are needed with a large team (e.g., 20–40 
people each spending ~50–100% of their time on this effort 
would contribute to a good chance of success).  

 Scale of model: This is a big open question, but we 
estimate that a model with less than 100B parameters 
could be trained that would have a transformational impact 

https://edx.netl.doe.gov/about
https://arcgis.netl.doe.gov/portal/apps/sites/#/edxspatial
https://www.nrel.gov/security-resilience/cyber-range.html
https://www.nrel.gov/security-resilience/cyber-range.html
https://www.nrel.gov/aries/


 

03. CARBON MANAGEMENT 

AI FOR ENERGY  

32 

on carbon management. The goal is that these large 
foundation models will exhibit emergent properties such as 
“few shot learning” that enables these models to forecast a 
wide range of scenarios accurately without the need for a 
full retraining of the model. 

 Deployment: We anticipate that this model could be 
deployed in a manner similar to how the Llama models 
were deployed. With <100B parameters, it should be 
possible to perform inference or fine-tune the model, with 
the model residing on relatively modest hardware 
Deployment involves not only providing these tools to 
industry but also training them for appropriate use.  

 Critical partnerships: Data-holders are key partners, 
including the U.S. Geological Service (USGS) in general, 
as well as the Earth MRI program, NASA, and the 
U.S. Environmental Protection Agency (EPA). Industrial 
partners, such as original equipment manufacturers of 
different devices, could add significant value if they can be 
coaxed into sharing data and will be critical to success. 
Partnerships with companies in energy resources, 
transmission, and production, as well as the technology 
industries are essential for mitigating emissions.  

 Risks, safeguards, and security requirements: The release 
of such a model has the potential to induce the analogs of 
gold rushes — people flocking to extract value from parts 
of the earth that were previously not recognized as 
valuable. Ethicists should be brought in to help roll out the 
data and models safely. There are also growing concerns 
related to trustworthy data, both about its use to train AI 
models but also to validate and explain their outcomes. It 
will be crucial to ensure that data from the carbon 
management sector are robust and appropriate and fit for 
use — and that efforts are made to identify poor data or 
even fraudulent data before it is amplified in AI-informed 
applications for carbon management solutions. 

 Workforce and training requirements: Acquiring a suitable 
workforce will be challenging given strong competition from 
industry. A robust DOE-wide training program for postdocs 
and staff would be valuable. 

3.4 Expected Outcomes 
CHALLENGE 1: “DISCO2VER”  
Addressing the need for an AI-enabled digital 
planet twin to accelerate clean energy transitions 
and inform safe and enduring greenhouse gas 
mitigation approaches. 
Expected outcomes are to: (1) develop an accurate model to 
optimize different energy transition scenarios to maximize 
energy and minimize emissions; (2) minimize emissions of 
methane during production, processing, transportation, 
storage, and use across the coal, oil, and gas industry to 

eliminate nontrivial methane emissions from carbon-based 
fuel supply chains by 2030; and (3) advance cost-effective 
technology to identify, quantify, and predict methane leaks 
across sectors more efficiently and to improve both the 
accessibility and reliability of methane emissions data [5][14]. 

CHALLENGE 2: REALIZING A VIRTUAL 
SUBSURFACE EARTH MODEL 
Making it possible to utilize the subsurface for 
environmentally friendly extraction of resources 
and safe storage of waste and emissions. 
Expected outcomes are to transform our currently opaque 
view of the subsurface into a virtual system to inform and 
improve transparency both spatially and temporally so as to 
best utilize the subsurface for environmentally friendly 
resource utilization and waste storage. 

CHALLENGE 3: ACCELERATING IDENTIFICATION 
OF NEW MATERIALS AND/OR MATURATION OF 
EXISTING MATERIALS  
Ensuring optimal performance and viability when 
deployed at commercial scales for carbon capture 
and removal. 
Expected outcomes are to reduce carbon dioxide to: 
(1) accelerate and enable optimal materials for commercial-
scale operations; (2) ultimately, to help establish commercial 
viability of diverse CDR and PSC approaches in the service 
of facilitating gigaton-scale removal by 2050, emphasizing 
robust analysis of life cycle impacts of various CDR 
approaches and a deep commitment to environmental justice, 
including rigorously evaluating CDR, defining conditions for 
success, and leveraging leadership and expertise [5][14]. 

CHALLENGE 4: EMISSIONS PREDICTION, 
MEASUREMENT, AND MITIGATION  
Addressing (1) hard-to-electrify sectors, heavy 
industry, and buildings, and (2) emerging threat(s) 
from unknown (passive, inert) sources (such as 
gaining energy infrastructure, wellbores, facilities). 
Expected outcomes are to improve system efficiencies by 
30–40% (depending on the sector), which will result in 
subsequent reductions in emissions. Traditional methods are 
not capable of delivering these advances in the next decade. 
Foundation models and AI-based surrogate models, together 
with leadership-class computing, will be indispensable to 
achieving the necessary emissions reductions in the next 
decade. 
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04. ENERGY STORAGE 
Independent of the technology used for energy production 
and effective distribution systems, energy storage will be a 
major component of future energy systems. Energy storage 
requirements at this magnitude demand a broad combination 
of different technologies to support the diverse needs of 
society, ranging from industry-scale, short-term buffers to 
stabilize the grid, to individual transportation modes 
emergency power backup, or seasonal storage for 
communities. The growth and demand for various energy 
storage systems meeting increasingly stringent performance 
requirements has become a primary challenge for the 
industry to adopt these technologies for various use cases. At 
the highest level, to meet the cost and performance targets, it 
is this extreme diversity of the solution space that makes 
developing new energy storage approaches especially 
challenging. At every stage, including material design, efforts 
to scale up, integrate, and operate multiple storage sites tied 
to the grid for various use cases are daunting and the most 
challenging tasks with current methodologies. We face an 
urgent need to dramatically reduce the development cycle 
from conception to deployment for energy storage 
technologies. The current processes take too long, and the 
complexities of managing the resulting storage ecosystem 
are too daunting to deliver solutions with the temporal and 
spatial coverage scales required to meaningfully address the 
climate crisis and maintain our competitive advantage. 

4.1 Grand Challenges 
We will first describe three grand challenges in detail and 
discuss how a strategic use of AI will enable disruptive 
advances that can massively accelerate development of the 
new storage technologies as well as the new paradigms that 
will reliably control and efficiently optimize the multi-scale 
storage networks within the next-generation power grid. 
Furthermore, for each grand challenge, the section will 
outline existing gaps and the critical research efforts 
necessary to realize the vision of ubiquitous and reliable 
energy storage. 

CHALLENGE 1: RAPID DEVELOPMENT OF 
ENERGY STORAGE TECHNOLOGY 
Given the need to decarbonize our energy systems and the 
growing demand for renewable energy, there is an immediate 
need to rapidly accelerate the development of affordable, 
high-efficiency, and secure energy storage solutions for the 
next generation. Global demand for energy storage is 
expected to grow by about 33% annually to reach 4,700 GWh 
by 2030, with revenue opportunities of over $400B [1]. The 
usual development cycle for energy storage technologies 

typically takes between 5 to 10 years. However, the current 
environmental and economic challenges require us to reduce 
the development cycle to mere months. This is a major 
challenge requiring advancements in materials discovery, 
scalable manufacturing, simulation technologies, product 
reliability, and cost effectiveness. 

“A ten-times increase in the weight-oriented density of 
batteries would enable so many moonshots, if we can find a 
great idea. We just haven’t found one yet,” noted Astro Teller, 
Google X [2]. Transforming efficiency, reliability, and the 
resilience of energy storage technologies demands a deeper 
understanding and innovative strategies to manage the 
dynamics, which are determined by the underlying physical 
and chemical phenomena. Similarly, harnessing energy 
through heat storage holds promise for offering cost-effective 
solutions. Heat stands as the predominant energy form, 
constituting 50% of global final energy consumption.  
Currently, decarbonizing low-temperature heat (< 400°C) is 
relatively easier, while tackling high-temperature industrial 
sectors such as iron, steel, and cement proves to be 
significantly challenging. Strengthening our abilities in 
managing, storing, converting, and efficiently harnessing heat 
energy particularly within the temperature range of 400°C to 
1500°C will be pivotal in preventing global warming from 
exceeding 2°C. Thermal energy storage and thermal 
transport stand out among the five thermal grand challenges 
identified in thermal science [3]. 

Designing energy storage systems is a prototypical example 
of a multi-scale and multi-physics problem, the solution of 
which may depend as much on understanding activation 
barriers, molecular-scale transport, thermodynamics, and 
reaction kinetics as it does on full-scale system design — and 
all scales in between. Each scale typically involves different 
computational tools, different experimental facilities, and most 
importantly, different types of technical expertise. As a result, 
designing, developing, and deploying a new storage solution 
involves many interdependent yet often isolated technical 
advances. Each of these steps may take years to mature, 
and failure in any one of them may reverse progress in all 
others. For example, a new material with great properties at 
the micro scale may later exhibit unwanted macro-scale 
behavior, prove corrosive or toxic, and degrade unexpectedly 
fast in a real-world deployment or prove incredibly hard to 
manufacture at scale. While some of these scientific 
challenges are unavoidable, one overarching technical 
problem is the slow transfer of knowledge and requirements 
between different aspects of the problem. 

