
  ANL/ESIA-24/6 

Charging Demand in the Chicago Metropolitan 
Area Through 2030

 

Energy Systems and Infrastructure Analysis Division



About Argonne National Laboratory 

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, 

at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne 

and its pioneering science and technology programs, see www.anl.gov. 

DOCUMENT AVAILABILITY 

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing  

number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), 

a service of the US Dept. of Energy’s Office of Scientific and Technical Information. 

Reports not in digital format may be purchased by the public 

from the National Technical Information Service (NTIS): 

U.S. Department of Commerce 

National Technical Information Service 

5301 Shawnee Road 

Alexandria, VA 22312 

www.ntis.gov 

Phone: (800) 553-NTIS (6847) or (703) 605-6000 

Fax: (703) 605-6900 

Email: orders@ntis.gov 

Reports not in digital format are available to DOE and DOE contractors 

from the Office of Scientific and Technical Information (OSTI): 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN 37831-0062 

www.osti.gov 

Phone: (865) 576-8401 

Fax: (865) 576-5728 

Email: reports@osti.gov 

Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States  

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express  

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific  

commercial product, product process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or 

imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions  

of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, 

Argonne National Laboratory, or UChicago Argonne, LLC.

 
 
 
 

about:blank


 

 

ANL/ESIA-24/6 

Electric Vehicle Charging Demand in the Chicago 
Metropolitan Area through 2030 

 

by 

Limon Barua, Nazib Siddique, Yan Zhou and Marianne Mintz 

Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory 

 

 

  July 2024



i 

 

CONTENTS 

 

ACKNOWLEDGMENTS ...................................................................................................... iii 

LIST OF ACRONYMS .......................................................................................................... iv 

ABSTRACT ............................................................................................................................ 1 

1 INTRODUCTION ................................................................................................................ 1 

2 DATA AND METHODOLOGY ........................................................................................... 3 

2.1 ATEAM Model Framework .................................................................................... 3 

2.2 Baseline Scenario .................................................................................................... 5 

2.2.1 Daily Simulation ................................................................................................. 6 

2.2.2 Yearly Simulation ............................................................................................... 7 

2.3 Future EV Adoption and Charging Infrastructure Deployment .............................. 8 

2.3.1 BEV Adoption ..................................................................................................... 8 

2.3.2 Charging Infrastructure Deployment .................................................................. 8 

3 SCENARIO ANALYSIS .................................................................................................... 10 

3.1 Widespread BEV Adoption ....................................................................................11 

3.2 Public Charging Infrastructure Deployment ......................................................... 12 

3.3 Home Charging Availability ................................................................................. 12 

4 VALIDATION .................................................................................................................... 13 

5 RESULTS AND ANALYSIS .............................................................................................. 13 

6 CONCLUSIONS AND FUTURE DIRECTIONS .............................................................. 20 

Appendix A Operational Improvements: GUI ....................................................................... 22 

Appendix B Distribution of BEV Among the Tract .............................................................. 24 

Appendix C Distribution of Public Chargers Among Tracts ................................................. 26 

REFERENCES ...................................................................................................................... 27 

 

 

 

 

 

 

 



ii 

 

LIST OF FIGURES 

1  Input details used in the ATEAM model. .................................................................................. 4 

2  Distribution of charging stations and BEV adoption in the study area (2022). ........................ 6 

3  SOC at plug-in and plug-off summarized from ChargePoint data (charging usage data, 2023) 

collected from February 2018 to February 2019. ..................................................................... 7 

4  Projected BEV adoption in the study area. ............................................................................... 8 

5  Steps for determining the total number of public chargers in the study area. .......................... 9 

6  Visual representation of eight scenarios. .................................................................................11 

7  Number of public chargers: baseline vs base + public charger scenarios. .............................. 14 

8  Total number of chargers in the study area. ............................................................................ 14 

9  Distribution of peak home charging load in 2029 in the baseline scenario (each point 

represents the peak home charging load for each census tract). ............................................. 15 

10  Peak home charging demand for different scenarios in 2029. ................................................ 16 

11  Change in peak home charging load versus change in BEV adoption in Widespread BEV 

compared to the baseline scenario in 2029 (each point represents a census tract). ................ 17 

12  Peak home charging load in Baseline in 2029 (a), change of peak home charging load in 

Widespread BEV scenario compared to Baseline  (b), distribution of the changes in (b) among 

tracts (c). ................................................................................................................................. 18 

13  Peaks charging load (home + public) at different time ranges (left) and spatial distribution of 

peak at 7 pm to 10 pm in Baseline and Widespread  BEV scenarios (right). ......................... 19 

14  Number of tracts with peak charging load (home +public) above 1500 KW in different 

scenarios in 2029 (left), the spatial distribution of the tracts with peak above 1500 KW in 

Baseline, Base + MUD +public charging, and Widespread  BEV scenarios (right). ............. 20 

15  A screenshot of the ATEAM GUI. .......................................................................................... 23 

 

LIST OF TABLES 

 

1  Data sources .............................................................................................................................. 4 

2  Weights of tract-level variables for BEV adoption by scenario .............................................. 25 

3  Weights of tract-level variables for charger deployment by scenario ..................................... 25 

 

 

 

 

 



iii 

 

ACKNOWLEDGMENTS 

 

 This activity was primarily supported by Commonwealth Edison Company (ComEd), an 

Exelon utility, under the Argonne-Exelon CRADA (A16155). The authors would like to thank 

Ryan Burg, Vincent Westfallen, and Kevin Happ from ComEd for their support and constructive 

feedback. The authors would also like to thank Md Rakibul Alam for his contributions to the 

development of ATEAM. 

 This report was prepared as an account of work sponsored by an agency of the United 

States government. Neither the United States government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility 

for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 

disclosed or represents that its use would not infringe privately owned rights. Reference herein to 

any specific commercial product, process, or service by trade name, trademark, manufacturer, or 

otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring 

by the United States government or any agency thereof. The views and opinions of authors 

expressed herein do not necessarily state or reflect those of the United States government or any 

agency thereof. 