As with most other scientific disciplines, energy storage 
research relies on high-performance predictive simulations [4] 
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to plan and analyze real-world experiments. However, even 
with the introduction of exascale computing, simulating an 
operational facility at atomistic fidelities is infeasible by many 
orders of magnitude. In fact, each scale of the problem 
typically employs its own approximations of the relevant 
physics, which may mean first-principles quantum dynamics 
simulations on one end and Reynolds-averaged Navier-
Stokes solvers at the other. Within this ecosystem, each 
coarser-scale simulation model is fitted to match the finer-
scale results to preserve the salient physics as best as 
possible. The challenge is that traditionally, both model 
design and fitting are laborious manual processes, and 
models are limited to a relatively small set of scalar inputs 
and outputs. As a result, it may take years for any 
breakthrough on the quantum scales to have any impact in 
prototype development, and more complex work cannot be 
accelerated easily. Instead, we need a new framework in 
which models at all scales are directly and automatically 
coupled and in which any expensive subcomponent can be 
replaced by a corresponding model. This shift in framework 
will enable a massive acceleration of high-fidelity models that 
easily and automatically integrate new developments and 
provide the predictive capabilities needed for rapid 
development and deployment of new storage technologies. 
We recognize that computational modeling approaches 
across such large spatial and temporal scales are intractable 
and need a new modeling paradigm to bridge the scales. In 
the past ten years, computational scientists have developed 
advanced simulation codes to expedite the discovery of 
energy storage materials through high-throughput screening 
and electrochemical transport analysis across different 
scales. Concurrently, experiments conducted at DOE science 
user facilities within multiple national laboratories have 
generated a significantly large quantity of data for 
investigating materials at nanoscale. Therefore, there is a 
unique opportunity for AI to fuse computational models and 
experimental data to enable a new energy storage materials 
development framework across traditional siloed scales [4]. 

The development of closed-form models with a relatively 
sparse set of input and output parameters both to ensure that 
the resulting approximations are scientifically valid and 
because existing statistical and modeling tools have been 
fundamentally restricted has been the limiting case. Notably, 
research from the last few decades on energy storage has 
created a plethora of data. For the existing energy storage 
technology, the time needed to analyze this data often 
exceeds the time it takes to collect it by a factor of ten. 
Moreover, when new manufacturing methods are needed for 
new materials, we need to adapt the existing models to the 
new systems. 

Advancements in materials science are needed for 
accelerating the exploration of novel lithium compounds and 
solid-state electrolytes. These same developments can be 
extended to other technologies for the discovery of innovative 

thermal energy storage materials and synthesis 
methodologies for a wide range of operational temperatures, 
while satisfying all thermodynamic, kinetic, and functional 
property criteria. Specifically, energy storage technology 
needs new materials that can offer higher energy density, 
longer lifespans, natural abundance, and environmental 
friendliness. In addition, we need to innovate in scalable 
manufacturing technologies to automate and streamline 
production of energy storage materials. Such scalable 
technologies also need to be modular in the future so that 
they can be easily adapted to emerging demands and 
technological advancements. Automated quality control 
measures and rigorous testing protocols are required at every 
stage of the design and production to guarantee reliability 
and safety. Advanced data-driven monitoring and 
optimization technologies are needed to predict and prevent 
potential failures and to reduce material costs and improve 
efficiency. Finally, the incorporation of digital twins (DT) 
technology will become pivotal. For materials science, the 
challenge lies in developing computationally cheap but also 
accurate DTs to simulate and analyze many new materials 
before synthesis. DTs can significantly accelerate the 
discovery and testing of materials that offer higher energy 
density, longer lifespans, and environmental sustainability. In 
scalable manufacturing, the challenge is to develop DTs that 
can emulate the production processes. The virtual replicas of 
manufacturing systems enable automation and optimization 
and can offer promising methods to implement and evaluate 
rigorous testing protocols. These DTs can also be adapted 
for new and related systems. The overarching challenge is to 
cover the entire materials discovery workflow for energy 
storage through DT technologies with the goal of reducing the 
development cycle from decades to months. 

CHALLENGE 2: EFFICIENT ENERGY STORAGE 
DEPLOYMENT, OPERATIONS, AND CONTROL 
To completely decarbonize the electric grid and transition to 
net zero, we must address design, optimization, deployment, 
operations, and control of energy storage systems at the 
national level. Applications range from enhancing grid 
stability and resilience; to enabling decarbonization of 
buildings, transportation systems, and industrial systems; to 
realizing decarbonization of the power grid at large, given that 
energy storage at various timescales could mitigate intra-day 
and inter-season variability of demand. 

Designing the location, type, and size of energy storage 
systems requires understanding the need for storage to 
support both mobile transportation systems, as well as 
stationary systems for the electric grid, buildings, and 
industrial processes.  

Considering additional factors such as temporal/geospatial 
complexities, economic metrics (CAPEX and OPEX) and 
regulatory changes, etc., the optimal decision-making for 
energy storage systems siting requires evaluations of various 
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scenarios that involve innumerable combinations of the 
aforementioned factors. This need presents a significant 
barrier to applying traditional approaches based on 
computationally expensive simulations, while presenting 
opportunities for generative AI or surrogate modeling 
approaches. 

Real-time strategies in energy storage involve dynamic 
control and optimization of storage operations based on grid 
demand, renewable generation variability, and energy costs. 
Advanced predictive methods are required to forecast 
demand and generation patterns, enabling storage systems 
to charge during low demand or high renewable generation 
periods and discharge during peak demand. This real-time 
operational flexibility is crucial in managing grid fluctuations 
and ensuring a consistent energy supply. The need to 
respond to dispatch commands and maintain reliability is one 
of the major requirements for the flexible energy storage 
solution. Furthermore, we can enhance the reliability of a 
renewables-dominated grid by providing data-driven and 
proactive methods such as frequency regulation and 
voltage control. 

Development of distributed energy storage systems is an 
important area for energy storage deployment. Distributed 
systems can enhance local grid resilience and provide 
communities with greater control over their energy sources. 
Such transformative deployment methods are critical for 
areas where grid stability is a major concern, such as remote 
or underserved regions in the country. 

The distributed energy storage system should augment 
existing grid infrastructure to provide peak-shaving 
capabilities. The deployment of these distributed energy 
storage systems should be optimized to reduce the critical 
points and stresses in the grid and to mitigate supply-demand 
mismatches. One of the possible pathways is to aggregate 
the distributed energy resources as virtual power plants that 
can supply resilience and provide grid services like a 
traditional power plant [5]. To ensure a steady and reliable 
power supply, the distributed energy storage deployment 
strategy will need to manage the variability of stochastic 
energy resources such as wind and solar. In effect, we need 
a fully integrated smart grid, where energy storage 
technology will become one of the fundamental blocks of the 
grid architecture. This functionality may provide long-duration 
storage solutions to manage seasonal demand variability in 
energy generation and consumption. We must develop 
integrated solutions that holistically consider technological 
advancements and also the economic, regulatory, and social 
aspects of energy storage. These solutions should be 
scalable, adaptable to different geographic and 
socioeconomic settings, and should pave the way for an 
equitable energy transition. Additionally, understanding the 
lifecycle performance, material flow, and recycling aspects of 
energy storage technologies as they are developed, 
implemented, and managed will be crucial, as we aim for 

system circularity. Given these complexities, transformative 
and scalable solutions are required. 

CHALLENGE 3: EQUITABLE AND ACCESSIBLE 
DEPLOYMENT 
Equitable and accessible deployment of energy storage 
solutions is important to ensure that the advancements in 
energy storage are beneficial across diverse markets and 
communities. 

Significant reductions in operational costs can be achieved 
through a wide range of energy storage system optimizations 
such as fast and efficient charging and discharging cycles 
and predictive maintenance. These cost reductions will be 
critical for extending the benefits and advantages of 
advanced energy storage solutions to a broader range of 
communities. In fact, significant barriers exist to achieving 
widespread, equitable deployment. For example, operational 
cost savings can be realized via optimizations in energy 
storage systems, such as through quick, efficient 
charge/discharge cycles and predictive upkeep, which are 
key to expanding the reach of sophisticated energy storage to 
more communities. However, some communities may have 
limited access to advanced technologies and connectivity. 
Overcoming this challenge is not trivial as it requires 
initiatives to enhance smart energy infrastructure in these 
areas. Moreover, it is crucial to ensure that the design, 
deployment, and control of these systems considers the 
diverse energy needs and economic constraints of different 
communities. To that end, we need to develop equitable 
solutions based on diverse settings that can reflect various 
socioeconomic, environmental conditions, and requirements. 
Furthermore, establishing supportive policy frameworks and 
partnerships are essential to deploying energy storage 
technologies in underserved regions. Strategic collaborations 
among technology developers, governments, not-for-profits, 
local utilities, and community leaders can facilitate an 
understanding of local needs and help customize energy 
storage solutions. Equitable and accessible deployment will 
help ensure that the benefits of renewable energy are 
distributed widely. Equitable and accessible deployment 
should also consider the workforce requirements for energy 
storage and how to prepare diverse communities to engage 
in the opportunities for this emerging technology. 

4.2 Advances in the Next Decade 
Prototyping and exploring different storage solutions will 
benefit from density functional theory (DFT) simulations 
enhanced by AI surrogate models for accurate predictions of 
material behavior under diverse conditions. Generative AI 
models will explore vast design spaces to identify optimal 
design configurations for energy storage solutions, taking into 
account various factors such as durability, efficiency, and 
cost. Deep reinforcement learning (DRL) will be used to 
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automate the testing and optimization process, enabling the 
system to learn from each iteration and progressively improve 
the design. AI-enabled optimization and inverse design 
methods will be crucial for efficiently navigating the design 
space, balancing exploration with exploitation to quickly 
converge on the different storage solutions. Last, surrogate 
modeling will offer fast approximations of complex 
simulations, significantly speeding up the prototyping phase 
by predicting the outcomes of the computationally expensive 
experiments without the need for exhaustive testing. 

Over the next decade, autonomous discovery in energy 
storage will leverage specific AI techniques to revolutionize 
material discovery and optimization. Generative models such 
as generative graph neural networks and generative 
language models trained on material data will be central to 
creating complex multimodal data representations, enabling 
the synthesis of new material structures by learning from 
existing datasets. A crucial element of effective machine 
learning atomic potentials is a robust descriptor or input 
vector that accurately captures molecular information that 
could be utilized by algorithms like neural networks to 
understand and forecast features such as bond dissociation 
energy or activation energy. As the generative models 
construct designs based on large datasets, a chemically 
consistent graph with stoichiometry constraints that allow for 
prediction of the most probable pathways to desired products 
in massive reaction networks could accelerate studies that 
have previously been impossible. Physics-Informed neural 
networks will ensure that AI models adhere to physical laws, 
enhancing the reliability of predictions for unseen materials 
and scenarios. Graph neural networks will be critical in 
capturing the complex interactions within materials at an 
atomic level, allowing for the efficient exploration of new 
battery materials and electrolyte solutions. Additionally, 
optimization and RL techniques will optimize the exploration 
of material space, guiding the discovery process toward 
promising candidates by learning from iterative evaluations 
and simulations.  

In manufacturing, AI methods will include digital twin 
technologies that utilize deep learning algorithms for real-time 
monitoring and predictive maintenance, ensuring optimal 
production efficiency. Automated machine learning (ML) 
platforms will streamline the design of ML models for quality 
control, adapting to new manufacturing challenges without 
extensive human intervention. RL will optimize supply chain 
logistics and manufacturing processes, improving efficiency 
and reducing waste. For modular and flexible manufacturing 
systems, multi-agent systems will coordinate the actions of 
various components within the manufacturing line, enhancing 
adaptability and responsiveness to new product 
requirements. Predictive analytics will forecast production 
challenges and market demands, ensuring that 
manufacturing processes remain aligned with future energy 
storage needs. 

Modern deep learning coupled with advanced computational 
workflows has the potential to solve the first challenge of 
rapid technology development by massively accelerating and 
improving predictive modeling at all scales. The key 
innovation is the ability of machine learning technologies 
such as generative models to ingest and produce a wide 
variety of data types as well as complex multimodal data. 
Consequently, any expensive subscale evaluation or phase 
in a multi-physics problem can be approximated using a 
neural network-based surrogate model. Conceptually, this 
statement holds true today, and surrogate models have been 
proposed to accelerate everything from chemical kinetics to 
plasma physics and from climate science to additive 
manufacturing. However, the accuracy of these models often 
remains questionable and, more importantly, existing 
solutions habitually fail to extrapolate to unseen situations. 
Consequently, simulations can be incredibly fast for known 
cases reflecting the training data, yet may fail to predict 
unobserved phenomena, which is one of their goals. 
Furthermore, no reliable uncertainty quantification or failure 
detection methods exist, meaning that problems often remain 
undetected and thus silently continue to provide incorrect 
results. Over the next decade, we expect these problems to 
be addressed through a variety of advances such as physics-
informed models, multimodal foundation models, uncertainty 
and generalization theory, and automatic computational 
workflows. 

Physics-informed models will inherently obey the known laws 
of physics and thus serve both to prevent nonsensical 
prediction as well as reduce the amount of data needed for 
training. Integrating multimodal foundation models will 
provide more reliable data representations for complex 
science data such as spectra, higher-order tensors, and the 
like. These have the potential to significantly improve the 
corresponding surrogate models by offloading the need to 
“understand” the data to the foundation model and reducing 
the surrogate to a simpler functional mapping in a convenient 
feature space. Finally, obtaining a better understanding of 
how confident a model may be in a given prediction and 
reliably detect prediction failures will enable an autonomous 
and nested multiscale modeling framework. For example, a 
coarse-level simulation may detect potential problems in a 
given surrogate via a high uncertainty score or a potential 
failure warning. This result can subsequently trigger 
additional simulation at the finer scales to re-train the given 
model and improve the solution. Automating and nesting this 
process will provide an ever-improving framework in which 
requirements for new information are passed to higher 
fidelities and the resulting improvements are directly 
integrated into lower fidelities. 

AI can make a significant impact in accelerating materials 
science, specifically in the discovery and testing of new 
materials for energy storage such as advanced lithium 
compounds and solid-state electrolytes [6]. AI-based 
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surrogate models can accelerate DFT simulations, which are 
quite expensive to run even on the largest supercomputers. 
For example, intrusive AI models can be used to replace the 
computationally expensive part of the simulation. Non-
intrusive AI models can be used as surrogates for the 
simulation and experiments to predict the properties of new 
materials and narrow down the experimental space. 

Significant early work on computational approaches to 
materials discovery can be traced back to the Materials 
Genome Initiative (MGI) (www.mgi.gov) [7]. The Materials 
Genome Initiative, launched in 2011, is a multi-agency 
initiative for discovering, manufacturing, and deploying 
advanced materials using machine learning and big data 
approaches to advance materials discovery. Among the big 
data approaches to materials discovery that grew out of MGI 
to further battery materials R&D is the Electrolyte Genome on 
battery electrodes and electrolyte materials. Computational 
approaches to rapid screening techniques seek to discover 
new battery materials and rapidly gain an understanding of 
electrochemical interactions and the development of physics-
based performance models; these approaches are now at the 
forefront of battery R&D. A current example is the recently 
announced collaboration between Microsoft Corporation and 
Pacific Northwest National Lab (PNNL) on machine learning 
for advanced materials development. The team has reduced 
the computational materials development time from weeks or 
even months to days, and new solid-state electrolyte 
materials have been synthesized utilizing significantly less 
lithium than found in currently available batteries. This is but 
one example of the progress being made in early applications 
of AI to explore and identify new materials for advanced 
battery manufacturing in the U.S.  

The U.S. Department of Energy’s (DOE’s) Energy Storage 
Grand Challenge Roadmap [8] outlines the national strategy 
to innovate, manufacture, and deploy energy storage 
technologies among various use cases [9], including by 
facilitating an evolving grid; serving remote communities; and 
pursuing electrified mobility, interdependent network 
infrastructure, critical services, and facility flexibility. The 
Roadmap proposes a policy and valuation framework, and it 
projects that the annual U.S. stationary energy market could 
grow from about $2 billion in 2020 to between $6 billion and 
$20 billion in 2030 [10]. In particular, the estimate of the 
global grid-scale battery storage market size was estimated 
to grow 24.4% annually from 2020 to 2027; and the 
deployment of 100 GW of energy storage by 2030 would 
create at least 200,000 jobs without accounting for a surge in 
U.S. technology innovation or expansion of domestic 
manufacturing. The national transportation decarbonization 
blueprint [11] projects that 50% of the new light-duty vehicle 
sales will be electric vehicles (EVs) by 2030, and the 
numbers for the medium- and heavy-duty EVs will be 30% 
and 100% by 2030 and 2040, respectively. In addition, the 
U.S. has lost $120 to $190 billion per year due to power 

outages and power quality degradation for all industries 
combined [12], which can be mitigated by the energy storage 
solutions. The resilience value of energy storage was further 
quantified by [13] depending on use cases: $10/kW-year for 
voltage support, roughly $100/kW-year for capacity and 
frequency regulation services [14], and $719/kilowatt-year for 
mitigating short-term outages.  

A number of AI-based solutions have been proposed to 
manage the energy storage systems and thus achieve 
greater system and societal benefits. For instance, [15] 
summarizes existing reinforcement learning-based 
approaches to control and optimize battery storage solutions 
for various use cases (Figure 4-1). Deep Q-Learning-Based 
methods were proposed in [16] to operate the battery storage 
solutions considering the system uncertainties, while [17] 
aggregates electric vehicles as a power “battery” that 
participates in the energy and demand response markets 
using decentralized optimization techniques. 

 
Figure 4-1. Application overview based on the review in [15]. 

AI tools and approaches can be used to optimize 
manufacturing processes for energy storage devices. The 
adoption of AI in automation technologies can improve 
production efficiency. From the initial design to the final 
assembly, AI has the potential to optimize every step of the 
various manufacturing processes. This optimization includes 
automating repetitive tasks and synthesis, optimizing supply 
chains, and controlling the quality. AI can also help in the 
development of flexible and modular manufacturing systems 
that are responsive to evolving technologies and market 
demands. Figure 4-2 summarizes examples of key 
opportunities and goals for AI to accelerate integrating 
historic knowledge with autonomous and automated 
experimentation and thus support R&D on energy storage. 

http://www.mgi.gov/
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Figure 4-2. Opportunities and goals for AI to accelerate R&D for 
energy storage (Source: Ricarda Laasch, Lawrence Berkeley 
National Laboratory). 

Proactive approaches to maintenance are required to ensure 
the long-term reliability and safety of energy storage 
technologies. To that end, AI can be used to implement 
advanced analytics to monitor, predict, and prevent potential 
failures in energy storage systems. The use of AI in 
developing digital twins can transform the way energy 
storage solutions are designed, tested, and maintained. 
AI-based DTs can provide virtual environments for rigorous, 
expansive, rapid, and inexpensive testing and optimization. 
These AI-based DTs can be adapted continuously to new 
simulation, experimental, and field data so that the testing 
environments are up to date. 

Due to the variation in energy demand and the variability in 
renewable energy generation, we need a flexible and 
responsive control system for energy storage and by 
extension for the electric power grid. AI will reduce the 
complexity in managing the real-time operations of energy 
storage systems. AI, with its advanced predictive algorithms 
and models, can forecast energy demand and variable 
renewable energy generation patterns, which can be 
subsequently utilized to train more responsive and data-
driven control strategies. This can allow energy storage 
systems to optimize the charge/discharge schedule. 
Furthermore, AI can optimize energy storage for frequency 
regulation and voltage control services, which are crucial for 
improving grid reliability. This AI-enabled, real-time 
operational efficiency will be key to managing grid 
fluctuations and ensuring a consistent energy supply. 

AI can aid in the planning, design, and deployment of 
distributed energy storage systems. This is vital for 
enhancing grid resilience and for providing communities with 
control over their energy sources. Deployment optimization 
(driven by AI) will reduce the stressed areas of the grid and 
balance supply and demand. As we move toward more 
renewable energy, AI’s role will expand to managing the 
variability of wind and solar power through these distributed 
energy storage systems. 

AI-enabled grid infrastructure for the U.S. will advance our 
ability to manage energy distribution in a way that is 
affordable, efficient, reliable, and supportive of global 

decarbonization efforts. AI systems will be important for 
designing and operating a fully integrated smart grid, where 
energy storage is a fundamental component. AI can help 
manage long-duration storage solutions to accommodate 
daily, weekly, seasonal, and decadal variability in energy 
production and consumption. AI’s role in this future grid 
extends to optimizing decarbonized grid planning and 
operation by minimizing energy losses and maximizing the 
use of renewable sources. 