  



iv 

 

LIST OF ACRONYMS 

 

ATEAM Agent-Based Transportation Energy Analysis Model  

  

BEV Battery electric vehicle  

  

CEJA Climate and Equitable Jobs Act  

CMAP Chicago Metropolitan Agency for Planning  

CRADA Cooperative Research & Development Agreement 

  

DCFC Direct-current fast charger 

  

EJCs Environmental Justice Communities  

EV Electric vehicle  

  

GIS Geographic Information System  

GUI Graphical User Interface 

  

MUD Multi-unit dwelling  

  

NACS North American Charging Standard  

  

PHEV Plug-in hybrid electric vehicle 

  

SOC State of charge  

SUD Single unit dwelling 

  

VMT Vehicle miles traveled  

  

ZEV Zero-emission vehicle  

 



1 

 

CHARGING DEMAND IN THE CHICAGO METROPOLITAN AREA THROUGH 2030 

ABSTRACT 

This report outlines the collaborative efforts between Argonne National 

Laboratory and Exelon in advancing the Agent-Based Transportation Energy 

Analysis Model (ATEAM). Aligning with ComEd’s beneficial electrification plan, 

this study developed eight scenarios to access the temporal and spatial distribution 

of charging load and demand stemming from the widespread adoption of battery 

electric vehicles (BEV) adoption, augmented public charging infrastructure 

deployment, and increased multi-unit dwelling (MUD) charging availability. 

Enhancements to the ATEAM model encompassed the simulation of multiple days 

of travel behavior, estimation of total public charging infrastructure needs, user 

interface refinements, and output tracking at both vehicle and charging station 

levels.  

The total electricity consumption for residential and public charging to 

support over 800,000 BEVs in Chicago in 2029 is projected at approximately 10.2 

GWh. Enhanced MUD home charging accessibility (70%) amplifies the home 

charging load in the study area by 1.5% compared to the baseline scenario (10%). 

The widespread adoption of BEVs reduces peak charging loads, owing to their 

inclusion across households with diverse income levels, thus fostering a more 

dispersed charging activity pattern. However, widespread BEV adoption increases 

the peak home charging load in areas with lower median household incomes, 

reflecting a higher BEV concentration in these locales and, subsequently, 

heightened peak charging demands. In the Widespread BEV adoption scenario, 

fewer census tracts exhibit elevated peak loads for combined home and public 

charging, indicating a more even distribution of charging demand across the study 

area. Predominantly, peak loads for combined charging—both home and public—

occur between 2 p.m. and 10 p.m. across all scenarios, encompassing the majority 

of census tracts. 

 

1 INTRODUCTION  

The U.S. National Blueprint for Transportation Decarbonization identifies the need to 

invest in infrastructure supporting low- and zero-emission vehicles, especially in low-income and 

overburdened communities, to eliminate nearly all greenhouse gas emissions from the 

transportation sector by 2050 (DOE, 2023). Many states also have embraced aggressive carbon 

neutrality and zero-emission vehicle (ZEV) initiatives. In Illinois, the recent signing of the 

Climate and Equitable Jobs Act (CEJA) signals a significant change on the horizon (Illinois 

Environmental Protection Agency, 2022). CEJA is an ambitious legislation that aims to 

accelerate the use of clean energy sources like solar and wind power, put one million electric cars 

on Illinois roads, and phase out coal and natural gas by 2050. This comprehensive goal, one of 

the most ambitious in the country, will have widespread consequences, including the 

transformation of Illinois' current electric vehicle (EV) adoption from fewer than 40,000 to one 
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million (CEJA, 2021). ComEd’s beneficial electrification plan is an investment strategy to 

support the adoption of decarbonization technologies. It is designed to benefit all customers, and  

especially those in environmental justice communities (EJCs) most affected by climate change 

and pollution. Moreover, achieving this transition from modest to widespread EV adoption will 

necessitate a combination of public and private investment to not only promote vehicle adoption 

but also to develop the essential charging infrastructure required to facilitate and sustain the shift 

toward electrified transportation. ComEd supports the growing adoption of EVs by readying and 

incentivizing charging infrastructure, especially for equity-eligible customers and communities 

which may face the biggest barriers in transitioning to EVs. The rapid EV growth and resulting 

charging demand will put extra demand on the grid, which requires proactive moves to reduce 

grid and capacity impact. Understanding the magnitude of charging demand at both residential 

and public locations, as well as its impact on the grid, is crucial, particularly in areas where grid 

capacity nears its limit. 

The analysis of EV charging demand has been a focal point for several studies. Among 

them, Qian et al. (2010), Kristoffersen et al. (2011), Kiviluoma and Meibom (2011), Paevere et 

al. (2014), and Muratori (2018) investigated charging load from EVs across broad study areas. 

For instance, Qian et al. (2010) developed an analytical model to assess EV charging load 

demand for the entire U.K. Kristoffersen et al. (2011) used driving patterns from western 

Denmark to estimate EV energy demand. Similarly, Kiviluoma and Meibom (2011) used travel 

survey data from Finland to develop driving profiles and forecast EV charging demands. Studies 

such as Muratori (2018) and Lopez et al. (2021) simulated individual EV user characteristics to 

project EV charging demand for the U.S. Midwest and Manila, Philippines, respectively. These 

studies provide insights into charging demand for broader study areas rather than focusing on 

small-scale regions like census tracts or block groups. 

Other studies have focused on determining EV charging demand at a smaller level of 

analysis. For instance, Paevere et al. (2014) developed a methodology to project spatial and 

temporal EV charging demand by integrating models for EV adoption and household travel 

analysis specifically for Victoria, Australia. Adenaw and Lienkamp (2021) as well as Yi et al. 

(2023) utilized MATSim to analyze EV charging load across different traffic analysis zones 

within the cities of Munich and Salt Lake City, respectively. Furthermore, Liu et al. (2023) 

developed a trip-chaining-based modeling framework, including EV adoption modeling, to 

project EV charging demands and load profiles for the state of Virginia in the United States. 