AI can enable energy storage solutions that are more 
adaptable and cost effective and can play a major role in 
democratizing access to clean and reliable energy. Tailoring 
energy storage solutions to the needs of different 
communities is one of the major benefits of a smart grid. AI 
can be used to analyze the different energy usage patterns, 
environmental conditions, and economic constraints of 
different communities. This effort will enable the holistic 
design and development of customized energy storage 
systems with different cost, efficiency, and reliability trade-
offs. AI can make a significant impact in reducing the digital 
divide, one of the key barriers to equitable deployment of 
energy storage solutions. In many underserved communities, 
limited access to advanced technologies and connectivity 
hinders the adoption of modern energy solutions. AI, coupled 
with advancements in digital infrastructure, can help bridge 
this gap. AI can help us develop energy storage systems that 
are less reliant on high-end technological infrastructure or 
that can operate with limited connectivity. 

4.3 Accelerating Development 
Using AI to drive more rapid development of energy storage 
technology requires the integration of diverse and complex 
data types in the energy storage domain. This domain’s 
inventory includes scientific papers, numerical simulation, 
experimental performance data, and environmental impact 
assessment data. AI can combine these data sets to 
accelerate materials discovery, improve designs, and predict 
long-term performance and environmental footprints. Having 
a common platform on which to collect and integrate such 
varied data is crucial for developing more efficient energy 
storage solutions. 

Developing surrogate models represents a significant 
advancement in accelerating DFT simulations, a critical 
computational tool in materials science research. These 
surrogate models will be trained to approximate the output of 
DFT simulations and/or to replace the computationally 
expensive part of the simulation and thus enable fast 
predictions of the properties of new materials. These 
surrogate models learn to approximate the quantum 
mechanical calculations at a fraction of the time and 
computational cost. 

The potential of multimodal AI foundation models in this 
context is significant. These advanced AI models are 
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designed to process and learn from various types of data 
modalities. Development of foundation AI models will help us 
identify new patterns and correlations that are not feasible 
using traditional analysis methods. For instance, the 
generative AI models could generate novel material 
combinations for batteries by analyzing scientific literature 
and simulation data, predict the longevity and efficiency of 
these materials using real-world performance data, and 
assess their environmental impacts through environmental 
data. Once trained, the foundational models can be fine-
tuned for various downstream tasks, such as predicting 
specific material behaviors under different environmental 
conditions or assessing new compounds for energy storage 
capabilities. This fine-tuning process involves adjusting the 
model parameters to serve the specific requirements of a 
task, which will improve the model’s accuracy and 
applicability in diverse scenarios. 

A diverse set of advanced AI methodologies is needed, 
including domain-aware, advanced foundational learning 
algorithms for handling complex multimodal data; transfer 
and few-shot learning tools for fine tuning and downstream 
predictive modeling tasks; tailored reinforcement learning and 
optimization methods; graph neural networks for modeling 
molecular structures; physics-informed AI methods for faster 
simulations; and interpretable and explainable and 
trustworthy AI for trustworthiness. Moreover, we need 
multimodal learning models, federated learning for privacy 
preservation and decentralized systems, and large language 
models for literature analysis and hypothesis generation. 

The implementation of risk management strategies in AI-
driven energy storage solutions is crucial for their safe, 
effective, and responsible deployment. These strategies need 
to focus on several key areas: alignment, robustness, 
uncertainty quantification, validation and verification, 
explainable and trustworthy AI, and security. Each of these 
areas plays a critical role in addressing the challenges of 
cybersecurity, bias mitigation, transparency, and resilience. 
With such trustworthy goals, we can minimize the risk of the 
AI system making decisions that are undesirable or harmful. 
This is particularly important in complex systems where AI 
might have to make trade-offs between different objectives. 
Robustness in AI systems refers to their ability to maintain 
performance under various conditions, including those that 
were not part of the training phase. This is critical in energy 
storage solutions where the system might face unpredictable 
scenarios. Rigorous testing protocols under various scenarios 
help ensure reliability and resilience. Uncertainty 
quantification involves assessing the reliability of the AI 
system’s predictions and decisions. In the context of energy 
storage, it’s important to understand the confidence level of 
AI predictions to manage energy resources effectively and to 
make informed decisions about energy distribution and 
storage. Validation and verification are crucial to ensuring 
that the AI system performs as intended. Validation checks 

whether the system meets the user’s needs and 
requirements, whereas verification ensures that the system 
was built correctly. This element is essential in energy 
storage solutions to prevent errors that could lead to system 
failures or inefficiencies. The development of transparent and 
explainable and trustworthy AI models is key to addressing 
algorithmic biases. Explainable and trustworthy AI helps 
stakeholders understand how decisions are made, which is 
crucial for trust and accountability. Using diverse training 
datasets and regular assessments ensures fairness and 
effectiveness, reducing the risk of biased outcomes. 
Advanced cybersecurity measures are critical in protecting 
AI-driven energy storage systems from data breaches and 
cyber-attacks; this area includes authentication, encryption, 
data integrity, security audits, and intrusion detection 
systems. 

The Integration of specialized wo”kflo’s and tools is important 
for accelerating the development of energy storage 
technologies. AI-driven simulation platforms are essential for 
enabling rapid prototyping and testing, significantly reducing 
the time and resources required for developing new materials 
and products. These platforms leverage advanced AI 
algorithms to simulate and predict the properties of various 
materials and components, facilitating faster decision-making 
and iteration. The workflow integration plays a key role in 
enhancing overall efficiency. It involves the implementation of 
AI systems that seamlessly interconnect various stages of the 
development process, ranging from initial material selection 
to final product deployment. Workflow integration reduces 
bottlenecks and optimizes resource allocation by providing a 
smooth transition between these stages. This streamlined 
approach can ultimately contribute to faster adoption and 
scale-up of innovative energy storage solutions in the rapidly 
evolving landscape of renewable energy. 

The diversity in expertise and perspectives expected within 
the various development teams, amounting to hundreds of 
professionals in total, will be critical to addressing the 
multifaceted challenges inherent in developing advanced 
energy storage solutions. Materials scientists are crucial for 
understanding the properties and behaviors of new materials 
and for guiding the AI algorithms in material selection and 
testing. Domain experts, including those with expertise in 
renewable energy, environmental science, and industrial 
processes, are vital for developing solutions that are not only 
technologically advanced but also viable, sustainable, and 
aligned with industry needs. The AI scientists will bring 
expertise in the advanced algorithms and machine learning 
techniques essential for analyzing complex datasets and 
refining AI models. Engineers play a pivotal role in applying 
the insights gained from AI and materials science to the 
practical design and manufacturing of energy storage 
systems. 

The significance of high-performance computing, particularly 
through DOE leadership computing facilities and new AI 
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supercomputers, is also critical. These advanced computing 
systems will be at the forefront of addressing the substantial 
computational demands required for training, enabling 
simulations that generate the training data, and deploying 
large AI foundation models. The integration of new AI 
supercomputers within these facilities marks a significant leap 
forward, providing even greater computational power and 
speed. 

Ultimately, accelerating the deployment of AI models and 
applications in the field of energy storage hinges on 
integrating AI at the edge; developing smaller, fine-tuned 
models; guaranteeing model trustworthiness; and performing 
rigorous validation and verification. AI at the edge facilitates 
real-time data processing at or near the source, enhancing 
responsiveness and efficiency, both of which are particularly 
crucial for decentralized energy systems. Tailoring smaller, 
more specialized AI models from large foundation models for 
specific use cases ensures easier deployment and 
management, reducing the demand on computational 
resources. Trustworthiness, encompassing reliability, 
fairness, transparency, and ethics, is critical and is assured 
through thorough and rigorous validation and verification 
processes. Additionally, continual updates and 
improvements, driven by data and expert feedback, will be 
vital for maintaining the efficacy of these AI applications over 
time. 

To this point, we have discussed the many ways that AI can 
be applied to accelerating the development and deployment 
of storage technologies in our energy infrastructure. One 
critical need to drive these developments is the generation of 
large datasets at all points in the development/deployment 
spectrum, facilitating adequate training of AI models and 
identification of key gaps. Current national laboratory-based 
projects have illustrated the promise of AI for energy storage, 
while also illuminating the limitations of having insufficient 
data to drive experiments. Thus, the need for data portends 
to be a key limiter in the development of AI for energy storage 
and must be capably and comprehensively addressed 
through active engagement in partnerships. DOE has 
identified this need and, through the Energy Storage Grand 
Challenge, has established a program called the Rapid 
Operational Validation Initiative (ROVI), which is designed to 
dramatically reduce the time required to bring new 
technologies to market. The ROVI effort is coordinated by six 
national labs and has already produced data requirements 
and guidelines for Li-Ion-based and flow battery-based 
systems [18]. Working with the Electric Power Research 
Institute, members of the ROVI team have published 
guidelines for data collection during monitoring of installed 
energy storage systems [19]. These types of efforts, 
coordinated through DOE leadership, help to standardize the 
collection of data from many experiments, installations, and 
partner organizations. In doing so, they provide the basis for 

accelerating AI applications that are described throughout the 
sections of this chapter. 

Successful implementation of AI in this sector will depend on 
executing partnerships across academia, industry, and 
government agencies. Collaboration is necessary for sharing 
knowledge, resources, and best practices, as well as for 
aligning objectives and providing regulatory compliance. 

The AI-driven transformation in energy storage technology 
will require a skilled workforce. Efforts to address this need 
span both the upskilling of the existing workforce and the 
recruitment and training of new talent with specialized AI 
skills. For the existing workforce, comprehensive training 
programs are essential to equipping it with the knowledge 
and skills required to effectively work with AI systems. These 
programs should cover a range of topics, from basic AI to 
more advanced algorithms, data analysis, and cybersecurity, 
and should be tailored to the specific needs of the energy 
storage sector. We also need to teach domain science to AI 
researchers. Recruitment strategies must also evolve to 
attract individuals who possess specialized AI skills. This 
talent pool will need to include computer scientists, applied 
mathematicians, AI model developers, and system 
integrators who can bridge the gap between AI technologies 
and energy storage applications. Universities and educational 
institutions play a crucial role by aligning curriculum with DOE 
and industry needs and by creating a new generation of 
professionals who are well-versed in AI and its applications in 
renewable energy. The pace of technological advancement in 
AI and energy storage means that skills and knowledge can 
quickly become outdated. Therefore, creating a culture of 
ongoing education and professional development will be 
essential to sustaining this ecosystem. This effort could 
involve regular training sessions, workshops, and 
collaboration with academic and research institutions to 
enable this future workforce to stay current with the latest 
developments and innovations. 