Argonne National Laboratory (Argonne), in collaboration with Exelon and local utilities 

under a Cooperative Research & Development Agreement (CRADA), has developed an agent-

based model known as ATEAM. Initially focused on simulating the growth of battery electric 

vehicle (BEV) adoption and charging infrastructure in the Chicago metropolitan area, ATEAM 

has been expanded to incorporate additional geographies and capabilities, enabling its 

application to the Baltimore–Washington region (Zhou et al., 2022, Mintz et al., 2019), its 

extension to a longer planning horizon, and the refinement of several initial conditions. This 

study is part of that expansion process: updating the ATEAM model with the latest travel pattern 

and charging behavior data, refining state-of-charge (SOC) assumptions, and quantifying 

charging demand by census tract with increased BEV adoption, especially by medium-income 

households and multi-unit dwelling (MUD) households in the Chicago metropolitan area. The 

study area for the ATEAM application described herein includes Cook, DuPage, Kane, Kendall, 

Lake, McHenry, and Will counties.  
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2 DATA AND METHODOLOGY 

We first updated the ATEAM model with the most recent travel data, BEV registration, and 

public charging station information. Table 1 shows the data used in this study and their sources. 

Subsequently, we focused on refining several key functionalities of the ATEAM model to 

enhance both its accuracy and user-friendliness. Specific enhancements included: 

• Simulation of multiple days of travel behavior. This allowed us to obtain a more accurate 

estimate of initial SOC and, thus, an unbiased daily home-charging load profile by 

capturing potential overnight home-charging sessions that were initiated on the previous 

day. 

• Updated driver behavior and charger utilization functions to reflect differences in driving 

(i.e., commuter vs. non-commuter) and home charging availability. This allowed us to 

generate a more realistic estimate of the total number of public chargers needed in the 

study area. 

• Output tracking at the vehicle and charging station agent levels. This enhancement 

validated the accuracy of each vehicle and charging station within the model, thereby 

ensuring the credibility of the model’s output. 

• User interface enhancement to facilitate easy selection of parameters and scenario design 

(see Appendix A).  

This study focused on BEV charging needs and excluded plug-in hybrid electric vehicles 

(PHEVs) from scenario analysis. PHEVs have an internal combustion engine and can switch to 

gasoline when necessary, reducing their reliance on public charging infrastructure. Furthermore, 

our study does not account for the effects of traffic congestion. We assumed that drivers always 

choose the shortest path for their journeys, and travel times remain unaffected by road 

congestion.  

2.1 ATEAM Model Framework 

Argonne and Exelon co-developed the ATEAM model that projects future charging 

deployment needs and resulting charging demand by census tract. The model framework is built 

on Repast Simphony 2.7, a cross-platform, Java-based agent-based modeling system (Repast, 

n.d.). This framework allows for the modeling of interactions among drivers, charging stations, 

and utilities. ATEAM built on Repast offers increased flexibility in configuring and controlling 

the simulation process, considering the dynamic interplay between BEV adoption, travel 

patterns, charging behavior, and charging infrastructure deployment (Alam et al., 2023). 

ATEAM models the interaction between drivers, households, and charging infrastructure 

investors. Drivers make decisions regarding travel routes, charging preferences (including times 

and locations), and the intensity and duration of charging sessions. Household-level decisions 

revolve around vehicle adoption preferences which are based on various socio-demographic 

characteristics. Charging infrastructure investors play a crucial role in determining the location 

and scale of new charging infrastructure based on their specific objectives (outlined in Section 

3.2). Figure 1 illustrates the input details used in the ATEAM model. Details about ATEAM 

methodology can be found in previous reports (Zhou et al., 2022; Mintz et al., 2019). 
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In this study, we updated ATEAM with the latest data on travel patterns, EV registrations 

and public charging locations by census tract. Travel patterns were obtained from The Chicago 

Metropolitan Agency for Planning (CMAP) 2018–2019 travel survey which estimated travel 

demand within the six-county study area based on a representative sample of households 

(CMAP, 2020). Table 1 lists the data and sources used in this study. 

  

Figure 1 Input details used in the ATEAM model. 

Table 1 Data sources 

Data Source 

Household and driver daily travel  CMAP, 2020 

Existing BEV registrations by ZIP code Experian, 2022 

Future BEV registrations ComEd IRA BEV projection 

Public charging locations and levels AFDC, 2022 

Existing BEV information DOE fueleconomy.gov, 2022 

Home charging percentages Blonsky et al., 2021 

BEV share by electric range (BEV100/200/200) 

Energy Information 

Administration’s Annual 

Energy Outlook, 2022 

Future BEV efficiency (in kWh/100 mi) 

Energy Information 

Administration’s Annual 

Energy Outlook, 2022 

Single-unit dwellings by census tract U.S. Census Bureau, 2022 

Multi-unit dwellings by census tract U.S. Census Bureau, 2022 

Household income distribution by census tract U.S. Census Bureau, 2022 

Road network  TIGER/Line Shapefiles, 2023 
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2.2 Baseline Scenario 

This study's analysis horizon extends from 2022 to 2029. CMAP travel survey data 

provide the foundation for simulating vehicle travel patterns, supplying comprehensive details 

about travelers’ activities and trip chains. This trip chain data encompasses all trips made by 

drivers in a single day, including details about the location, purpose, and start- and end-time of 

each trip. 

To ensure the accuracy and representativeness of our analysis, we integrated sampling 

weights for each driver. These weights account for variations in the likelihood of individuals 

being included in the CMAP sample, facilitating meaningful inferences about the broader 

population. Note that higher weights indicate a higher probability of reproducing population 

values from the sample. 

The number of BEVs within a census tract is derived from registration records provided 

by Experian Automotive (Experian, Q2 2022). The categorization of BEVs into range categories 

(BEV 100/BEV 200/BEV 300) is determined by projections outlined in the U.S. Energy 

Information Administration's 2022 Annual Energy Outlook. Subsequently, following the 

determination of the number and types of BEVs in each census tract, a random allocation process 

is employed to distribute these vehicles, along with their respective types, among the households 

within the tract.  

Home charging availability is defined using the following equation: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑚𝑒 𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠 𝑝𝑒𝑟 𝑐𝑒𝑛𝑠𝑢𝑠 𝑡𝑟𝑎𝑐𝑡 = (𝑇𝑆𝑈𝐷 ∗ 𝑃𝑆𝑈𝐷 + 𝑇𝑀𝑈𝐷 ∗ 𝑃𝑀𝑈𝐷) ∗ 𝑁𝐵𝐸𝑉 

 

Where: 

• 𝑇𝑆𝑈𝐷 is the percent of single unit dwellings (SUD) in the tract, 
• 𝑃𝑆𝑈𝐷 is the percentage of SUDs with home chargers, 
• 𝑇𝑀𝑈𝐷 is the percent of the MUDs in the tract, 
• 𝑃𝑀𝑈𝐷 is the percentage of MUDs with home chargers, and 
• 𝑁𝐵𝐸𝑉  is the total number of BEVs in the tract. 

The values for 𝑇𝑆𝑈𝐷 and 𝑇𝑀𝑈𝐷 are obtained from the 2017–2021 American Community 

Survey (U.S. Census Bureau, 2022). 𝑃𝑆𝑈𝐷 and 𝑃𝑀𝑈𝐷 are assigned values between 0 and 1, with 

different values used for scenarios described in Section 3.3.  

Public charging station information for the base year (2022) was obtained from the 

Alternative Fuels Data Center (AFDC, 2022). This dataset provides information on the current 

number of public charging ports and charging types (L2/DCFC) at each location. Three charging 

levels were considered: L2, DCFC 50kW, and DCFC 150kW, and public charging was defined as 

being available to all BEVs. Although several automakers have announced they will implement 

Tesla's North American Charging Standard (NACS) connector on vehicles starting in the 2025 

model year (Barry, 2024), it is unclear when or at what price premium future BEVs will be able 

to use Tesla’s network. Moreover, since most pre-2025 model year BEVs (and many post-2025 

BEVs) will be unable to use that network, we exclude Tesla’s superchargers from our analysis. 

The geospatial distribution of the charging stations is shown in Figure 2. 
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Figure 2 Distribution of charging stations and BEV adoption in the study area (2022). 

In the baseline scenario, ATEAM simulates drivers operating vehicles on a representation of 

the seven-county road network. This network — comprised of primary, secondary, and trunk 

roads within the study area— was constructed from region-specific TIGER/Line shapefiles and 

verified using diverse Geographic Information System (GIS) tools to ensure the accuracy and 

dependability of all links used in our study.  

2.2.1 Daily Simulation  

In the daily simulation (from 3:00 a.m. to 3:00 a.m. the following day) BEV drivers engage 

in their travel activities based on trip chains derived from the CMAP travel survey. The vehicle is 

assumed to have a full charge when drivers start their first trip of the day. For subsequent days, if 

the driver has access to home charging, the vehicle is assumed to start the day with a full charge; 

otherwise, the battery state of charge (SOC) at the commencement of the first trip is determined 

by the SOC at the completion of the last trip from the preceding day. The simulation is run for 

two days, with the activities of the second day serving as a representative sample for daily 

simulation. 

It is assumed that the vehicle follows the shortest path between the centroids of the tract of 

origin and the tract of destination for each trip. Throughout the day’s travel, electricity 

consumption and resulting battery SOC are estimated based on the vehicle efficiency and trip 

distance. 

Unlike internal combustion engine (ICE) vehicles that typically refuel enroute, BEVs are 

assumed to rely on “destination charging” due to their relatively longer charging time. At the 

start of each trip, drivers are assumed to anticipate the subsequent three trips in their travel 

schedule and evaluate whether their remaining SOC might dip below a predetermined comfort 

level. The comfort level is imputed to each driver based on the distribution of the observed SOC, 



7 

 

shown in Figure 3. When the SOC falls below a certain threshold, drivers are presumed to search 

for available chargers within walking distance (assumed as 0.25 miles) of the next three 

destinations. Charging location selection prioritizes charging speed and the expected dwell time 

(based on the driver’s trip chain) for the charging event. Once charging is complete, the driver 

proceeds to the next trip in his/her schedule. 

 

Figure 3 SOC at plug-in and plug-off, summarized from ChargePoint data1. 

The daily simulation also monitors each BEV’s charging demand at both home and public 

charging locations. Additionally, the simulation tracks the use of chargers at any given time and 

estimates the corresponding charging load and energy delivered by each station. The total energy 

delivered within each tract is estimated by aggregating charging demand from all stations. 

Similarly, the total home charging load and electricity consumed within each census tract are 

estimated with assumed home charging availability. 

2.2.2 Yearly Simulation 

After completing the two consecutive days of travel simulation, the model progresses to the 

next simulation year. At the onset of each year, newly adopted battery electric vehicles (BEVs), 

along with corresponding home charging availability and public charging infrastructure, are 

introduced into the study area in accordance with predefined vehicle adoption and charging 

infrastructure deployment trajectories. Household agents within each census tract acquire new 

BEVs based on a utility function, as detailed in Section 2.3.1. Simultaneously, charging 

infrastructure investor agents deploy new charging stations (categorized by charging level) based 

on projected charging demand, utilizing various strategies, as described in Section 2.3.2. 

 
1 ChargePoint data were obtained for approximately 493,000 sessions in the Baltimore-Washington, D.C. area 

for April 2019-March 2020. Of these sessions, 18,690 involved fast charging. 
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2.3 Future EV Adoption and Charging Infrastructure Deployment 

2.3.1 BEV Adoption 

Future BEV adoption in the study area is based on ComEd projections which consider the 

impact of Inflation Reduction Act (IRA) and state incentives on BEV adoption, and which are 

more aggressive than Illinois’ target of having 1 million EVs on the road by 2030. Figure 4 

shows the number of BEVs anticipated to be on the road in the study area through 2029. 

 

Figure 4 Projected BEV adoption in the study area. 

BEV adoption within census tracts is assumed to be influenced by socioeconomic factors 

such as household income, existing BEV adoption rates, and the percentage of SUDs in that 

tract. To represent the propensity for BEV adoption at the census tract level, we devised a tract 

score by assigning varying weights to each factor in scenario analysis (see Appendix B for the 

methodology). A higher score indicates a greater likelihood of adopting a new BEV within the 

tract. Subsequently, BEVs are randomly distributed among households within each tract (and 

randomly distributed to each driver within the household). It is important to note that the 

objective of our study is to estimate charging demand by census tract, with a predetermined total 

BEV adoption target for the study area. This methodology does not aim to forecast BEV 

adoption by income level. 

2.3.2 Charging Infrastructure Deployment 

Drawing on the methodology outlined in Bauer et al. (2021) and Nicholas and Lutsey 

(2020), we estimated the requisite number of public chargers needed to accommodate anticipated 

BEV adoption levels. This approach leveraged available data from the study area, as illustrated 

in Figure 5. 