To summarize, the advancement of energy storage 
technology with AI requires a comprehensive strategy that 
integrates varied and complex data sources that include 
scientific research, numerical simulations, experimental data, 
and environmental assessments. AI technologies need to 
implement domain-aware algorithms that can process 
multimodal data effectively, including surrogate models to 
speed up DFT simulations crucial in materials science. The 
potential of multimodal AI foundation models is significant, 
enabling the discovery of new patterns and the prediction of 
material’' properties, longevity, and environmental impacts. 
These AI models require task-specific fine-tuning that employ 
transfer and few-shot learning to improve predictive accuracy. 
Integrating physics-informed AI, graph neural networks, and 
interpretable AI will be vital to increasing simulation speeds 
and ensuring the trustworthiness of predictions. Federated 
learning and large language models can enhance privacy and 
literature analysis, respectively. Managing AI risks involves 
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focusing on system robustness, uncertainty quantification, 
cybersecurity, and the necessity for AI systems to make 
reliable predictions under various conditions. New domain-
aware validation and verification methods and the 
development of explainable and trustworthy and causal AI 
models will be critical for securing the trustworthiness of 
these systems. 

4.4 Expected Outcomes 
Leadership in Clean Technology and Market Growth: 
Focusing on domestic manufacturing technologies for 
scalable storage solutions will be crucial for achieving zero-
emission goals by 2050. This effort aligns with global 
demands for sustainable energy storage, potentially 
unlocking a $10 trillion market. The development of more 
efficient and cost-effective storage solutions not only aids in 
meeting energy demands but also positions a nation as a 
leader in clean technology. This leadership can stimulate 
economic growth, create jobs, and foster innovation in the 
energy sector. 

Operational Efficiency and Decarbonization: Improving 
storage operations to enhance cost-effectiveness and 
reliability directly impacts decarbonization efforts. Optimized 
siting/sizing, dispatch, lifespan prediction, and adoption of 
storage solutions by the grid and transportation sectors all 
serve to improve overall system efficiency. This advancement 
can lead to reduced carbon emissions and will support a 
transition to a zero-emissions economy. Furthermore, 
improving operational efficiency advances energy security. 

Grid Reliability and National Security: Enhancing grid 
reliability will be vital to supporting the adoption of renewable 
energy sources and decarbonization. Bidirectional storage 
systems can accelerate the integration of variable renewable 
energy resources onto the electric grid. Reducing 
dependence on foreign materials and improving the supply 
chain for energy storage also strengthens national security. A 
reliable and secure grid is fundamental for economic 
development and national security. 

Equitable Decarbonization: Addressing equitable 
decarbonization ensures that all communities benefit from the 
transition to cleaner energy sources. This approach involves 
considering the impact of energy storage and renewable 
energy (or lack thereof) on community health and resilience, 
especially in the face of extreme events and power outages. 
Additionally, creating a skilled workforce for energy storage 
technology development and deployment can lead to more 
equitable job opportunities and economic benefits. 
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05. ENERGY MATERIALS 
Energy materials play a key role in the generation, storage, 
and efficient use of energy and include, among others, 
materials for energy storage, photovoltaic and thermoelectric 
materials, catalysts, and advanced multicomponent alloys. 
These materials are key to designing solutions for efficient 
and renewable energy that will facilitate achieving U.S. goals 
in clean energy, economic growth, and energy justice while 
reducing dependency on non-renewable resources and 
minimizing environmental impacts. 

Achieving U.S. sustainability and clean energy goals [1] by 
2050 requires accelerating the discovery, design, production, 
and certification of energy materials with bespoke properties 
and performance. The discovery and design of new energy 
materials with specific properties and performance require 
the exploration of vast parameter spaces that are beyond the 
scope of human-driven exploration. In addition to 
understanding the fundamental properties of these materials, 
there are urgent needs to develop cost-effective and 
sustainable methods for their production and to address 
challenges related to their durability and lifecycle 
management. 

Current developments in artificial intelligence (AI) play a 
multi-faceted role in advancing energy materials research by:  

 Accelerating the design and discovery of new energy 
materials. 

 Advancing laboratory automation to speed up synthesis, 
iterative testing, and refinement. 

 Bridging the gap from laboratory-scale research to certified 
industrial-scale use. 

Overall, AI has the potential to be a game-changer in the field 
of energy materials, able to uncover new materials, forecast 
their properties, and lead to discoveries that could address 
significant challenges in the energy sector. If we are 
successful, we will establish U.S. leadership in the 
development of high-performance but safe and clean-by-
design energy materials that will accelerate the shift of the 
Nation toward a circular economy based on the sustainable 
and environmentally friendly reuse and regeneration of 
materials. 

This chapter provides an overview of the most pressing 
challenges in energy materials and the new opportunities that 
the application of AI brings to advancing the discovery, 
synthesis, and scale-up of the production and use of a new 
generation of clean and safe-by-design energy materials. 

5.1 Grand Challenges 
Recent advances in AI have the potential to transform and 
accelerate the discovery and production of energy materials. 
Focusing on their applications, the most pressing needs in 
energy materials can be summarized across three main 
impact areas: 

 Energy generation, harvesting, and conversion. 
Developing materials that enhance the efficiency and cost 
effectiveness of generating energy from renewable and 
nuclear sources is a priority. This objective includes 
improvements in solar energy technologies for better 
sunlight capture and conversion, advancements in extreme 
environment materials and fuels for safer and more 
efficient nuclear reactors, innovations in materials for 
hydrogen production, and development of thermoelectric 
materials to convert waste heat into electricity. 

 Energy storage and efficiency. There is also a need to 
design materials that can store and convert energy more 
efficiently. This pursuit includes new materials for 
advanced batteries and supercapacitors that can provide 
better energy storage as well as improvements in fuel cell 
technologies and efficient hydrogen storage. Also needed 
are materials that can contribute to reducing overall energy 
consumption across systems, for instance, better insulation 
materials that are key for energy efficient buildings. 
Similarly, lightweight materials are required that enable 
energy conservation and efficiency across the 
transportation sector. 

 Environmental sustainability and scalability. Another 
essential initiative involves reducing the environmental 
impacts of energy use and production. This requires the 
development of new materials for carbon capture and 
utilization that, by reducing atmospheric carbon dioxide 
(CO2) levels, can contribute to mitigating climate change. It 
also includes the discovery of new catalysts that enhance 
the efficiency of energy-related chemical conversions, such 
as biofuels production. All future energy materials need to 
be designed to be sustainable and scalable for widespread 
use and mass production. 

To address the above needs, the scientific community must 
focus on new scientific and technological advances aimed at: 

 Accelerating materials discovery to identify novel 
material structures and compositions that can meet the 
functional requirements of different energy-related 
applications. 
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 Improving predictive material design to speed up the 
prototyping process and enable the efficient exploration of 
extensive variations across chemistries, transcending the 
current Edisonian (i.e., trial-and-error) approach. 

 Bridging the scales from lab experiments to industrial 
production to enable rapid deployment and use of new 
materials. 

The outcomes of such advances have the potential to enable 
new discoveries and technologies in energy materials that will 
be key in realizing further efforts to: 

 Address the need for materials that support hydrogen 
production and CO2 mitigation, alongside reducing 
dependency on critical materials like rare earth elements 
and lithium through the discovery of viable alternatives. 

 Develop advanced fuel cells to reduce dependence on 
fossil fuels and support clean energy generation and a 
zero-carbon lifestyle. 

 Speed up the qualification for new materials and nuclear 
fuels, especially those required for clean energy 
infrastructure and operation in extreme environments such 
as next-generation nuclear reactors. 

 Design bespoke materials and parts for clean energy 
applications and infrastructure, such as solid-state 
transformers and structural materials for harsh 
environments like nuclear reactors. 

 Discover new catalysts to generate “green ammonia” and 
accelerate deep decarbonization in agriculture through its 
dual use as a fertilizer and energy storage mechanism. 

 Accelerate predictive design to speed up the prototyping 
process and explore extensive variations of material 
structures and compositions. 

 Discover new materials to create high-energy-density 
batteries to improve the U.S. energy grid’s efficiency and 
resilience. 

 Advance technologies for efficient CO2 capture, storage, 
and transformation into high-value chemicals. 

 Focus on unique applications in advanced manufacturing 
methods to create new, agile, and optimized supply chains. 

 Achieve cost effectiveness and reliability in materials 
design to develop solid-state transformers that can replace 
traditional wire-wrapped systems. 

 Accelerate the design process for energy materials, with an 
emphasis on predictive and inverse design to enhance 
energy efficiency. 

The use of modern AI techniques can contribute to 
accelerating the development of new energy materials 
beyond what is currently possible if relying only on human 
interventions. However, significant scientific and 

technological challenges exist when applying AI techniques 
to energy materials research, including these:  

 The need for vast datasets for AI/machine learning (ML) 
material informatics due to the heterogeneity of materials, 
which requires large investment and is time-consuming 
given that materials discovery and design must explore a 
potentially infinite parameter space. 

 A disconnect between the current approach to materials 
science and the evolving pace of AI technology, 
necessitating a focus on ways to accelerate and increase 
efficiency, especially in upscaling from the laboratory to 
real industrial production environments. 

 The need to overcome barriers such as the lack of rapid 
prototyping and achieving AI-driven advanced materials for 
bespoke energy applications that can support agile supply 
chains. 

 The need to bridge the gap in scales in materials design, 
requiring AI to interpolate successive models and 
simulations, integrate experimental datasets, optimize 
multimodal functionalities, and address the disconnect in 
accuracy across temporal and spatial scales. 

 The enormous computational costs associated with 
accelerating first-principles materials modeling, such as 
density functional theory (DFT) and other even more 
accurate and expensive methods, for generating the 
explainable and trustworthy AI models that are needed to 
predict material behavior with high fidelity. 

 The need to identify the ways in which AI can play a role in 
meeting the grand challenges of energy materials by 
unravelling the process-microstructure-property 
relationships to optimize the process parameters for rapid 
and precise materials design. 