42,093
58,678 88,855

145,681

246,873

406,701

616,581

858,184

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

2022 2023 2024 2025 2026 2027 2028 2029

N
u
m

b
er

 o
f 

B
E

V
s



9 

 

 

 

Figure 5 Steps for determining the total number of public chargers in the study area. 

Based on the projected number of BEVs each year, drivers were classified into four 

categories based on commuting status and access to home charging, as determined by the CMAP 

travel survey. These categories include Commuter – with home charging, Commuter – without 

home charging, Non-commuter – with home charging, and Non-commuter – without home 

charging. This classification framework is designed to capture variations in daily travel distances 

and possibility for workplace charging among potential BEV drivers. The total daily energy 

required for each BEV category was then determined using the following equation: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝐸𝑉 ∗ 𝐷𝑎𝑖𝑙𝑦 𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝐵𝐸𝑉 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  

 

The number of BEVs in each category is estimated by multiplying each category's 

percentage from the CMAP travel data with the total number of BEV drivers. The average daily 

travel distance of drivers in each category also comes from CMAP data. The BEV efficiency in 

2022 is assumed to be 0.3 kWh/mile, with an annual increase rate of 0.89 (as documented in 

Bauer et al., 2021). Consequently, estimates of the total daily energy required to charge all BEVs 

in the study area account not just for growth in BEV adoption but also anticipated improvements 

in BEV efficiency. 

Next, we estimated the total energy to be served by each charger type―home Level 1 (L1), 

home Level 2 (L2), public Level 2 (L2), and public DCFC chargers―in the study area. We 

assumed that home chargers could serve 66% of the energy, while 17% each could be served by 

public L2 and public DCFC chargers, based on findings from Bauer et al. (2021). We computed 

the hours required for charging by charger type, assuming that the power supplied by public L2 

chargers increases from 6.6 kW in 2020 to 8.3 kW in 2030, as per Bauer et al. (2021). Similarly, 

we assumed the average power supplied by a DC fast charger increases from an average of 55 

kW in 2020 to 110 kW in 2029. Ultimately, the total number of chargers in the study area was 

determined using the equation: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑠 =
𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝐶ℎ𝑎𝑟𝑔𝑒𝑟 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Charger utilization is pivotal to estimating the number of chargers needed to support a 

given number of BEVs. In this study, we assumed average public charger utilization of 2.1 hours 

per day, based on findings from Tal et al. (2018) which captured self-reported charging behavior 

over seven days. Additionally, data from EV WATT indicates, at a national level, that public 

chargers are utilized for approximately 0.75 -5 hours per day, varying by charging type and 

location. Though beyond the scope of this study, it is hoped that future studies will explore the 

sensitivity of charger utilization to the spatial and temporal distribution of charging demand. 

After estimating the total number of public chargers in the study area, the ATEAM 

simulation deployed them to all census tracts using variables historically associated with a tract’s 

higher or lower probability of having public chargers. These variables include the historical 

number of public chargers, the ratio of work trips to total trips, total travel demand, tract-level 

unmet charging demand, and the percentage of SUDs within the tract. Different scenarios of 

charging infrastructure deployment were then defined by adjusting the weights assigned to each 

of these variables. Appendix C provides further detail on how this methodology was applied to 

distributing public chargers among the tracts in the study area.  

3 SCENARIO ANALYSIS  

We developed eight scenarios to explore the variations in the adoption of BEVs, public 

charging infrastructure deployment, and MUD charging availability. These scenarios were 

devised to inform ComEd of possible charging demand in the future, particularly with 

widespread BEV adoption among medium-income households and increased home charging 

accessibility at MUDs. A visual representation of the eight scenarios is presented in Figure 6, 

where a rubric outlines the distinctions among them. For example, “Widespread BEV adoption” 

scenarios project increased charging demand resulting from BEV adoption spreading to medium-

income households, whereas “Widespread Public Charger Deployment” scenarios envision 

chargers being more evenly dispersed among tracts in the study area. 
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Figure 6 Visual representation of how the eight scenarios examined in this study differed.  

Scenarios 1, 2, 3, and 4 assume BEV adoption patterns mirroring historical trends, while the 

remaining scenarios explore more widespread BEV adoption. For public charger deployment, 

Scenarios 1, 2, 5, and 6 adhere to historical trends, whereas the others involve a more widespread 

deployment of public chargers. Regarding the availability of MUD charging, Scenarios 1, 3, 5, 

and 7 assume low MUD charging availability, while the remaining scenarios consider high MUD 

charging availability. Subsequent sections provide in-depth discussions about these criteria, 

elucidating the nuances and implications of the various scenarios. 

3.1 Widespread BEV Adoption 

In this study, we investigated two distinct scenarios regarding the adoption of BEVs: one 

aligning with current adoption trends and another envisioning a broader adoption pattern. 

Following the current trend implies that new BEVs will be embraced predominantly in census 

tracts characterized by affluent household incomes and above average BEV adoption rates. 

Conversely, a more widespread adoption scenario posits that BEVs will become increasingly 

accessible to middle-income households, leading to adoption in tracts with such socio-economic 

profiles. 

To accomplish this, we adjusted the weights assigned to variables used in distributing the 

total number of BEVs to tracts across the study area.  In baseline BEV adoption scenarios 

(scenarios 1, 2, 3, 4), we assigned greater weights to the percentage of high-income households 

(those with incomes above $150,000) in the census tract and relatively high existing BEV 

registrations. Conversely, in scenarios envisioning broader adoption, we allocated greater weight 

to the percentage of middle-income households in the tract while disabling the weight attributed 

to existing BEV registrations. Appendix B elaborates on the specific weights employed. 
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3.2 Public Charging Infrastructure Deployment  

In the baseline scenario, we hypothesized that the deployment of public chargers mirrors 

past trends, with chargers concentrated in census tracts that have historically served as 

destinations for current BEV drivers. Conversely, in the widespread public charger deployment 

scenario, we simulated a more even distribution of public chargers across all tracts within the 

study area. Consequently, we assigned a negative weight to the variable representing “historical 

chargers” to mitigate the emphasis on census tracts already equipped with a high number of 

chargers, while assigning moderately positive weights to other variables (see Appendix C for 

details).  

3.3 Home Charging Availability 

In the future, as more middle-income families living in MUDs adopt BEVs, having 

charging stations in apartment complexes will be essential. At present, however, MUD residents 

face constraints in accessing home charging facilities. In Chicago, only 26% of MUDs have 

garages where home charger installation could be pursued (Borlaug et al., 2020; Zhang et al., 

2023). Today, while 80% of EV charging takes place at home (Ge et al., 2021), less than 5% of 

home charging takes place at MUDs (NOVA Workforce Development, 2015). Hence, we 

assumed a 10% availability of home charging in MUDs in baseline charging scenarios, and that 

residents of MUDs who adopt BEVs are likely to depend heavily on public charging 

infrastructure. Despite substantial public and private investments in MUD charging (Teebay, 

2023), we assume home charging remains severely limited in baseline charging scenarios.   

To evaluate the impact of heightened availability of home charging at MUDs, we 

investigated an alternative scenario wherein 70% of MUDs are assumed to have access to home 

charging, in contrast to the 10% assumed in the scenarios with low MUD charging availability. 

By integrating the three criteria outlined in sections 3.1, 3.2, and 3.3 (and shown in Figure 6) we 

defined the following eight scenarios: 

• Historic BEV adoption and public charging deployment (Baseline) 

• Historic + greater MUD charging (Base + MUD) 

• Historic + widespread public charging deployment (Base + public charging) 

• Historic + widespread public charging deployment + greater MUD charging (Base + 

public charging + MUD) 

• Widespread BEV adoption + historic public charger deployment (Widespread BEV) 

• Widespread BEV adoption + historic public charger deployment + greater MUD charging 

(Widespread BEV + MUD) 

• Widespread BEV adoption + widespread public charging deployment (Widespread BEV 

+ public charging) 

• Widespread BEV adoption + widespread public charging deployment + greater MUD 

charging (Widespread BEV + public charging + MUD) 
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4 VALIDATION  

To ensure the accuracy of our simulation results, we conducted a careful examination at a 

micro level, focusing particularly on the location, charging behavior, and travel patterns of driver 

agents as well as the distribution of charging stations. Using the ATEAM model, we extracted the 

activity logs of driver agents for each 15-minute time increment in the yearly simulation. Given 

the substantial volume of data generated, the validation was confined to two years. 

Initially, validation entailed verifying the home locations of drivers on the first and second 

simulation days, ensuring that drivers commenced their trips from home on the second day as 

expected. For drivers whose travel indicated the likely use of public charging, we cross-validated 

their location to ensure an exact match with a public charger location from the station location 

file. Next, we verified total annual charging demand by all driver agents at public locations and 

confirmed its alignment with total public charging delivered by each station. Finally, we 

scrutinized the usage of home chargers at any given time, confirming that it did not exceed the 

number of home chargers allocated to that tract. The same validation was applied to public 

chargers, ensuring that the number of public chargers used at any given time within a tract did 

not surpass the total number of public chargers allocated to that tract. 

Moreover, we conducted a comparative analysis of the total number of BEVs and total 

public chargers for each year across all scenarios outlined in Section 3. This comparison was 

essential to ensure consistency, confirming that the total number of BEVs and public chargers 

remained consistent across all scenarios. 

5 RESULTS AND ANALYSIS  

As shown in Figure 7, public chargers (L2 + DCFC) are spread more widely in the four 

widespread public charger scenarios. While public chargers in the Baseline scenario are 

concentrated in the downtown area, there is significantly greater dispersion to suburban locations 

in the Base + public charging scenario. The number of public chargers needed to accommodate 

the demand for BEVs rises progressively over time due to the increasing adoption of BEVs. As 

shown in Figure 8, there is exponential growth in the number of L2 public chargers, while the 

rate of increase for DCFCs is comparatively lower. By 2029, the simulation indicates 

approximately 52,000 L2 public chargers and 8,000 DCFC public chargers are in use. 
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Figure 7 Number of public chargers: Baseline vs Base + public charger scenarios.  

 

Figure 8 Total number of chargers in the study area. 

Total energy (electricity) consumption for charging BEVs at both home and public 

charging locations in 2029 is approximately 10.2 GWh across all scenarios. However, there is a 

slight variation in home charging demand due to different assumptions of home charging 

availability, and the stochastic nature of BEV drivers and their travel patterns simulated in the 

model. Specifically, the Base + MUD scenario increases home charging demand by 1.5% 

compared to the Baseline scenario due to higher MUD home charging availability. 

Baseline Base + public charging Downtown Downtown 
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The peak charging load for home charging typically occurs between 7 p.m. and 10 p.m., 

as illustrated in Figure 9. This pattern is consistent across all scenarios. Notably, there is a 

discernible increase in load beginning around 3 p.m. – with load rising through the evening 

hours, then gradually falling – a trend suggesting that home charging occurs after daily travel 

activities are complete and vehicles can be conveniently plugged in. Note that there is 

considerable variation among individual census tracts, as indicated by the range in hourly 

observations as well as the increasing dispersion beginning around 3 p.m. 

 

  

Figure 9 Distribution of peak home charging load in 2029 in Baseline scenario (each point 

represents the peak home charging load for each census tract). 

As shown in Figure 10, the magnitude of peak home charging load varies across different 

scenarios, with the baseline BEV adoption scenarios (Baseline, Base + MUD, Base +public 

charging, and Base + MUD + public charging) showing a higher peak as compared to the 

widespread BEV adoption scenarios (as observed in Baseline vs. Widespread BEV; Base + MUD 

vs. Widespread + MUD, etc.). Peak loads in the widespread BEV adoption scenarios are less 

than in the baseline scenarios, a reflection of the more dispersed patterns of travel activity of 

households with diverse income levels. Additionally, peak home charging loads are higher in 

scenarios with greater MUD charging access, as expected, owing to the increased availability of 

home charging.  
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Figure 10 Peak home charging load for different scenarios in 2029. 