The urgent need for better integration between materials 
science and AI will require both technological breakthroughs 
and new methodological approaches to drive advances in 
energy materials. We have identified three main challenges 
at the intersection of materials science and AI that that need 
to be addressed to transform materials discovery, synthesis, 
and manufacturing through a new generation of accelerated 
techniques for precision energy materials. 

CHALLENGE 1: UNVEILING THE CAUSAL 
STRUCTURE OF THE ENERGY MATERIALS SPACE 
Current materials data generation efforts such as the 
Materials Genome Initiative [2], combined with existing data 
on energy materials generated by U.S. Department of Energy 
(DOE)-funded projects (e.g., energy materials network [3], 
legacy irradiated materials performance database) and with 
experimental and computational data available across 
national and international repositories (e.g., Materials Project 
[4], Opencatalyst [5], NOMAD [6]), have the potential to 
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enable rapid exploration of the energy materials space to 
accelerate discovery and design. 

However, given the heterogeneous nature of these data and 
the distributed nature of the data resources, there is a need 
for a data curation and integration effort aimed at developing 
a latent representation of the energy materials space that 
includes materials structure, properties, performance, and 
lifecycle information. Creating and maintaining this latent 
representation require a continued large-scale effort to 
integrate existing and new experimental and computational 
data across modalities, scales, and fidelity levels. Such an 
effort will enable AI tools to learn a representation suitable to 
capturing and reproducing the causal structure of the 
multidimensional energy materials space. Modern AI 
techniques facilitate coupling latent space representations 
with large language models (LLMs) to provide the necessary 
alignment with materials science principles, as well as to 
facilitate the interpretability and explainability of potential 
paths across the materials space. These are key capabilities 
for guiding accurate and reliable inverse materials design. 
We anticipate that the generative capabilities of the latent 
space model will provide a new framework that can serve as 
the core of a future DOE-wide capability for science-informed 
autonomous discovery and design of new energy materials 
with targeted properties and performance.  

CHALLENGE 2: ENABLING PRECISION 
SYNTHESIS AND MANUFACTURING OF ENERGY 
MATERIALS THROUGH REAL-TIME AI 
The discovery and design of novel energy materials must be 
coupled to realizable synthesis processes. Modern AI 
techniques provide the appropriate framework for developing 
the next generation of AI-enabled synthesis and 
manufacturing platforms that can rapidly validate new 
synthesis routes and scale up to production using 
autonomous experimentation (AE) approaches. These 
platforms should range from single instruments with varied 
levels of autonomy to integrated, multi-instrument, self-driving 
laboratories (SDLs) capable of executing synthesis and 
characterization workflows with minimal human intervention. 
Precision synthesis requires the development of new AI 
capabilities that can leverage first-principles simulations to 
operate safely in regions of the materials space where limited 
data are available (i.e., extrapolation). There is also a need to 
codevelop artificial intelligence algorithms, heterogeneous 
computing systems, and real-time decision and control 
methodologies in concert with synthesis and characterization 
platforms to enable precision material synthesis [7]. In situ 
processing will require a new generation of edge-deployable 
AI models to steer the synthesis process in real time and 
achieve the precision needed to develop energy materials 
with bespoke performance. To help ensure the successful 
transition to industrial manufacturing, AI systems must be 
coupled to multiscale, physics-based simulations to develop 

industrial-scale digital twins that will inform the precision 
energy materials loop. 

CHALLENGE 3: ADVANCING BEYOND MATERIAL 
PROPERTIES AND PERFORMANCE TO ACHIEVE 
LIFECYCLE-AWARE MATERIALS DESIGN 
By leveraging advances in AI, the U.S. can accelerate the 
shift to a circular economy by incorporating the energy 
materials lifecycle into the precision energy materials loop. AI 
models need to be expanded to embed lifecycle and supply 
chain constraints into the materials design process to enable 
end-of-life recycling/upcycling and to minimize supply chain 
dependencies. Meeting these directives or constraints will 
require embracing new manufacturing methods and applying 
AI to generate ideas, anticipate how new materials will be 
used, and transition from rapid prototyping to testing and 
validation across various lifecycle stages. Achieving this goal 
will require the integration of AI-driven models for energy 
materials lifecycle with LLMs, fine-tuned with supply chain 
information, to support the decision process needed to 
optimize the design and production of high-performance but 
clean and safe-by-design energy materials. 

5.2 Advances in the Next Decade 
In the next decade, we anticipate a transformative change, 
driven by AI, in the way we discover, design, and 
manufacture energy materials. In this section, we will focus 
on the three areas where advances in AI will be critical to 
achieving broader scientific and technological impacts. 

ACCELERATING ENERGY MATERIALS 
DISCOVERY  
The field needs more refined techniques that enable AI tools 
to explore large chemical and materials spaces, screen and 
predict materials, discover feasible synthetic routes, and 
optimize multimodal functionalities using large datasets. 
Efficient and scalable methods to acquire high-quality 
experimental data and high-throughput computational 
simulations will be essential to building a high-fidelity 
representation of the materials space [8]. These advances 
should include efficient and reliable methods for extracting 
scientific knowledge from peer-reviewed literature, and new 
multimodal embedding techniques that capture and preserve 
existing structure-property-performance relationships in 
materials data. Advances in topological data analysis can 
provide new insights on the structure and properties of the 
high-dimensional data manifolds that represent the energy 
materials space. Progress in causal inference algorithms will 
also be needed to understand the underlying causal 
mechanisms in materials science. This includes the 
development of novel AI techniques to infer causal 
relationships from multiple data modalities. To accelerate 
discovery, researchers need to develop accurate AI-driven 
surrogates for computationally expensive first-principles 
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simulations (e.g., electronic structure, molecular dynamics, 
phase field modeling) allowing more efficient navigation and 
selection of high-fidelity simulations across scales. Efficient 
data assimilation techniques must be developed that facilitate 
the continuous updating of the latent space representation as 
more data become available. 

IMPROVING PREDICTIVE MODELING AND DESIGN 
AI will be a significant player in accelerating the design 
process and predicting the properties of materials, thus 
reducing the time required for prototyping, development, and 
certification. AI capabilities that bridge the scales gap in 
materials design are needed, to interpolate successive 
models and simulations, integrate datasets, optimize 
multimodal functionalities, and attend to the accuracy 
discrepancies across different materials scales. Through 
advances in AI and multi-fidelity modeling, we will be able to 
predict and model material behaviors with high accuracy by 
connecting multiple data modalities, spatiotemporal scales, 
and physics. Applications of AI-enabled predictive models 
could range from predicting the microstructure of a material 
based on specific manufacturing parameters to forecasting 
material properties in extreme environments [9]. Advances in 
inverse design and reinforcement learning will be key in 
predictive modeling tasks exploring design space, 
synthesizing materials, optimizing multimodal functionalities, 
and designing bespoke parts for unique applications in the 
energy sector. Similarly, significant advances will be required 
to achieve explainable and trustworthy AI models that will 
facilitate the shift from high-throughput trial and error to 
precision materials by design. 

BRIDGING THE SCALE FROM LAB EXPERIMENTS 
TO INDUSTRIAL PRODUCTION 
Efforts are needed to enhance AI capabilities to accurately 
predict material properties and performance across scales to 
expedite the transition from lab-scale experiments to 
industrial manufacturing. Explainable and trustworthy AI 
models with reliable extrapolation capabilities will be needed 
to streamline the scale-up from laboratory to industry. Also, 
AI systems will need to be more effectively integrated with 
advancements in manufacturing technology. This effort 
should include real-time monitoring and adaptive control 
mechanisms that allow AI to respond dynamically to changes 
in the manufacturing process. Such a capability will require 
advanced AI techniques to facilitate real-time feedback for 
experiments and make crucial decisions during the 
upscale process. 

Significant advances will also be needed in cross-cutting 
areas. For instance, in the DOE context, there is a need to 
integrate the unique instruments at the experimental user 
facilities and national laboratories with the leadership 
computing resources. Advancing in this direction, DOE’s 
Integrated Research Infrastructure (IRI) [10] aims at 

facilitating this seamless integration through the future High 
Performance Data Facility (HPDF). The facility will provide 
the basic interoperability and governance mechanisms 
needed for data-compute integration and for the development 
of advanced AI solutions for materials science. There is also 
a need to ensure the sustainability of the software and AI-
based models for energy materials. The uniqueness in the AI 
model development and validation lifecycle requires novel 
and effective provenance tracking. An additional complexity is 
the difference in resources and utilization workflows during 
model training or during inference. While DOE computing 
resources can provide a suitable framework for model 
training, the deployment of these models in production 
environments (i.e., close to the instruments) requires new 
approaches and infrastructure. For instance, advances in 
edge computing and hardware acceleration will be needed to 
facilitate model inference in latency-constrained 
environments. Advances in AI safety and trustworthiness will 
also be a crosscutting need when AI models will be 
integrated with synthesis and characterization platforms. The 
applied nature of the energy materials space will require 
developing new approaches to balance between sharing data 
for faster advancement and maintaining necessary controls 
for proprietary or sensitive information. Expanding on 
federated learning approaches and AI safety will be critical to 
ensure that proprietary data are not disclosed. 

5.3 Accelerating Development 
This section summarizes several areas where DOE needs to 
accelerate the development of resources to achieve our goal 
of accelerated precision synthesis and manufacturing of 
energy materials.  

DATA AND KNOWLEDGE 
High-quality data and mechanistic knowledge are key to 
developing and validating predictive models for materials. 
There is an urgent need to develop curated datasets that 
provide a diverse view of the energy materials landscape. 
This involves collecting, generating, and curating multimodal 
data that cover an extensive range of chemical structures, 
surface compositions, properties, and performance metrics 
across multiple spatiotemporal scales and operando 
conditions (e.g., irradiation effects). Efforts to develop new 
representations for energy materials beyond SMILES [11] or 
SELFIES [12] should be a priority. To enable predictive 
materials science, traditional approaches to data 
management need to be enhanced to support automatic 
metadata annotation and robust provenance tracking. The 
emerging properties of LLMs provide novel and effective 
approaches for knowledge extraction from data. Incipient 
efforts on using LLMs for materials data need to be supported 
and expanded. Reliable experimental data, either for model 
training or validation, are vital. Optimal experiment design 
techniques (e.g., Bayesian optimization, active learning) 
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together with reduced-order surrogate models and generative 
models will be critical to reduce the cost of large-scale data 
generation for AI training. Optimal design should be 
complemented by high-throughput experimentation 
capabilities with highly automated characterization and 
synthesis instruments to generate adequate and meaningful 
datasets. Collecting data from industrial manufacturing 
processes to understand materials lifecycle, unique 
applications, supply chain issues, and how materials behave 
at industrial scales will be invaluable to modeling the 
transition from laboratory-scale experiments to industrial 
production. 