Figure 11 is a plot, by income category, of BEV adoption vs. peak load, both relative to 

the regional average, by census tract. In the Widespread BEV scenario, peak home charging load 

is higher in most tracts with lower median household incomes compared to the Baseline. In this 

scenario, tracts with lower median household incomes adopt relatively more BEVs compared to 

the Baseline, leading to a higher peak home charging load. Conversely, most tracts with higher 

median household incomes have fewer BEVs compared to the Baseline, resulting in a lower peak 

home charging load in the Widespread BEV scenario. 



17 

 

 

Figure 11 Change in peak home charging load versus change in BEV adoption in Widespread 

BEV compared to Baseline scenario in 2029 (each point represents a census tract). 

Figure 12 provides additional detail on changes in peak home charging load. In the 

Widespread BEV scenarios, approximately 60% of tracts show higher peak home charging loads 

as compared to the Baseline (see the four right-most bars in Figure 12 [c]). Figures 12 (a) and (b) 

illustrate that tracts experiencing higher peaks in the Baseline scenario see a lessening of that 

peak in the Widespread BEV scenario. Conversely, tracts with lower peaks in the Baseline 

scenario see increases in the magnitude of peak home charging load in the Widespread BEV 

scenario. 
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Figure 12 Peak home charging load in Baseline in 2029 (a), change of peak home charging load 

in Widespread BEV scenario compared to Baseline (b), distribution of the changes in (b) among 

tracts (c). 

The 24-hour period is categorized into four segments based on ComEd’s Time-of-Use rate: 

peak hours from 7 p.m. to 10 p.m., off-peak hours from 10 p.m. to 6 a.m., peak hours from 6 a.m. 

to 2 p.m., and super-peak hours from 2 p.m. to 7 p.m. (Citizens Utility Board, 2022). In our 

study, most tracts experience peak loads from combined home and public charging between the 

hours of 2 p.m. and 10 p.m. According to Figure 13 (left), approximately 40% of tracts 

experience peak loads between 2 p.m. and 7 p.m., while another 40% experience peak loads 

between 7 p.m. and 10 p.m. Tracts that exhibit peak loads at specific times tend to maintain 

consistent peak load times across scenarios, albeit with varying magnitudes. For instance, 80% of 

tracts have peak loads occurring between 7 p.m. and 10 p.m. in both the Baseline and 

Widespread BEV scenarios, as depicted by the dark-brown color in Figure 13 (right). 

 

Baseline % change in Widespread compared to Baseline  
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Figure 13 Percent of census tracts experiencing peak charging load by time of day(left) and 

spatial distribution of the 7 to 10 pm peaks in Baseline and Widespread BEV scenarios (right). 

Note that in the Widespread BEV scenario, fewer tracts experience high peak loads 

compared to the Baseline scenario. As depicted in Figure 14, in the Widespread BEV scenario, 

56 tracts (2.8% of all tracts) have peak loads surpassing 1500 kW (as indicated in Figure 9, 

where most of the higher outlier peaks hover around 1500 kW), whereas in the Baseline 

scenario, this number is 70 (see Figure 14 on the left). This difference may be attributed to BEVs 

being distributed more evenly across the study area in Widespread BEV scenario, thereby 

reducing the concentration of BEVs in specific tracts and resulting in fewer tracts experiencing 

peaks above 1500 kW compared to the Baseline scenario. Only a few tracts exhibit peak loads in 

multiple scenarios. For example, six tracts have peak loads exceeding 1500 kW in the Base, Base 

+ MUD + public charging, and Widespread BEV scenarios (see Figure 14 on the right). 

 

Peak Off-peak Peak Super-peak 
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Figure 14 Number of tracts with peak charging load (home +public) above 1500 KW in different 

scenarios in 2029 (left), the spatial distribution of the tracts with peak above 1500 KW in 

Baseline, Base + MUD +public charging, and Widespread BEV scenarios (right). 

 

6 CONCLUSIONS AND FUTURE DIRECTIONS 

This report summarizes the collaborative efforts between Argonne and Exelon to develop 

and employ an agent-based model (ATEAM) for analyzing charging demand and infrastructure 

expansion in the seven-county Chicago metropolitan area from 2022 to 2029. For this effort, the 

ATEAM model was updated, expanded and exercised to explore the ramifications of alternative 

assumptions. Updates reflected the most recent initial conditions for the study area, including 

household demographics, regional trip-making behavior, BEV registrations, and public charging 

infrastructure. Functional improvements included simulating multiple days of travel behavior, 

estimating total public charger needs, updating the graphical user interface, and tracking outputs 

at both vehicle and charging station levels. Alternative assumptions were explored via eight 

scenarios which altered the temporal and spatial distribution of charging load and demand due to 

more widespread BEV adoption, greater public charger deployment, and increased MUD 

charging availability.  

 Simulation results indicate that home and public charging of more than 800,000 BEVs in 

the seven-county Chicago region will require approximately 10.2 GWh of electricity in 2029. 

Higher MUD home charging availability will amplify home charging load by 1.5%, as compared 

to the baseline, while more widespread adoption of BEVs will have a mixed effect. In some 

locations, it will reduce peak loads and lead to a more dispersed pattern, while in areas with 

lower median household incomes it will increase loads. ComEd will need to monitor such shifts 

to ensure sufficient capacities to support communities experiencing elevated load. However, it 

should be noted that if BEV adoption spreads to medium-income communities (as under the 
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Widespread BEV adoption scenario) charging demand will be more evenly distributed across the 

overall study area, and fewer census tracts will experience high peak loads from combined home 

and public charging. Across all scenarios, the majority of census tracts experience peak loads 

from combined home and public charging between 2 pm. and 10 p.m. 

Our study has several limitations. First, the CMAP travel survey captured only a small 

sample of households on a single travel day in 2019 which means it does not capture variations 

in travel behavior. Estimating households’ future travel behavior involves attributing these 

patterns to much larger numbers of future households (in effect, duplicating the same 

households) which may not capture the diversity of behavior, potentially misrepresenting the true 

peak charging load in a tract. Second, the analysis is based on travel behaviors on a typical day, 

overlooking variations across different days of the week or seasons. Third, our analysis 

concentrates primarily on vehicle charging upon returning home, possibly neglecting scenarios 

where vehicles charge when electricity rates are lower. Additionally, the study's scope is confined 

to project charging demand at the tract level, whereas a feeder-level load profile is needed to 

further evaluate the impact on the grid. Future research is needed to address these limitations.  
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APPENDIX A OPERATIONAL IMPROVEMENTS: GUI 

We used Repast Simphony's GUI for easy control over the model parameters. Users can 

adjust these settings to create different simulation scenarios. Figure 15 shows the GUI of 

ATEAM, accessible via the “Parameters” tab. Below is a concise overview of each field's 

functionality. 

Simulation End Year: Allows users to specify the concluding year of the simulation. The 

model will simulate all years leading up to, but not including the chosen end year. 

BEV Adoption Target: Users can select one of three options for total number of BEV 

adoption in the study area's future years: ComEd Projection, Exelon Projection, or ZEV Target. 

BEV Adoption Weight: Determines the allocation of BEVs within census tracts. In 2(a), 

users can customize BEV adoption. Subsequently, parameters for weight assignment discussed in 

Section 3.1 can be assigned in 2(b) to 2(k). 

Home Charging Availability: Users can assign weights for home charging availability for 

SUD and MUD in 3(a) and 3(b), respectively. 

Public Charger Deployment Scenario: Allows users to select from three deployment 

scenarios: Historic, Widespread, and Custom. If Custom is selected, users can assign weights for 

the charger deployment scenario in 4(b) to 4(g). 

Total Charger Estimation Method Parameters: Parameters required to estimate the total 

number of chargers, as described in Section 2.3.2, can be assigned in 5(a) to 5(e). These include 

BEV efficiency, utilization, and Vehicle Miles Traveled (VMT). 
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Figure 15 A screenshot of the ATEAM GUI. 
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APPENDIX B DISTRIBUTION OF BEV AMONG THE TRACT 

We developed a tract score to simulate the BEV adoption by census tract. The tract score is 

determined based on such variables as the income distribution of households, the historical BEV 

adoption (BEVs in the base year), and the percentage of SUD in that tract. Income groups are 

displayed by percentage of households with annual income less than $50,000; from $50,000 to 

$75,000; from $75,000 to $100,000;  from $100,000 to $150,000; and above $150,000. Tract 

scores are computed using a linear utility equation, where the normalized values of tract-level 

variables are multiplied by their respective weights as follows: 

𝑡𝐵𝐸𝑉 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 + 𝑤6𝑥6 + 𝑤7𝑥7 

Where: 

𝑥1 = percentage of household annual income less than $50,000, 

𝑤1 = weight associated with percentage of household annual income less than $50,000, 

𝑥2 = percentage of household annual income from $50,000 to $74,999, 

𝑤2 = weight associated with percentage of household annual income from $50,000 to $74,999, 

𝑥3 = percentage of household annual income from $75,000 to $99,999, 

𝑤3 = weight associated with percentage of household annual income from $75,000 to $99,999, 

𝑥4 = percentage of household annual income from $100,000 to $149,999, 

𝑤4 = weight associated with percentage of household annual income from $100,000 to 

$149,999, 

𝑥5 = percentage of household annual income above $150,000, 

𝑤5 = weight associated with percentage of household annual income above $150,000,  

𝑥6 = historical count of BEVs, 

𝑤6 = weight associated with historical count of BEVs, 

𝑥7 = percentage of SUD, and 

𝑤7 = weight associated with percentage of SUD. 

The weights’ values vary for different scenarios, as described in Section 3.1. Table 2 shows 

the value of the weight for each scenario. 
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Table 2 Weights of tract-level variables for BEV adoption by scenario 

Scenario 
Less than 

$50,000 

$50,000 to 

$74,999 

$75,000 to 

$99,999 

$100,000 to 

$149,999 

$150,000 or 

more 

Historic 

BEVs 

Percent 

SUD 

Business as 

Usual 
0 0 0.25 0.75 1 1 0.5 

More 

Widespread  
0 0.5 1 1 1 0 0.5 

 

After calculating the tract scores for BEV adoption, new BEVs are distributed to each census 

tract through a weighted random draw, using the tract scores as weights. In a weighted random 

draw, all tract scores are summed to obtain the total score, 𝑆. Subsequently, a random number 𝑅 

in the range [0, 𝑆] is generated. The algorithm involves iterating through the tracts. For each tract 

𝑖, if its score 𝑆𝑖 is less than 𝑅, the tract is skipped, and 𝑅 becomes 𝑅– 𝑆𝑖. The process repeats 

until a tract with a score greater than 𝑅 is reached, and this tract is selected to adopt a BEV. The 

entire procedure, starting with generating 𝑅, is reiterated until all new BEVs have been adopted. 

This algorithm assigns higher probabilities of receiving a BEV to tracts with higher scores. A 

positive weight for a specific tract variable raises the tract score, increasing the probability of 

obtaining a new BEV. Conversely, a negative weight reduces the tract score, decreasing the 

probability of adopting a new BEV. 
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APPENDIX C DISTRIBUTION OF PUBLIC CHARGERS AMONG 

TRACTS 

 Similarly, we developed another set of tract scores for the deployment of public chargers 

among the tracts. Six variables were selected to calculate tract scores for each charger type: 

historical charger numbers, median income, the percentage of households in SUDs, total travel 

demand, the ratio of work trips, and unmet charging demand. Depending on the scenario, the 

relative weights for these tract-level variables are adjusted. Table 3 provides the relative weights 

of tract variables by scenario. After calculating the tract scores for each charger type, new 

chargers are distributed to each census tract using a weighted random draw, as described in 

Appendix B. 

 

Table 3 Weights of tract-level variables for charger deployment by scenario  

Charger Type Tract Variable Historical Widespread 

    

Level 2 

Historical Chargers 1 -1 

Median Income 0.01 0 

Percent SUD 0.01 0 

Unmet Demand 0.05 0.05 

Work Trip Ratio 0.15 0.5 

Total Travel Demand 0.3 0.5 

DC50 kWh 

Historical Chargers 1 -1 

Median Income 0.02 0 

Percent SUD 0.02 0 

Unmet Demand 0.05 0.05 

Work Trip Ratio 0.1 0.5 

Total Travel Demand 0.4 0.5 

DC150 kWh 

Historical Chargers 1 -1 

Median Income 0.02 0 

Percent SUD 0.02 0 

Unmet Demand 0.05 0.05 

Work Trip Ratio 0.05 0.5 

Total Travel Demand 0.1 0.5 
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