METHODS DEVELOPMENT 
To accelerate the development of precision energy materials, 
there is a need to accelerate the development of new AI 
methods. One of the priority areas should be the exploration 
of methods that learn from limited data (e.g., expanding 
beyond few-shot-learning) while allowing reliable 
extrapolation outside the training regime. Efforts bridging first-
principles simulations with physics-informed machine learning 
need to incorporate elements of causal reasoning to provide 
explainable and trustworthy and science-aligned AI systems. 
Advanced AI techniques to bridge gaps in materials design 
across different scales must be developed to facilitate the 
interpolation of successive models. Specifically, we need to 
develop more efficient methods to explore large materials 
design spaces, increasing by 4–7 orders of magnitude the 
number of atoms that we can currently simulate from first-
principles calculations. Also, new approaches based on 
model-free reinforcement learning and AI systems with 
compositional generalization capabilities can be used to 
recombine known concepts to understand and adapt to novel 
situations. This capability will be particularly relevant in the 
context of energy materials design, where different 
compositions of materials could be created and analyzed. 

SCALE OF MODELS  
Leveraging model modularity and composability we can 
create novel hierarchical frameworks for energy materials 
modeling. At the top of the hierarchy, a human-computer 
interface (HCI) based on an LLM handles the planning of 
high-level scientific tasks expressed as abstract concepts and 
goals set by domain experts. For instance, a user might state, 
“we want a material that does (a, b, c) and the constraints are 
(x, y, z).” The middle layer integrates various domain-specific 
foundation models for design space exploration that can 
integrate existing modeling and simulation capabilities. At the 
bottom of the hierarchy, a set of adaptive control models for 
smart instruments, tailored for specific applications, executes 
the synthesis and characterization tasks under the specific 
constraints imposed by the user (e.g., limit the use of critical 
elements) while continually learning and adapting to changes 
in the process. In terms of composability, each model in the 
hierarchy should be conceived as an interchangeable 

module. It means that for different applications, specific 
domain-specific models can be swapped out as needed. This 
modularity also allows for general models to be refined for 
different domains, for instance, by fine-tuning according to 
the specific requirements of the application. Moreover, 
hierarchical models can work alongside other AI techniques 
to handle the transition from lab experiments to industrial 
scales. 

Regarding the scale of the models, we anticipate that the 
LLM for energy materials will be on the order of 1 trillion 
parameters, whereas the set of domain-specific foundation 
models will be in the range of 250 to 750 billion parameters. 
The adaptive models for smart instruments will be smaller 
(~10 billion parameters), but the need for continuous learning 
will pose significant computational challenges. For larger 
models, it is worth noting that as the frequency of retraining 
foundation models lowers, the established models are 
expected to stabilize and stand effective for longer periods 
of time. 

SCALE OF COMPUTING 
Model training and inference will need to span across all 
scales of the continuum computing. Edge computing, 
including domain-specific hardware accelerators, will provide 
a suitable infrastructure for real-time AI systems directly 
connected to the instruments. Edge systems need to be able 
to accommodate multiple latency constraints (e.g., from 
microseconds to minutes) depending on the dynamics of the 
synthesis and manufacturing processes. Existing mid-range 
and large-scale high-performance computing (HPC) facilities 
will need to increase in size (i.e., number of accelerators) to 
accommodate the training of LLMs. Finally, elastic cloud 
computing resources (both on premise and public) can 
provide support for the deployment of models in production 
environments, facilitating their access to academic and 
industry partners. There is a need to orchestrate and co-
schedule workflows across experimental and computational 
user facilities. This capability will enable the hybrid compute 
deployment of federated AI capabilities. The ongoing IRI 
effort provides an excellent starting point for the integration of 
data and compute resources needed for the successful 
application of AI to advance energy materials research. 

Advances in energy-efficient computing will be critical for the 
development of large-scale AI systems. The energy demand 
of training increasingly large foundation models is not 
sustainable; and thus, more efficient algorithms, smaller 
models, and energy-efficient architectures should 
be explored. 

PARTNERSHIPS AND WORKFORCE 
DEVELOPMENT 
To be successful in this effort, the need exists to establish 
critical partnerships across different labs, industries, and 
universities envisioning them as decadal-scale relationships. 
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In addition, relevant stakeholders including regulatory bodies 
need to be engaged throughout the lifecycle-aware materials 
design process to ensure that their needs are met and that 
potential risks are managed effectively. Relevant industry 
partners include instrument manufacturers and companies 
providing relevant data. Engaging with industry will also 
provide a path for technology transfer and commercialization 
that will have direct impacts on U.S. competitiveness and 
economic growth. Specifically, partnerships with equipment 
and instrument vendors will be critical for the tighter 
integration of AI with synthesis and characterization required 
for self-driving laboratories. 

There is also a need to articulate and leverage connections 
across various national laboratories, where each laboratory 
can provide invaluable expertise and resources and can 
collaborate on shared goals. Additionally, collaborations 
should extend beyond DOE to include facilities related to 
other sectors like U.S. Department of Defense (DoD) or the 
U.S. Department of Commerce (DoC). Interagency 
collaboration (e.g., National Science Foundation, DoD, 
National Institute of Standards and Technology [NIST]) will be 
necessary for establishing a leadership AI computing 
capability. 

Partnerships with universities will be critical for workforce 
development. There is a growing need for developing a 
unique skillset in the workforce that integrates both AI and 
materials science competencies. Universities can contribute 
significantly by incorporating AI and materials science 
expertise into their curricula to prepare the future workforce 
and could aid in the development of pipeline programs. Multi-
agency funding could be a strategy to support the workforce 
pipeline, upskilling existing staff, and workforce development 
programs. 

RISKS, SAFEGUARDS, AND SECURITY 
One of the main risks related to AI use in energy materials 
stems from the access to some of the industry-owned data. 
There is a need to develop effective safeguards to protect 
such information while still allowing users to leverage insights 
from a model without violating proprietary data agreements. 
Advancing methods to avoid data leakage from AI models 
should be a priority. Approaches such as privacy-preserving 
AI methods and efficient AI algorithms to learn from 
encrypted data can help secure the data used for training the 
models. 

Securing proprietary data can pose significant technical 
challenges, particularly in partnerships across facilities or in 
the face of industry collaborations. There are tensions 
between the impetus for collaborators to share data to 
advance more quickly versus managing data to ensure 
confidentiality and/or export controls. Ensuring compliance 
with existing regulatory standards, such as the NIST’s AI risk 
management framework, is of utmost importance to avoid 

potential pitfalls and breaches, while providing opportunities 
for using federated, privacy-preserving methods. 

Verification and validation (V&V) of AI models is an area that 
needs urgent attention and increased research efforts. 
Contrary to well-established V&V processes in software, the 
validation of AI systems provides significant opportunities for 
research and development. A specific area, relevant for AI 
applications in energy materials, could be developing 
approaches for “scientific red teaming” to verify that the 
outcomes of the AI system do not violate science principles. 

5.4 Expected Outcomes 
The AI-accelerated discovery, synthesis, and manufacturing 
of precision energy materials has the potential to deliver 
impacts akin to precision medicine. The use of advanced AI 
techniques and tools will increase the explorable materials 
space by several orders of magnitude. This expansion will, in 
turn, result in a significant reduction in the time and cost 
associated with the discovery of new materials for energy 
applications (e.g., solar cells, batteries, fuel cells, catalysts, 
nuclear fuels and materials, etc.). This accelerated discovery 
can lead to more efficient and cost-effective energy solutions 
that will contribute to U.S. energy security by reducing our 
dependency on imported energy sources. 

By achieving precision control in the materials synthesis and 
manufacturing process, we will create new and highly 
efficient materials with specific property profiles and 
performance. For instance, the precise control of structure 
and properties will facilitate the design of improved fuels and 
structural materials for the next generation of nuclear energy 
systems. This efficiency can contribute to reduce energy 
consumption and improve resource utilization, not only in the 
U.S. but globally. 

By including clean and safe-by-design constraints in the 
design of new materials, we will be able to reduce their 
environmental impacts and enable better reuse and recycling. 

Finally, embedding supply-chain constraints in the design of 
new energy materials will contribute to leveraging the use of 
abundant U.S. sources of materials to avoid reliance on 
critical materials. 

Overall, the development of advanced AI systems coupled 
with physics-based simulations in conjunction with DOE’s 
unique experimental and computational facilities will 
transform the discovery, design, synthesis, production, and 
certification of energy materials. Thus, this effort will 
contribute to establishing U.S. leadership in applied energy. 
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AA. AGENDA 
THURSDAY, DECEMBER 14, 2023 
Building 240, Room 1501 
 
8:30 a.m. Registration and Coffee 
 
9:00 a.m. Welcome and Introduction 

• Claus Daniel, Associate Laboratory Director (Argonne) 
 
9:15 a.m. DOE FASST: Overview 

• Rick Stevens, Associate Laboratory Director (Argonne) 
 
10:00 a.m. DOE Program Offices: Panel moderated by Kirsten Laurin-Kovitz (Argonne) 

• Alice Caponiti, Deputy Assistant Secretary for Reactor Fleet and Advanced Reactor 
Deployment (NE) 

• Tassos Golnas, Technology Manager, Photovoltaics (EERE) 
• Thuc Hoang, Director of the Office of Advanced Simulation and Computing & Institutional 

Research and Development Programs (NNSA) 
• Darren Mollot, Director for Artificial Intelligence and Special Projects (FECM) 
• Ceren Susut-Bennett, Associate Director, Advanced Scientific Computing Research (SC) 

 
10:45 a.m. Morning Break 
 
11:00 a.m. Exemplar #1: Nuclear Energy 

• Chris Ritter (INL) 
 
11:15 a.m. Exemplar #2: Power Grid 

• John Grosh (LLNL) 
 
11:30 a.m. Exemplar #3: Carbon Management 

• Hari Viswanathan (LANL) 
 
11:45 a.m. Exemplar #4: Energy Storage 

• Charlie Hanley (Sandia) 
 
12:00 p.m. Exemplar #5: Energy Materials 

• Ian Foster (Argonne) 
 
12:15 p.m. Working Lunch and Charge for Afternoon Breakouts 
 
1:00 p.m. Energy Breakouts: Afternoon Session in Buildings 241 and 242 
 

• Breakout #1: Nuclear Energy 
o Location: Building 241, D173 
o Lead: Rick Vilim (Argonne) 
o Co-Lead: Ahmad Al Rashdan (INL) 

 
• Breakout #2: Power Grid 

o Location: Building 242, J108 
o Lead: Court Corley (PNNL) 
o Co-lead: Ben Kroposki (NREL) 

 
• Breakout #3: Carbon Management 

o Location: Building 242, J208 
o Lead: Kelly Rose (NETL) 
o Co-lead: Sibendu Som (Argonne) 

 
• Breakout #4: Energy Storage 

o Location: Building 241, A323-T 
o Lead: Prasanna Balaprakash (ORNL) 
o Co-lead: Mary Ann Piette (LBNL) 
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• Breakout #5: Energy Materials 
o Location: Building 241, B123 
o Lead: Robert Rallo (PNNL) 
o Co-lead: Brian Van Essen (LLNL) 

 
2:00 p.m. Afternoon Break: Building 241, Room D286 
 
4:00 p.m. Afternoon Breakout Session: Report-out Summaries in Building 240 

• Breakout #1: Nuclear Energy 
• Breakout #2: Power Grid 
• Breakout #3: Carbon Management 
• Breakout #4: Energy Storage 
• Breakout #5: Energy Materials 

 
5:00 p.m. Day One Adjourn 

FRIDAY, DECEMBER 15, 2023 
Building 240, Room 1501 
 
8:30 a.m. Registration and Coffee 
 
9:00 a.m.  Charges and Organization for the Morning Breakouts 

• Rick Stevens, Associate Laboratory Director (Argonne) 
 
9:15 a.m.  Energy Breakouts: Morning Session in Buildings 241 and 242 
 

• Breakout #1: Nuclear Energy 
o Location: Building 241, D173 
o Lead: Prashant Jain (ORNL) 
o Co-Lead: Andrew Siegel (Argonne) 

 
• Breakout #2: Power Grid 

o Location: Building 242, J108 
o Lead: Court Corley (PNNL) 
o Co-lead: Ben Kroposki (NREL) 

 
• Breakout #3: Carbon Management 

o Location: Building 242, J208 
o Lead: Kelly Rose (NETL) 
o Co-lead: Sibendu Som (Argonne) 

 
• Breakout #4: Energy Storage 

o Location: Building 241, A323-T 
o Lead: Prasanna Balaprakash (ORNL) 
o Co-lead: Mary Ann Piette (LBNL) 

 
• Breakout #5: Energy Materials 

o Location: Building 241, B123 
o Lead: Robert Rallo (PNNL) 
o Co-lead: Brian Van Essen (LLNL) 

 
12:00 p.m. Working Lunch and Morning Session Report-outs in Building 240 

• Breakout #1: Nuclear Energy 
• Breakout #2: Power Grid 
• Breakout #3: Carbon Management 
• Breakout #4: Energy Storage 
• Breakout #5: Energy Materials 

 
1:00 p.m. AI for Energy Workshop Report: Writing Session 

• Breakout Leads / Co-leads 
 
3:00 p.m. Workshop Concludes 
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AB. WORKSHOP PARTICIPANTS 
FIRST NAME LAST NAME INSTITUTION 

Ahmad Al Rashan Idaho National Laboratory 
Frank Alexander Argonne National Laboratory 
James Amundson Fermilab 
Prasanna Balaprakash Oak Ridge National Laboratory 
Anouar Benali Argonne National Laboratory 
Keith Benes DOE Office of Science and Technology Policy 
Peer-Timo Bremer Lawrence Livermore National Laboratory 
Alice Caponiti DOE Office of Nuclear Energy 
Jonathan Carter Lawrence Berkley National Laboratory 
Dave Chassin SLAC National Accelerator Laboratory 
Wei-Ying Chen Argonne National Laboratory 
Court Corley Pacific Northwest National Laboratory 
Claus Daniel Argonne National Laboratory 
Akshay Dave Argonne National Laboratory 
John Feddema Sandia National Laboratories 
Ian Foster Argonne National Laboratory 
Vincent Freyermuth DOE Office of Science and Technology Policy 
Helena Fu DOE Office of Critical and Emerging Technology 
Jess Gehin Idaho National Laboratory 
Shaun Gleason Oak Ridge National Laboratory 
Tassos Golnas DOE Office of Energy Efficiency and Renewable Energy 
Peter Graf National Renewable Energy Laboratory 
John Grosh Lawrence Livermore National Laboratory 
Ray Grout National Renewable Energy Laboratory 
Kenneth Ham DOE Water Power Technologies Office 
Simon Hammond DOE National Nuclear Security Administration 
Charles Hanley Sandia National Laboratories 
Sarah Higgins Argonne National Laboratory 
Thuc Hoang DOE National Nuclear Security Administration 
Tianzhen Hong Lawrence Berkley National Laboratory 
Rui Hu Argonne National Laboratory 
Prashant Jain Oak Ridge National Laboratory 
Sean Jones Argonne National Laboratory 
Ryan King National Renewable Energy Laboratory 
Kerstin Kleese van Dam Brookhaven National Laboratory 
Robert Kostecki Lawrence Berkley National Laboratory 
Benjamin Kroposki National Renewable Energy Laboratory 
Teja Kuruganti Oak Ridge National Laboratory 
Kirsten Laurin-Kovitz Argonne National Laboratory 
Craig Lawton Sandia National Laboratories 
Josh Linard DOE Office of Legacy Management 
Amanda McAlphin DOE Office of Science 
Zhi-Gang Mei Argonne National Laboratory 
Darren Mollot DOE Fossil Energy and Carbon Management 
Daniel Nichols DOE Office of Nuclear Energy 
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Joao Pereira Pinto Oak Ridge National Laboratory 
Mary Ann Piette Lawrence Berkley National Laboratory 
Alec Poczatek Argonne National Laboratory 
Joshua Porterfield DOE Office of the Undersecretary for Science and Innovation 
Jason Pruet Los Alamos National Laboratory 
Robert Rallo Pacific Northwest National Laboratory 
Christopher Ritter Idaho National Laboratory 
Michael Robinson DOE Office of Energy Efficiency and Renewable Energy 
Kelly Rose National Energy Technology Laboratory 
Wissam Saidi National Energy Technology Laboratory 
Malachi Schram Thomas Jefferson National Accelerator Facility 
Benjamin Shrager DOE Office of Electricity 
Andrew Siegel Argonne National Laboratory 
Stephanie Smith DOE Office of Manufacturing and Energy Supply Chains 
Seth Snyder Idaho National Laboratory 
Sibendu Som Argonne National Laboratory 
Brian Spears Lawrence Livermore National Laboratory 
Melissa Stark DOE Fossil Energy and Carbon Management 
Rick Stevens Argonne National Laboratory 
Ceren Susut-Bennett DOE Office of Science 
Gina Tourassi Oak Ridge National Laboratory 
Rebecca Trojanowski Brookhaven National Laboratory 
Brian Van Essen Lawrence Livermore National Laboratory 
Richard Vilim Argonne National Laboratory 
Jud Virden Pacific Northwest National Laboratory 
Hari Viswanathan Los Alamos National Laboratory 
Bin Wang Lawrence Berkley National Laboratory 
Wei Wang Pacific Northwest National Laboratory 
Mike Weathers DOE Geothermal Technologies Office 
Meng Yue Brookhaven National Laboratory 
Lee Zachos Argonne National Laboratory 
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AC. ACRONYMS AND ABBREVIATIONS 
ACRONYMS  ABBREVIATIONS 

AE applied energy 
AI artificial intelligence 
Argonne Argonne National Laboratory 
CDR carbon dioxide removal 
CH4 methane 
CO2 carbon dioxide 
DAC direct air capture 
DFT density functional theory 
DoD U.S. Department of Defense 
DOE U.S. Department of Energy 
DT digital twin 
ECP Exascale Computing Project 
EERE Energy Efficiency and Renewable Energy (DOE) 
EV electric vehicle 
FASST Frontiers in Artificial Intelligence for Science, Security, and Technology 
FECM Fossil Energy and Carbon Management (DOE) 
GHG greenhouse gas 
GIS geographic information systems 
GPU graphical processing unit 
GtCO2 gigatons of CO2 
HFM high-fidelity modeling 
HPC high-performance computing 
INL Idaho National Laboratory 
IRI Integrated Research Infrastructure 
IT information technology 
LANL Los Alamos National Laboratory 
LBNL Lawrence Berkeley National Laboratory 
LLCF life-cycle carbon fuel 
LLM large language model 
LLNL Lawrence Livermore National Laboratory 
MGI Materials Genome Initiative 
ML machine learning 
NASA National Aeronautics and Space Administration 
NE nuclear energy  
NETL National Energy Technology Laboratory 
NH3 ammonia 
NIST National Institute of Standards and Technology 
NNSA National Nuclear Security Administration  
NRC U.S. Nuclear Regulatory Commission 
NREL National Renewable National Laboratory 
ORNL Oak Ridge National Laboratory 
PMU phasor measurement unit 
PNNL Pacific Northwest National Laboratory 
PSC point source capture 
R&D research and development 



 

AC. ACRONYMS AND ABBREVIATIONS 

AI FOR ENERGY  

57 

ACRONYMS  ABBREVIATIONS 

ROVI Rapid Operational Validation Initiative 
Sandia Sandia National Laboratories 
SME subject matter expert 
V&V verification and validation 
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